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The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in heurogenetics due not
only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, cor-
ticobasal degeneration, Parksinson’s disease and possibly Alzheimer’s disease, but also due its genetic evo-
lution and complex alternative splicing features which are, to some extent, linked and so all the more
intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation
of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples origin-
ating from 439 individuals to provide the most reliable and coherent information on the regional expression,
splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression
and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mMRNA
expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated.
Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is
likely to be due to atechnical artefact, this polymorphism is associated with the expression of exon 3-containing
isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors
for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different
brain regions, as opposed to the overall expression of the MAPT gene.

INTRODUCTION

The MAPT (microtubule-associated protein tau) locus is one of
the most remarkable in neurogenetics due not only to its in-
volvement in multiple neurodegenerative disorders, including
progressive supranuclear palsy (PSP) (1,2), corticobasal de-
generation (CBD) (3), Parksinson’s disease (PD) (4—6) and

possibly Alzheimer’s disease (AD) (7,8), but also its genetic
evolution and complex alternative splicing—features which
are to some extent linked and so all the more intriguing (9—
11). Therefore, obtaining robust information regarding the ex-
pression, splicing and genetic regulation of this gene within
the human brain is of immense importance and the driving
force behind this paper.
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The evolution of the MAPT locus has been extensively
studied and it is well known that the gene sits within an inversion
polymorphism on chromosome 17q21. While the majority of
individuals inherit this region in the direct orientation, up to
25% of individuals of European-Caucasian descent have an
~970 Kb sequence in the opposite orientation (9,12), inducing
a larger ~1.3—1.6 Mb region of linkage disequilibrium (LD)
(13). This sequence appears, in Europeans at least, to descend
from a single founder (13,14). The common haplotype clades
marking the majority and inverted sequences are termed H1
and H2, respectively. It is not clear which of these sequences
is the ancestral orientation because the polymorphism exists in
other primate species and the rodent sequence is in the H2 orien-
tation (9). It is worth noting that since this inversion polymorph-
ism precludes recombination over a region of ~1.3—1.6 Mb,
haplotype-specific polymorphisms have arisen. Genetic
studies, including genome-wide association, have demonstrated
the importance of both the inversion polymorphism and
haplotype-specific polymorphisms in disease. In fact, two dis-
tinct types of disease association have been demonstrated, of
which the first is the association of the H1 haplotype with an
increased risk of PD (odds ratio ~1.7) (4—6), PSP (odds ratio
5.5) (1,2) and CBD (odds ratio ~5) (3). The second is the asso-
ciation of the H1c haplotype, one of the multiple sub-haplotypes
within the H1 clade, with an increased risk of PSP alone
(Table 1) (additional odds ratio ~1.5) (2,15).

The importance of tau, the protein product, in neurodegen-
erative disease was well recognized even before the advent of
MAPT genetics. Tau is expressed throughout the adult human
central nervous system and tau pathology, namely neurofibril-
lary tangles, is a notable pathological feature of a range of
neurodegenerative disorders, including PSP, CBD (16) and
AD (10). As well as having distinct clinical features, these dis-
eases also have distinct, but overlapping distributions of tau
pathology within the human brain. These distributions are
summarized in Table 1 and show that in AD, a disease charac-
terized by early memory loss and difficulties in executive func-
tions, tangle pathology is most prominent in brain regions that
are highly associated with these processes, namely the hippo-
campus, temporal cortex and frontal cortex. These findings
have led some to investigate whether basal regional expression
of MAPT mRNA and protein may predispose some brain
regions to a higher risk of tau pathology than others and
indeed there is evidence in support of this (16,17).

However, there is an increasing appreciation for the import-
ance of not only assessing total MAPT expression, but also alter-
native splicing. The MAPT gene is extensively spliced to
produce 12 mRNA transcripts (according to Ensembl/Havana
annotation) and 7 protein isoforms. Concentrating on the
known protein products within human brain (of which six are
recognized), cassette splicing of exons 2 and 3 (E2 and E3),
give rise to tau isoforms with 0, 1 or 2 amino-terminal repeats
(ON-, IN- or 2N-tau) and alternative splicing of exon 10
(E10), give isoforms with 3- or 4-microtubule-binding repeats
in the carboxy-terminal half of tau (3R- or 4R-tau) (10). Interest-
ingly, detailed investigation has demonstrated that neurofibril-
lary tangles in different diseases have a different isoform
composition, suggesting that splicing is of key importance in
the neuropathological process. Whereas the tangles found in
PSP and CBD consist predominantly of 4R-tau (due to exon
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Table 1. Semi-quantitative distribution of tangle pathology in human disease

