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Background: Intracranial hemangiopericytoma (IHPC) and meningioma are both

meningeal neoplasms, but they have extremely different malignancy and outcomes.

Because of their similar radiological characteristics, they are difficult to distinguish prior

to surgery, leading to a high rate of misdiagnosis.

Methods: We enrolled 292 patients (IHPC, 155; meningiomas, 137) with complete

clinic-radiological and histopathological data, from a 10-year database established at

Tiantan hospital. Radiomics analysis of tumor and peritumoral edema was performed

on multisequence magnetic resonance images, and a fusion radiomics signature was

generated using a machine-learning strategy. By combining clinic-radiological data with

the fusion radiomics signature, we developed an integrated diagnostic approach that we

named the IHPC and Meningioma Diagnostic Tool (HMDT).

Results: The HMDT displayed remarkable diagnostic ability, with areas under the

curve (AUCs) of 0.985 and 0.917 in the training and validation cohorts, respectively.

The calibration curve showed excellent agreement between the diagnosis predicted

by HMDT and the histological outcome, with p-values of 0.801 and 0.622 for

the training and the validation cohorts, respectively. Cross-validation showed no

statistical difference across three divisions of the cohort, with average AUCs of 0.980

and 0.941 for the training and validation cohorts, respectively. Stratification analysis

showed consistent performance of the HMDT in distinguishing IHPC from highly

misdiagnosed subgroups of grade I meningioma and angiomatous meningioma (AM)

with AUCs of 0.913 and 0.914 in the validation cohorts for the two subgroups.
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Conclusions: By integrating clinic-radiological information with radiomics signature,

the proposed HMDT could assist in preoperative diagnosis to distinguish IHPC from

meningioma, providing the basis for strategic decisions regarding surgery.

Keywords: intracranial hemangiopericytoma, meningioma, diagnosis, magnetic resonance imaging, radiomics

INTRODUCTION

Intracranial hemangiopericytoma (IHPC) and meningioma are
both meningeal neoplasms that share similar radiological
characteristics (1). However, they have distinct histologic
characteristics and biological behaviors (2–4). Unlike the
majority of meningiomas, IHPC is malignant (WHO grade II–
III) and has a relentless tendency to recur and metastasize (2, 4,
5). After the first relapse, sequential recurrence of IHPC is more
frequent and the effectiveness of therapies decreases markedly.
Hence, maximal surgical resection is imperative in the initial
treatment of IHPC (6, 7). Because IHPC is highly vascularized,
there is also a high risk of fatal blood loss during surgery (4).

These differences between IHPC and meningioma mean
that accurate preoperative diagnosis is critically important for
treatment planning. However, the high degree of overlap in
the radiological characteristics has posed a great challenge for
preoperative radiological diagnosis (8, 9). This challenge is also
evident in the data used in this study, in which 70% of IHPCs
were radiologically misdiagnosed as meningiomas and only
identified by post-operative pathology analysis.

Although previous studies proved that CT/MRI-based
characteristics may contribute to the diagnosis of IHPC, these
are qualitative characteristics that are subject to observational
bias, resulting in a high level of misdiagnosis of patients with
IHPC (8, 10, 11). Imaging texture-based studies have shown that
quantitative imaging features from MRI can be effective markers
for distinguishing IHPCs and meningiomas (12, 13). However,
studies to date lack convincing validation, and due to the small
sample size, these models demonstrate only a simple correlation,
which has limited clinical utility.

Radiomics, as an emerging medical image processing
technique, provides a promising solution to solve this clinical
problem. Radiomics can achieve the automatic extraction of
high-throughput and high-dimensional imaging features from
encrypted big medical imaging data (14, 15). By combining
imaging information with preoperative clinical/empirical
knowledge, it can identify patterns and subtypes relevant
for tumor diagnosis, the evaluation of treatment effects, and
prognosis (14, 16–18). Radiomics has been widely applied to
predict pathological or genetic phenotypes in intra axil tumors,
especially gliomas (19, 20). However, the utility of radiomics in
differentiating IHPC and meningioma by multisequence MRI
has yet to be established.

In this study, we conducted a retrospective analysis of
high-quality data from a 10-year cohort of patients with
histopathologically confirmed IHPCs and meningiomas, using
multisequence and multihabitat radiomics pipeline to test the
ability of radiomics to achieve high accuracy, preoperative

diagnosis of IHPC and meningioma in order to assist in
presurgery planning for the management and treatment of the
two types of tumor.