Brain Alzheimer’s Progressive Corticobasal Parkinson’s
region disease supranuclear degeneration disease
palsy
FCTX 3 2 3 1
TCTX 3 1 2 2
OCTX 2 0 0 0
WHMT 0 1 3 0
HIPP 3 2 2 2/3
PUTM 1 2 3 0
THAL 2 1 2 1
HYPO 1 2 2 1
SNIG 1 2 3 0
MEDU 1 2 2 0
CRBL 0 1 1 0
SPCO 0/1 2 2 0

Semi-quantitative description of the distribution of tau pathology within the
human brain in AD, PSP, CBD and PD. The data represent average severity of
pathology in the following way: 0, none; 1, mild; 2, moderate; 3, severe [Tamas
Revesz, derived from references (46—48)].

10 inclusion), those found in AD contain both 3R- and 4R-tau
(18,19). Furthermore, consistent with the findings on total tau,
we have previously shown that regions of relatively high
4R-tau in PSP are more susceptible to tau-related pathology
and neurodegeneration (16,17).

Understanding the expression, splicing and regulation of the
mRNA and protein isoforms is of key importance to the field.
At present, no robust and coherent study of this type has been
performed. In order to address this, we used data from the UK
Human Brain Expression Consortium (UKBEC), the largest
exon-specific expression data set currently available (20), con-
taining up to 10 distinct brain regions (including hippocampus
and substantia nigra) sampled from 134 neuropathologically
normal individuals (see details of the brains studied in
Table 2 and Supplementary Material, Table S1) (20). In add-
ition, expression QTL analysis was performed to understand
the effects of both the H1 and Hlc risk haplotypes on
MAPT expression and splicing (Table 2). In order to increase
statistical power, the latter was performed using a second data
set originating from 390 neuropathologically normal indivi-
duals from the North American Brain Expression Consortium
(NABEC) (see details of the brains studied in Table 2 and
Supplementary Material, Table S1) (21).

RESULTS

Regional distribution and splicing of MAPT mRNA
expression in human brain

The frontal cortex (FCTX, n = 127), temporal cortex (TCTX,
n = 119), occipital cortex (specifically primary visual cortex,
OCTX, n=129), hippocampus (HIPP, n = 122), thalamus
(THAL, n = 124), cerebellum (CRBL, n = 130), substantia
nigra (SNIG, n = 101), putamen (PUTM, n = 129), medulla
(specifically inferior olivary nucleus, MEDU, n = 119) and
intralobular white matter (WHMT, n = 131), originating from
134 individuals from the UKBEC, were profiled on 1231 Affy-
metrix Human Exon 1.0 ST arrays. The regional distribution of
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Table 2. Demographics of the brains studied for each major type of analysis conducted

Analysis Source n Sex Age (years) PMI (h)
M F Range Mean Range Mean
Regional distribution and splicing of MAPT mRNA UKBEC 134 99 35 16-102 58 1-99 41.7
The effect of HI/H2 haplotypes on mRNA expression and splicing
The effect of the Hlc haplotype on MAPT mRNA expression NABEC 305 204 101 16—101 50 1.5-96 13.5
UKBEC 85 64 21 16-83 51 28-96 54.4
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Figure 1. Regional distribution of MAPT mRNA expression: box plot of
mRNA expression levels for MAPT in 10 brain regions, based on microarray
experiments and plotted on a log2 scale (y-axis). This plot shows the variation
in MAPT transcript expression across 10 brain regions: the frontal cortex
(FCTX, n = 127), temporal cortex (TCTX, n = 119), occipital cortex (specif-
ically primary visual cortex, OCTX, n = 129), hippocampus (HIPP, n = 122),
thalamus (THAL, n = 124), cerebellum (CRBL, n = 130), substantia nigra
(SNIG, n = 101), putamen (PUTM, n = 129), medulla (specifically inferior
olivary nucleus, MEDU, n = 119) and intralobular white matter (WHMT,
n = 131). Whiskers extend from the box to 1.5 times the inter-quartile range.