MATERIALS AND METHODS

Patient Enrollment
Patients were retrospectively enrolled by searching the Picture
Archiving and Communications System in our hospital from
January 2008 to December 2018. Clinical data were retrieved
from the Electronic Medical Record. Patients were randomly
split into training (n = 204) and validation cohorts (n = 88).
The study was approved by the institutional review board, and
all patient records and information were anonymized and de-
identified. The Chinese Clinical Trial Registry identifier of the
study was ChiCTR1900022671.

The inclusion criteria were as follows: (1) MR images
acquired no more than 1 month before surgery; (2) preoperative
standard MR imaging that included T1WI, CE-T1WI, and T2WI
sequences; and (3) complete clinical records at initial diagnosis.
The exclusion criteria were as follows: (1) history of craniotomy,
biopsy, radiotherapy, or chemotherapy; (2) recurring tumors or
multiple lesions; and (3) low-quality or unclear MRIs.

The histopathological examination and MR imaging
acquisition are provided in Supplementary Appendix E1.

Development of HMDT
Preoperative clinical and radiological information may reflect
and depict different phenotypes of IHPC and meningioma; thus,
we comprehensively integrated correlated clinical, radiological,
and radiomics data stream into a machine learning–based model,
named IHPC and Meningioma Diagnostic Tool (HMDT), to
improve accurate diagnosis of IHPC and meningiomas.

Selection of Preoperative Clinical and Radiological

Factors
A total of 14 preoperative clinical/radiological factors were
analyzed as potential effective factors as reported in the references
(4, 6, 8, 10, 19–24). Univariable and multivariable analyses
were used to identify effective factors for the diagnosis and
were integrated into a clinical model by logistic regression
modeling. Detailed description of radiological factors is shown
in Supplementary Appendix E2.

Radiomics Analysis
The radiomics analysis process was structured in three phases:
radiomic feature extraction, key feature selection, and radiomics
signature construction.
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Initially, a set of 473 radiomic features were extracted
from segmented tumor and peritumoral edema habitats
using the Pyradiomics tool (https://pyradiomics.readthedocs.
io). These radiomic features fall into four broad categories:
shape and size, first-order statistics, textural, and
wavelet features. The process of tumor segmentation is
described in Supplementary Appendix E3. The detailed
description of the radiomic feature definition is provided in
Supplementary Appendix E4.

Feature selection was primarily conducted by assessing feature
stability and reproducibility via calculating the concordance
correlation coefficient (CCC) and the intraclass correlation
coefficient (ICC). Multiclinician, multi-time-point, and
perturbation segmentation manners for feature robustness
assessment are described in Supplementary Appendix E5.
We further applied the Mann–Whitney U-test to
select diagnosis outcome-related radiomic features with
a p < 0.05.

TABLE 1 | Baseline characteristics in training and validation cohorts.

Characteristics Training cohort (n = 204) Validation cohort (n = 88) P (inter)

IHPC

(n = 109)

Meningioma

(n = 95)

P (intra) IHPC

(n = 46)

Meningioma

(n = 42)

P (intra)

Age

(median [IQR])

43 (31.51) 50 (39.58) 0.003 42 (28.49) 51 (38.58) 0.015 0.570

Gender 0.359

Male 56 (51.4) 44 (46.3) 0.471 22 (47.8) 16 (38.1) 0.357

Female 53 (51.0) 51 (53.7) 24 (52.2) 26 (61.9)

Course of disease

(median [IQR])

4 (2.12) 6 (1.24) 0.063 3 (2.12) 4.5 (1.24) 0.177 0.439

Location 1 0.240

Frontal 44 (40.4) 64 (67.4) <0.001 21 (45.7) 19 (45.2) 0.969

Posterior 65 (59.6) 31 (32.6) 25 (54.3) 23 (54.8)

Location 2 0.730

Supra 84 (77.1) 89 (93.7) 0.001 35 (76.1) 41 (97.6) 0.003

Infra 25 (22.9) 6 (6.3) 11 (23.9) 1 (2.4)