MAPT mRNA expression at the gene level is shown in Figure 1.
This demonstrated significant regional differences in MAPT
mRNA expression with a 1.5-fold difference (paired z-test
P-value = 5.7 x 10°*°) between the frontal cortex, the
highest MAPT expressing region, and the white matter, the
lowest (Fig. 1). Regional differences in MAPT mRNA expres-
sion were confirmed on a subset of 12 individuals in 4 brain
regions (CRBL, OCTX, PUTM and WHMT) using QuantiGene,
which showed a similar pattern [please see Figure 5b in refer-
ence (20) for MAPT mRNA expression].

The unique design of the Affymetrix Exon arrays, with probe
sets targeted against individual exons, also allowed us to inves-
tigate regional differences in MAPT mRNA splicing (alternative
splicing P-value < 1 x 10~ **, Fig. 2C). This demonstrated a
relative reduction in the expression of exon 2 in white matter
when compared with other brain regions, suggesting lower ex-
pression of exon 2-containing isoforms specifically in this
tissue. Similarly, there was a relative increase in the expression
of exon 6 in the cerebellum when compared with other brain
regions, suggesting higher expression of exon 6 containing iso-
forms in this tissue (Fig. 2C). Alternate splicing of exon 2 in

white matter was confirmed by TaqMan assays for ON (E2—,
3—), IN (E2+, 3—) and 2N (E2+, 3+) transcripts (Supple-
mentary Material, Fig. S1). These assays demonstrated a
selective reduction of exon-2-containing transcripts (2N-tau
and 1N-tau) in white matter, whereas ON-tau isoforms, which
do not contain exon 2 or 3, were unchanged between the selected
regions.

Regional distribution of MAPT protein expression
in human brain

The relationship between mRNA and protein expression is
complex. However, establishing that relationship for MAPT
is critical in interpreting reported expression quantitative
trait loci, which have largely depended on mRNA expression
levels alone. We assessed the regional variability in total tau
protein expression levels in 5 brain regions (CRBL, FCTX,
OCTX, PUTM and WHMT) in 12 individuals (Fig. 3A and
B). This analysis showed that the frontal cortex has the
highest tau protein levels with decreasing levels in the follow-
ing order: frontal cortex > occipital cortex > white matter >
putamen > cerebellum. Cerebellar tau protein levels were sig-
nificantly lower than all other regions examined (Fig. 3B, P <
0.01) and tau protein levels in the putamen were significantly
lower than the frontal cortex and occipital cortex (P < 0.05).
These findings are largely in agreement with our mRNA ex-
pression results which showed that cortical regions express
MAPT at the highest levels and the cerebellum, putamen and
white matter all have lower levels of MAPT mRNA.

The levels of each individual isoform of tau protein were
determined relative to total tau protein level for the same
sample (Fig. 3C—H). We found IN-tau protein isoforms
formed the majority of total tau (~50%), followed by ON-tau
isoforms (~40%) with 2N-tau isoforms forming the lowest pro-
portion of tau (~10%), and levels of 3R-tau and 4R-tau isoforms
were approximately equal, in agreement with previous studies
(22). Protein levels of the smallest tau isoform, ON3R, were sig-
nificantly lower in the cerebellum (P < 0.05) compared with
other brain regions, but other tau isoforms were not found to
vary significantly between brain regions. We also measured
3R- and 4R-tau protein levels in the same samples using sand-
wich ELISA assays (17,23). Both 3R- and 4R-tau are lowest
in the cerebellum and white matter reflecting total transcript
levels (Supplementary Material, Fig. S2). In conclusion,
whereas MAPT gene-level expression and total tau protein ex-
pression follow similar trends between brain regions, the rela-
tionship between mRNA and protein isoforms could not be
determined.
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Figure 2. MAPT gene/exon structure, position of expression probes and array expression. (A, upper panel) The structure of the MAPT gene. The position of
Affymetrix exon array probe sets (from probe set 3723707 to 3723753) and probe sets of Illumina transcript expression array (ILMN_2298727,
ILMN_1800049, ILMN_1710903 and ILMN_2310814) are indicated within the MAPT exons. (B, middle panel) The tau protein isoforms expressed in the
human brain. Alternative splicing of exons 2, 3 and 10 generates six protein isoforms of tau with either 0, 1 or 2 N-terminal repeats and 3 or 4 C-terminal
microtubule-binding repeats. (C, lower panel) Exon array data show the expression of MAPT expression at the exon level matching the upper panel of the
exon structure. The mean expression levels were (y-axis, log2 scale) plotted for each probe set (x-axis) covering the whole transcript. Note that levels are
not absolute since they depend upon the hybridization efficiency of individual probe sets. It is, therefore, not possible to compare the expression between
exons. Differences in splicing between brain regions are manifest through the non-parallelism between the expression lines. Two examples are clear: at exon
2, the white matter (light green line) shows less inclusion of this exon than would be expected and at exon 6, the cerebellum (red line) shows more inclusion.

The effect of the H1/H2 haplotypes on MAPT mRNA
expression and splicing

Previous studies have demonstrated the effects of the H1/H2
haplotypes on MAPT mRNA expression (6,21,24,25).
However, there are large numbers of haplotype-specific poly-
morphisms at the MAPT locus (both SNP and insertion dele-
tion polymorphisms), some of which have only recently
been identified, and since expression probes have largely
been designed against the H1 haplotype, these polymorphisms
may have created false expression QTL results (26). This can
occur because mRNA sequences transcribed from the H2
haplotype will depart from the H1 reference, due to both the
presence of different nucleotides (i.e. SNPs) and the presence
or absence of nucleotides (i.e. indels), and so are likely to
exhibit a weaker binding affinity for the probes in question,
which are a perfect match for mRNA sequences transcribed
from the H1 haplotype. This results in an apparent association
between the genotype and expression, confounding eQTL
studies which are looking for just such a signal. For this
reason, we used the most recent release of thel000 Genomes
Project (March 2012: Integrated Phase I haplotype release
version 3) to identify and remove probes on the Affymetrix
Exon array that map to MAPT and contain SNPs or indels
with a minor allele frequency (MAF) of >1% in Europeans.
This resulted in the removal of 8 of the 25 MAPT probe sets
from further expression QTL analysis (see Fig. 2A for posi-
tions of probe sets). Exon-specific expression data generated
from the remaining 17 probe sets (using samples from the
UKBEC) were tested for association against 3547 SNPs

located within ~1 Mb of the transcription start and end site
of MAPT in each brain region.

The most significant expression QTL identified was
between SNP chr17:44357157 and exon 3 (Affymetrix probe
set 3723712). Since this SNP is in strong LD with SNPs that
tag the H1/H2 haplotypes, we used the better known H1/H2
tagging SNP, rs17665188 (R* = 0.93 with chr17:44357157)
to demonstrate the effect of the H2 haplotype on exon 3
expression (as detected by Affymetrix probe set 3723712).
The H2 haplotype was associated with higher expression of
exon 3 in all brain regions (aveALL P-value = 5.2 x 10~ %)
except white matter (Fig. 4). The most significant association
was observed in the frontal cortex (P-value = 8.8 x 10™°). In
contrast to the alternate splicing of exon 10, the alternate spli-
cing of exons 2 and 3, and more specifically the role of exon 3
has not been extensively studied. However, our data refine a
previous report using cell lines (27) which suggested that H2
was associated with increased inclusion of exons 2 and 3, al-
though we do not observe the former (P > 1 x 10~ 2 for all
tissues for exon 2, as measured by Affymetrix probe set
3723710).

The effect of the Hlc haplotype (tagged by rs242557)
on MAPT mRNA expression

Although ideally we would have liked to determine the effect
of the Hlc haplotype on both MAPT mRNA expression and
splicing, we were insufficiently powered to run such a condi-
tional analysis using the available exon-specific expression
data generated using the Affymetrix exon arrays (UKBEC
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Figure 3. Variation in tau protein levels within the human brain: soluble tau extracts were prepared from five different brain regions, separated by SDS—PAGE
and detected on western blots probed with the polyclonal antibody to total tau (DAKO). (A) Specific tau isoforms were identified by comparing to recombinant
tau ladder (n = 13, representative image shown). (B) Comparison of total tau to actin revealed highest tau protein levels in the frontal cortex and significantly
lower tau levels in the cerebellum (P > 0.01) and putamen (P > 0.05). (C) Levels of specific tau isoforms were determined by normalization to total tau for the
same sample and revealed a significantly lower amount of ON3R in the cerebellum compared with other regions. (D—H) No significant variation in other tau

isoforms.

data set). Therefore, in order to address this issue, we used ex-
pression data originating from 390 individuals (frontal the
cortex and cerebellum samples only) generated by the North
American Brain Expression Consortium using the Illumina