Location 3 0.732

Left 35 (32.1) 34 (35.8) 0.041 11 (23.9) 23 (54.8) 0.001

Right 34 (31.2) 41 (43.2) 15 (32.6) 15 (35.7)

Both 40 (36.7) 20 (21.1) 20 (43.5) 4 (9.5)

Midline type 0.148

Yes 81 (74.3) 64 (67.4) 0.275 35 (76.1) 20 (47.6) 0.006

No 28 (25.7) 31 (32.6) 11 (23.9) 22 (52.4)

Venous sinus invasion 0.801

Yes 49 (45.0) 47 (49.5) 0.519 22 (47.8) 18 (42.9) 0.640

No 60 (55.0) 48 (50.5) 24 (52.2) 24 (57.1)

Dural tail sign 0.169

Yes 18 (16.5) 52 (54.7) <0.001 5 (10.9) 18 (42.9) 0.001

No 91 (83.5) 43 (45.3) 41 (89.1) 24 (57.1)

Tumor shape 0.080

Regular 11 (10.1) 9 (9.5) 0.882 5 (10.9) 10 (23.8) 0.107

Irregular 98 (89.9) 86 (90.5) 41 (89.1) 32 (76.2)

Enhancement pattern 0.997

Homogeneous 25 (22.9) 19 (20.0) 0.611 10 (21.7) 9 (21.4) 0.972

Heterogeneous 84 (77.1) 76 (80.0) 36 (78.3) 33 (78.6)

Tumor margin 0.314

Clear 20 (18.3) 31 (32.6) 0.019 11 (23.9) 16 (38.1) 0.150

Unclear 89 (81.7) 64 (67.4) 35 (76.1) 26 (61.9)

Peritumoral edema 0.075

Absent 25 (22.9) 13 (13.7) 0.007 16 (34.8) 11 (26.2) 0.052

Moderate 60 (63.2) 75 (68.8) 28 (60.9) 22 (52.4)

Extensive 9 (8.3) 22 (23.2) 2 (4.3) 9 (21.4)

Serpentine signal voids 0.699

Yes 96 (88.1) 68 (71.6) 0.003 40 (87.0) 29 (69.0) 0.041

No 13 (11.9) 27 (28.4) 6 (13.0) 13 (31.0)

IHPC, intracranial hemangiopericytoma; P (Intra) is the result of univariable analyses between methylated and unmethylated groups; P (Inter) represents whether there exists significant

difference between training and validation cohorts; IQR represents the interquartile range. Unless otherwise specified, data are numbers of patients, with percentages in parentheses.

Frontiers in Oncology | www.frontiersin.org 3 May 2020 | Volume 10 | Article 534

https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wei et al. Radiomics for Diagnosis of Hemangiopericytoma and Meningioma

On the basis of this initial selection of promising variables, we
then compared 64 radiomics modeling strategies including the
16 feature selection algorithms and 4 classifiers most commonly
used in radiomics studies (12, 25). A detailed account of
the 64 strategies is provided in Supplementary Appendix E6.
Recursive feature elimination and random forest stood out as the
optimal feature selection algorithm and classifier for radiomics
signature construction.

The above radiomics pipeline was then conducted on
T1WI-tumor, CE-T1WI-tumor, T2WI-tumor, T1WI-edema, CE-
T1WI-edema, and T2WI-edema, respectively. Consequently, six
radiomics signatures were acquired. A fusion radiomics signature
was constructed by integrating the six single signatures by logistic
regression modeling.

Integrated HMDT Model and Nomogram

Construction
The HMDT was constructed by integrating effective clinic-
radiological factors with the fusion radiomics signature. We
adopted the Akaike information criterion (AIC) to select optimal
incorporated factors and utilized logistic regression modeling
to perform HMDT construction. In addition, a nomogram
was drawn to manifest the contribution of each of the
included parameters according to their weighted proportions in
the model.