HumanHT-12 v3 Expression BeadChips. This Illumina ex-
pression array contains four probes mapping to the MAPT
gene, of which only two are robustly detected in human
brain, ILMN_2310814 and ILMN_1710903. As previously
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Figure 4. The effect of the H1/H2 haplotypes (tagged by rs17665188) on the
expression of MAPT exon 3: MAPT exon 3 expression (Affymetrix probe set
3723712) stratified by genotype at rs17665188 in 134 brain samples for 10
brain regions. Increased exon 3 expression was associated with the homozy-
gous major allele (CC). A similar association pattern was observed in all
brain regions except for white matter (P = 0.03).

described, in order to avoid the detection of false QTLs arising
from the presence of genetic polymorphisms within the probe
sequences used for MAPT mRNA expression detection, we
checked both Illumina probes for SNPs and indels using the
most recent release of the 1000 Genomes Project (March
2012: Integrated Phase I haplotype release version 3). This
rigorous quality-control process allowed us to identify a 2 bp
deletion (rs67759530, MAF = 23% in Europeans) in the
target sequence of [llumina probe, ILMN_1710903, specifical-
ly within the MAPT H2 haplotype.

However, removal of H2 haplotype-carrying individuals did
allow us to use data generated by both MAPT probes to inves-
tigate the effects of rs242557 in the remaining 222 HI1/H1
individuals. This SNP defines the Hlc sub-haplotype within
the H1 clade and has also been shown to be a significant
risk SNP for PSP (risk allele = A, P-value =9.5 x 10~ '®
from the relevant GWAS) (2). In fact, we found that the
Hlc haplotype (tagged by rs242557) was not significantly
associated with increased mRNA expression of MAPT, as
measured with Illumina probes ILMN_1710903 (P = 0.957
in the frontal cortex, P =0.825 in the cerebellum) and
ILMN_2310814 (P = 0.975 in the frontal cortex, P = 0.768
in the cerebellum).

DISCUSSION

This study, based on multiple analyses with a minimum of 780
brain samples used in any single analysis (originating from
390 individuals), provides the most robust and coherent infor-
mation on the regional mRNA expression, splicing and regu-
lation of MAPT available to date. Rigorous quality-control
steps have been used to ensure that, in particular, the effects
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of the H1/H2 and H1c haplotypes on MAPT mRNA expression
and splicing are as accurate as possible. Thus, we have been
able to demonstrate, firstly, the significant regional variation
in MAPT mRNA expression and splicing, validated using
Quantigene and TagMan assays, and secondly that at the gene-
level MAPT mRNA expression and total tau protein are highly
correlated. Finally and most importantly, we have shown that
while the effect of the reported HI/H2 effect on MAPT mRNA
gene-level expression is likely to be a technical artefact, this
polymorphism is associated with the expression of exon
3-containing isoforms in human brain. These findings would
suggest that contrary to the present, prevailing view genetic
risk factors for neurodegenerative diseases at the MAPT
locus are likely to operate by changing the balance of
mRNA splicing in different brain regions, as opposed to the
overall expression of the MAPT gene.

Profiling mRNA and protein expression in human brain
demonstrated significant regional variation. We found that
MAPT mRNA expression was 2.0-fold higher in the neocor-
tex, when compared with white matter and cerebellum. Total
tau protein expression level had a similar regional pattern of
expression to that for mRNA. Since the frontal and temporal
cortices are among the brain regions most affected by tangle
pathology in AD, these findings support the concept that
despite high ubiquitous expression of MAPT in the human
brain, regional variation in basal MAPT expression might pre-
dispose some brain regions to tangle pathology and explain the
regional specificity of disease in AD at least.

Analogous profiling of MAPT mRNA splicing and protein
isoform expression was more complex. While we were able
to demonstrate region-biased splicing of exon 2 containing
mRNA isoforms and validate these findings using TagMan
assays, we were unable to replicate this observation at the
protein level. The only significant regional difference in tau
protein isoform expression was the reduced levels of ON3R
in the cerebellum when compared with other regions. This
finding is in agreement with previous studies that have
observed decreased ON3R in the cerebellum of control (22)
and PSP (28) patients. However, the absence of any clear re-
lationship between mRNA splicing and tau protein isoform
production is difficult to interpret. One possible reason for
this is that altered splicing of exon 2 would be ‘shared’
across four tau protein isoforms (IN3R, IN4R, 2N3R and
2N4R), thus a sizeable change would be needed to allow
detection by a semi-quantitative technique such as western
blotting.

Finally and most importantly, we investigated the effects of
the HI/H2 and Hlc haplotypes on MAPT mRNA expression
and splicing. In the case of the former, we had sufficient stat-
istical power to use the exon-specific and region-wide expres-
sion data provided by the UK Human Brain Expression
Consortium. Thus, we were able to assess for the first time
the effect of the HI/H2 inversion polymorphism on MAPT
splicing, and do this in 10 brain regions (including highly clin-
ically relevant regions such as the hippocampus and substantia
nigra). These data show that the under-represented, protective
H2 haplotype is associated, in all grey matter brain regions,
with more expression of exon 3 and that this effect is most
prominent in cortical regions. This finding is consistent with
previous allele-specific expression studies (27). Interestingly,
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no association was seen in white matter, where in fact there
was a trend in the opposite direction (P = 0.03). These data
suggest that the inclusion of exon 3 in grey matter is protective
in PSP, CBD and PD. Since several physiological roles for the
amino-terminal inserts coded by exons 2 and 3 have been sug-
gested, these might help explain this finding. For example, it
has been suggested that the amino-terminal inserts could regu-
late the spacing between microtubules (29,30). Alternatively,
since the amino-terminal region of tau has also been shown
to interact with the plasma membrane where it can, in turn,
interact with src-family kinases, it could be involved in
signal transduction (31,32). Moreover, it has been recently
shown that the exon 2- and 10-encoded inserts increase aggre-
gation propensity, whereas the exon 3-encoded insert
decreases aggregation (33). The latter could in part explain
the protective function of H2 with its increased inclusion of
exon 3. Interestingly, this function has recently been shown
to be important in mediating amyloid-beta toxicity in a
mouse model of AD (34).

Although we would have liked to run a similar exon-specific
analysis to investigate the effects of the H1c haplotype (tagged
by rs242557) on MAPT expression, the sample numbers avail-
able within the UK Human Brain Expression Consortium were
insufficient (n = 74). Consequently, we used brain mRNA ex-
pression data (the frontal cortex and cerebellum) generated
from the Illumina HT12-v3 Expression Beadchips and pro-
vided by the North American Brain Expression Consortium
(n=222). Using the most recent release of the 1000
Genomes project (Interim phase I haplotypes, June 2011),
quality-control procedures identified a 2-bp deletion
(rs67759530) in the target sequence of ILMN_1710903
within the H2 haplotype. It is now well recognized that such
sequence polymorphisms can result in hybridization artefacts,
which in turn cause reporting of false cis-acting expression
QTLs (35,36). Since the signals produced by Illumina probe,
ILMN_1710903, in mixed H1/H2 sample sets are responsible
for the widely reported cis-acting MAPT expression QTL
(characterized by lower expression of MAPT in H2 indivi-
duals) (6,21,24), this finding, combined with our own inability
to replicate such a result using a different platform, would
suggest that this gene-level mRNA expression QTL is a tech-
nical artefact. However, restricting our analysis to H1 homo-
zygotes, we were still able to use this powerful data set to
explore the impact of the Hlc haplotype on gene expression.
Unfortunately, this analysis did not demonstrate a significant
association between the Hlc haplotype (tagged by rs242557)
and MAPT mRNA expression, as measured with Illumina
probes ILMN_1710903 and ILMN_2310814. This does not
preclude the possibility that this haplotype could effect
MAPT mRNA splicing.

In summary, in this paper, we use the largest exon-specific
and gene-level human brain expression data sets available to
study the regional expression, splicing and regulation of
MAPT mRNA. In addition, for providing valuable baseline in-
formation regarding regional differences in MAPT mRNA and
protein isoform expression, we demonstrate the importance of
exon-specific analyses in the study of neurodegenerative dis-
eases. We found that the HI/H2 inversion polymorphism was
associated with the expression of exon-3-containing mRNA
transcripts, not gene-level expression. While recognition of

this underlying complexity may complicate studies, it is a neces-
sary complication, which may hold the key to explaining how a
single locus can give rise to at least four human diseases, all with
distinct clinical and pathological features.

MATERIALS AND METHODS

Collection and dissection of post-mortem human brain
tissue analysed using Affymetrix Exon 1.0 ST Arrays

Brain and CNS tissue originating from 134 control individuals
was collected by the Medical Research Council (MRC)
Sudden Death Brain and Tissue Bank, Edinburgh, UK (37),
and the Sun Health Research Institute (SHRI) an affiliate of
Sun Health Corporation, USA (38). In all cases, control
status was confirmed by histology performed on sections pre-
pared from paraffin-embedded brain tissue blocks and the
diagnosis was determined by a consultant neuropathologist.
A detailed description of the samples used in the study,
tissue processing and dissection is provided in Trabzuni
et al. (20). All samples had fully informed consent for retrieval
and were authorized for ethically approved scientific investi-
gation (Research Ethics Committee number 10/H0716/3).