Model Assessment
Diagnostic Performance Assessment
The diagnostic power of the proposed models was evaluated
by the receiver operating characteristic (ROC) curve, area
under the curve (AUC), accuracy, sensitivity, and specificity.
Comparisons between AUCs were performed with the Delong

FIGURE 1 | Distribution of enrolled patients. Left circle represents cases of

radiologically diagnosed IHPCs; right circle represents cases of pathologically

diagnosed IHPCs. Intersection (purple) of two circles represents 46 cases of

enrolled IHPCs, which were correctly diagnosed by radiology; 137 cases of

pathologically diagnosed meningiomas were radiologically misdiagnosed as

IHPCs (blue); 109 cases of pathological diagnosed IHPCs were radiologically

misdiagnosed as meningiomas (pink).

test, and comparisons between specificity and sensitivity
were performed by Pearson’s chi-square test. Calibration
curves were plotted to evaluate the calibration power of the
nomogram with the Hosmer Lemeshow test. To quantify
the discrimination ability of the nomogram, Harrell’s C-index
was calculated.

Assessing the Diagnostic Robustness of HMDT
To test the model robustness, we randomly divided the enrolled
cohorts into training and corresponding validation cohorts three
times and labeled these Groups 1, 2, and 3. The division
ratio remained 7:3 for each operation. AUCs were compared
using the Delong test to show whether the change of dataset
would affect the performance of the HMDT. At the same time,
three-fold cross-validation was performed to elude the effect of
sample divisions.

Stratification Analysis
In light of the need to consider subpopulations in which IHPC
and meningioma diagnosis is more difficult, we performed
stratification analysis based on age and radiological behavior
(tumor shape and dural tail sign), as well as pathological grade
and subtype. Considering the majority of IHPCs that were
misdiagnosed using MRI were WHO grade I meningiomas,
especially angiomatous meningiomas (AMs), we conducted
additional subpopulation analysis of WHO grade I meningiomas
and AMs.

Clinical Usefulness
The clinical validity of the HMDT was assessed by decision
curve analysis. Furthermore, we developed a software embedded
HMDT model with a user-friendly interface. This online tool
can be freely downloaded and activated using the application
file provide in the reference1. User instructions are provided in
Supplementary Appendix E7.

Statistical Analysis
Statistical analysis was performed with PASW Statistics, version
18.0 (SPSS Inc., Chicago, IL, USA) and R software, version 3.4.1
(www.R-project.org). Statistical significance was defined with a
two-sided p < 0.05.

RESULTS

Baseline Characteristics
The baseline characteristics are summarized in Table 1. There
were no significant differences between the training and
validation cohorts in terms of their demographic, clinical, or
radiological characteristics (p= 0.075–0.997).

A total of 292 cases were enrolled in this study, of which 137
cases were pathologically diagnosed as meningiomas and 155
cases were pathologically diagnosed as IHPCs. Radiologically,
all the enrolled meningiomas were misdiagnosed as IHPCs
and 109 enrolled IHPCs were misdiagnosed as meningiomas.
Only the remaining 46 cases of enrolled IHPCs were correctly
radiologically diagnosed (Figure 1). Based on the 2016 WHO

1Available online at: http://www.radiomics.net.cn/post/118 (2019).
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classification of CNS tumors, the pathological grades of these
patients were as follows: 97 WHO grade II IHPCs, 58 WHO
grade III IHPCs, 112 WHO grade I meningiomas, 22 WHO
grade II meningiomas, and 3 WHO grade III meningiomas.
There was no significant difference in the distribution of IHPC
and meningioma between the training and validation cohorts
(p= 0.856).

Selected Clinic-Radiological Factors
Seven clinical/radiological factors were selected as effective
diagnostic parameters, which were the course of disease, location
(frontal/posterior), location (supra/infra), dural tail sign, tumor
margin, peritumoral edema, and serpentine signal voids. The
AUC for each single clinic-radiological factor turned out to
be <0.6 in the validation cohort. The result of uni- and
multivariable analysis and AUC of each selected factor is shown
in Supplementary Table 1.

Diagnostic Performance of the Clinical
Model
Combining the seven single clinical/radiological factors into
a multiparametric clinical model significantly increased the
diagnostic power (training: p < 0.001; validation: p = 0.002).
The AUCs of the clinical model were 0.841 and 0.766 in
the training and validation cohorts, respectively. Detailed
predictive indicators, the ROC curve, and the violin graph
of the clinical model are shown in Table 2, Figure 2, and
Supplementary Figure 1, respectively.