RNA isolation and processing of brain samples analysed
using Affymetrix Exon 1.0 ST Arrays

Total RNA was isolated from human post-mortem brain
tissues using the miRNeasy 96-well kit (Qiagen, UK). The
quality of total RNA was evaluated by the 2100 Bioanalyzer
(Agilent) and RNA 6000 Nano Kit (Agilent) before processing
with the Ambion®™ WT Expression Kit and Affymetrix Gene-
Chip Whole Transcript Sense Target Labeling Assay, and hy-
bridization to the Affymetrix Exon 1.0 ST Arrays following
the manufacturers’ protocols. Hybridized arrays were
scanned on an Affymetrix GeneChip® Scanner 3000 7G and
visually inspected for hybridization artefacts. Further details
regarding RNA isolation, quality control and processing are
reported in Trabzuni et al. (20).

Analysis of Affymetrix Exon Array Data

All arrays were pre-processed using RMA quantile normaliza-
tion with background correction and probe set summarization
with median polish in Affymetrix Power Tools 1.14.3 (http://

www.affymetrix.com/partners_programs/programs/developer/
tools/powertools.affx). After re-mapping the Affymetrix probe
sets onto human genome build 19 (GRCh37) as documented
in the Netaffx annotation file (HuEx-1_0-st-v2 Probe set Anno-
tations, Release 31), we restricted analysis to 294 943 probe sets
that: (i) had gene annotation, (ii) contained at least three probes,
(iii) were unaffected by SNPs both genotyped and imputed on
the basis of 1000 Genomes Release (May 2011), and (iv)
uniquely hybridized. Since most exons are represented by
only one probe set, we used the probe set signal intensity as a
synonym of exon expression level, unless explicitly mentioned.
The transcript-level expression for 23 960 genes was estimated
using the 90% Winsorized mean of the corresponding probe
sets. Regional differences in gene-level expression and splicing
were investigated using Partek’s mixed-model ANOVA and



alternative splicing ANOVA, which looks for a significant inter-
action between brain region and exon-specific expression
(Partek Genomics Suite v6.6). In all analysis, we corrected for
gender and batch effects [date of hybridization and brain
bank), as investigated in detail (20)].

Direct RNA quantification with branched DNA,
QuantiGene® 2.0 Assay

CRBL, OCTX, PUTM and WHMT samples from 12 indivi-
duals were analysed using the QuantiGene®™ (QG) platform
for validation of exon array results. We selected RPLPO and
UBC as housckeeping genes as they showed relatively low
variability in expression levels (i.e. low coefficient of vari-
ation) in all brain regions in our data set (20).

Quantitative RT-PCR

MAPT gene expression for CRBL, OCTX and WHMT was
quantified by TagMan real-time PCR (Invitrogen, UK). The
MAPT transcript-specific assays used were Hs00902188,
Hs00902978 and Hs00902314 (Invitrogen). Real-time quanti-
tation was carried out on the Stratagene MX3000P system. All
runs were performed in technical triplicates and were normal-
ized to the geometric mean of three housekeeping genes,
PPIA, BACT and HPRT. The relative expression values
were calculated using the AACT method.

Collection, RNA isolation and processing of brain samples
analysed using Illumina Human HT-12 v3 expression
BeadChip arrays

Cerebellar and frontal cortex samples originating from 390
control individuals were collected as previously described
(6,21,39). It is worth noting that 85 individuals had also
been analysed as part of the Affymetrix exon array data set.
Total RNA was extracted from sub-dissected samples
(100-200 mg) of human post-mortem brain tissue using
either Qiagen’s miRNeasy Kit (Qiagen) or using a glass-
Teflon homogenizer and 1 ml TRIzol (Invitrogen, Carlsbad,
CA, USA) according to the manufacturers’ instructions.
RNA was biotinylated and amplified using the Illumina®
TotalPrep-96 RNA Amplification Kit and directly hybridized
onto HumanHT-12 v3 Expression BeadChips (Illumina Inc.,
USA) in accordance with the manufacturer’s instructions.