Diagnostic Performance of Quantitative
Radiomics Signatures
When combining the six single radiomics signatures, the fusion
signature reached satisfactory AUCs of 0.979 and 0.902 in
the training and validation cohorts, respectively. The process
of feature selection is shown in Supplementary Table 2. The
selected radiomic features and their diagnostic performance are
shown in Supplementary Table 3. Detailed predictive indicators,
the ROC curve, and the violin graph of the radiomics signatures
are shown in Table 2, Figure 2, and Supplementary Figure 1,
respectively. The results from the 64 modeling strategies are
shown in Supplementary Table 4. Decision trees of the six single
radiomics signatures are shown in Supplementary Figure 2.

Diagnostic Performance of HMDT
The final integrated HMDT model produced extremely accurate
diagnosis of IHPC and meningioma with AUCs of 0.985 and
0.917 in the training and validation cohorts, respectively. The
HMDT showed a significant improvement in diagnostic power
over the clinical model, with p < 0.001 and 0.002 in the training
and validation cohorts, respectively. Comparing of the HMDT
and the fusion radiomics signature showed a numerical increase,
but it was not statistically significant in either the training (p
= 0.141) or validation (p = 0.133) cohorts. Detailed predictive
indicators, the ROC curve, and the violin graph of the HMDT
are shown Table 2, Figure 2, and Supplementary Figure 1,
respectively. The heatmap showing the correlation between
clinical factors and the selected radiomic features is shown in
Supplementary Figure 3.

TABLE 2 | Diagnostic ability of the developed models.

Model Training cohort (n = 204) Validation cohort (n = 88)

AUC

(95% CI)

ACC SEN SPE AUC

(95% CI)

ACC SEN SPE

Clinical

model

0.841

(0.787, 0.896)

0.760 0.734 0.790 0.766

(0.667, 0.863)

0.659 0.674 0.643

T1_tumor

signature

0.859

(0.810, 0.908)

0.819 0.972 0.642 0.818

(0.732, 0.904)

0.716 0.891 0.524

T1_edema

signature

0.768

(0.706, 0.829)

0.716 0.927 0.474 0.673

(0.569, 0.777)

0.648 0.957 0.310

T2_tumor

signature

0.858

(0.809, 0.907)

0.794 0.927 0.642 0.762

(0.666, 0.858)

0.693 0.849 0.524

T2_edema

signature

0.787

(0.727, 0.846)

0.750 0.936 0.537 0.711

(0.613, 0.809)

0.682 0.957 0.381

CE-T1_tumor

signature

0.811

(0.752, 0.870)

0.755 0.725 0.789 0.731

(0.628, 0.835)

0.648 0.630 0.667

CE-T1_edema

signature

0.760

(0.699, 0.821)

0.770 0.982 0.526 0.734

(0.652, 0.817)

0.659 1.000 0.286

Tumor signature 0.917

(0.877,0.958)

0.878 0.973 0.768 0.872

(0.799, 0.944)

0.750 0.848 0.643

Edema signature 0.808

(0.747, 0.869)

0.775 0.973 0.547 0.704

(0.597, 0.811)

0.659 0.978 0.310

Fusion signature 0.979

(0.959, 0.999)

0.956 0.991 0.916 0.902

(0.841, 0.964)

0.818 0.891 0.738

HMDT 0.985

(0.968, 1)

0.961 0.973 0.947 0.917

(0.861, 0.972)

0.852 0.848 0.857

AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity.

Frontiers in Oncology | www.frontiersin.org 5 May 2020 | Volume 10 | Article 534

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wei et al. Radiomics for Diagnosis of Hemangiopericytoma and Meningioma

Robustness of HMDT
In the three randomly assigned training and validation
subcohorts, the ROC curves for the clinical model, fusion
radiomics signature, and the HMDT overlapped (Figure 2). The
Delong test showed that there were no significant differences
among the three subcohorts with a p-value all larger than 0.05.
It revealed the robustness of the modeling process and the
consistent performance of the models regardless of changes in
the cohorts. Detailed performance indicators of the three models
are shown in Supplementary Table 5. The result of the three-fold
cross-validation is shown in Supplementary Table 6.

Stratification in Difficult-to-Diagnosis
Subpopulations
In stratification analysis, the HMDT presented with satisfactory
diagnostic power across subpopulations (Table 3). Importantly,
in the highly misdiagnosedWHO grade I meningioma group, the
HMDT still showed superior diagnostic ability with a high AUC
of 0.988/0.914. Surprisingly, the HMDT demonstrated equally
satisfactory diagnostic power even in the especially hard to
diagnose AM group, with an AUC of 0.997/0.913.