Analysis of Illumina HT-12 v3 expression BeadChip
Array Data

Expression data were analysed using the Gene Expression
Module 3.2.7 within Illumina® BeadStudio. Raw intensity
values for each probe were transformed using the cubic
spline normalization method and then log2 transformed for
mRNA analysis. We re-mapped the annotation for probes
according to ReMOAT (40) on the human genome build 19
and then restricted the analysis to genes that were reliable,
uniquely hybridized and were associated with gene descrip-
tions. In our analysis, we used analysed data generated
by the following two probes: ILMN_1710903 and
ILMN_2310814.
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DNA extraction, genotyping and imputation

Genomic DNA was extracted from sub-dissected samples
(100—200 mg) of human post-mortem brain tissue using either
Qiagen’s DNeasy Tissue Kit (Qiagen) or standard phenol—
chloroform DNA extraction protocol. Genotyping was per-
formed using the [llumina Infinium Omnil-Quad BeadChip or
[lumina Infintum HumanHap550 v3 (Illumina). In the case of
samples analysed on the Affymetrix exon arrays, genotyping
was also performed using the ImmunoChip, a custom genotyp-
ing array designed for the fine-mapping of auto-immune disor-
ders (6). In all cases, the BeadChips were scanned using an
iScan (Illumina) with an AutoLoader (Illumina). GenomeStudio
v.1.8.X (Illumina) was used for analysing the data and generat-
ing SNP calls. After standard quality controls, both genotype
data sets were combined and imputed using MaCH (41,42)
and minimac (http://genome.sph.umich.edu/wiki/Minimac)
using the 1000 Genomes (Interim phase I haplotypes, June
2011). We used the resulting ~5.8 million SNPs with good
post-imputation quality (Rsq > 0.50) and MAF of at least 5%
in subsequent analyses. The selection of individuals with the
H1/H1 status was based on SNPs rs1800547 and rs1052553.

Expression QTL analysis

We tested the association between given SNPs and expression
profiles using the R package MatrixEQTL (http://www.bios.
unc.edu/research/genomic_software/Matrix_eQTL/) and Revo-
Iution R (43). We assumed an additive genetic model for
each SNP (1 degree-of-freedom trend test) without additional
covariates.

Protein extraction and western blot analysis

Brain tissue was homogenized in 10 mm Tris—HCI (pH 7.4),
0.8 M NaCl, 1 mm EDTA, 10% sucrose and protease inhibitor
tablets (Roche). Homogenates were clarified by centrifugation
at 10000g (av) for 10 min at 4°C prior to aliquoting and
storage at —80°C. Protein concentrations were measured by
BCA assay and equal amounts of protein were dephosphory-
lated using N protein phosphatase (NEB) as described previ-
ously (44). Briefly, proteins were incubated with N protein
phosphatase at a final concentration of 40 U/ul for 3 h at
30°C. Dephosphorylation reactions were stopped by the add-
ition of LDS buffer (Invitrogen) followed by heating at
100°C for 10 min. Samples were centrifuged at 10 000g (av)
prior to separation on 10% Bis—Tris gels alongside recombin-
ant tau protein ladder (Sigma). Proteins were transferred to
nitrocellulose membrane and probed with rabbit polyclonal
antibody to total tau (DAKO) and mouse monoclonal to
actin (Sigma). Blots were visualized and quantified using an
Odyssey Infrared imaging system (LI-COR Biosciences).
The levels of total tau in each brain region were normalized
to actin, and the levels of individual tau isoforms were calcu-
lated as a percentage of total tau for the same sample.

Tau isoform sandwich ELISA

Sandwich ELISAs for 3R- and 4R-tau were carried out as pre-
viously described (17). Briefly, microtitre plates were coated
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with 150 wl of 10 wg ml~" of capture antibody (RD3 or RD4)
(45) in coating buffer (150 wl, sodium tetraborate buffer, pH
9.4). The plate was washed and 150 pl of diluent buffer was
added into the plate after which 25 pl of diluted supernatants
obtained from the brain homogenates (1 in 1000 and 1 in 150
for 3R- and 4R-tau ELISAs, respectively) were added in dupli-
cates to the blocked plates previously coated with RD3 or RD4
antibodies. The plates were incubated at RT for 2 h, washed
and 150 pl affinity-purified sheep anti-tau-HRP conjugates,
diluted to 1 in 1000 and 1 in 3500 for 3R- and 4R-tau
assays, was added, respectively, and incubated for 1 h on a
shaker. After washing, the plates were developed with
tetramethylbenzidine substrate as previously described. The
isoform composition in each sampled region is expressed as
ng per mg of total brain protein.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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