Nomogram and Software Development for
Clinical Use
The graphical nomogram is shown in Figure 3. The Hosmer
Lemeshow test yielded no significant difference between
the outcomes predicted by the HMDT and the actual

histopathological outcomes with a p < 0.801 and 0.622 in
the training and validation cohorts, respectively. Decision
curve analysis showed that the HMDT performed with a
net improvement of 0.21% with cutoff probability of 0% in
the training cohort and 0.19% improvement with 18% cutoff
probability in the validation cohort. Furthermore, examples for
cases diagnosed using the developed HMDT online tool are
provided in Supplementary Appendix E7.

Typical Case Analysis
Figure 4 presents four typical cases and description of their
radiological characteristics. Cases A and B were strongly
suspected to be IHPCs on the basis of radiological information,
but pathological analysis later found that Case A was
meningioma. Cases C and D were strongly suspected to be
meningiomas, but Case C was later found to be IHPC. The
HMDT successfully diagnosed the four cases in accordance with
the pathological results, with high probabilities. The probabilities
that Cases A and D would be IHPCs were 7.8 and 0.1%,
respectively, and the probabilities that Cases B and C would be
IHPCs were 98.2 and 98.4%, respectively. Other results predicted
by the HMDT are shown in Supplementary Table 7.

As a further blind test of the added value of the HMDT
over diagnoses based on current clinical practice, we asked
five junior neurosurgeons (working experience<5 years), two
senior neurosurgeons (working experience>10 years), and one
expert (working experience>30 years) to distinguish IHPC and

FIGURE 2 | ROC curves and robustness analysis results. ROC curves of the clinical model, the fusion radiomics signature, and the HMDT in the training cohort were

shown in (A), and the ROC curves of the three models in the validation cohort were shown in (E). Robustness analysis for the clinical model, the fusion radiomics

signature, and the HMDT in the training cohort were shown in (B–D), respectively. For the validation cohort, robustness analysis for the three models were shown in

(F–H), respectively.
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TABLE 3 | Stratification analysis of HMDT on training and validation cohorts.

Subpopulation Training cohort (n = 204) Validation cohort (n = 88)

AUC

(95% CI)

ACC SEN SPE AUC

(95% CI)

ACC SEN SPE

Age

<44 0.971

(0.921, 1)

0.941 0.946 0.933 0.894

(0.797, 0.990)

0.829 0.846 0.800

≥44 0.991

(0.948, 1)

0.966 0.982 0.954 0.933

(0.865, 1)

0.894 0.900 0.889

Tumor shape

Yes 1 0.950 1 0.889 0.930

(0.805, 1)

0.667 1 0.500

No 0.983

(0.963,1)

0.962 0.980 0.941 0.924

(0.866,0.982)

0.863 0.829 0.906

Dural tail sign

Yes 0.983

(0.957, 1)

0.929 1 0.904 0.944

(0.849, 1)

0.739 1 0.667

No 0.978

(0.945, 1)

0.970 0.989 0.930 0.904

(0.931, 0.976)

0.831 0.878 0.750

WHO grade I meningiomas 0.988

(0.968, 1)

0.968 0.973 0.961 0.914

(0.854, 0.973)

0.854 0.848 0.861

Angiomatous meningiomas 0.997

(0.992, 1)

0.978 0.991 0.920 0.913

(0.816, 1)

0.873 0.935 0.556

AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity.

meningioma for the four typical cases above. As expected, seven
out of eight neurosurgeons wrongly diagnosed Case A as IHPC,
and none of the eight neurosurgeons correctly diagnosed Case
C as IHPC. The expert double-wrongly diagnosed Cases A and
C. The diagnosed results of the eight neurosurgeons for the four
cases are shown in Supplementary Table 8.

DISCUSSION

In this retrospective study, we explored the power of multihabitat
and multisequence based radiomics for IHPC and meningioma
preoperative diagnosis. The proposed effective tool, the HMDT,
was developed by integrating clinic-radiological factors and the
fusion radiomics signature. The HMDT improved the diagnostic
accuracy with a high AUC of 0.985 in the training cohort
and 0.917 in the validation cohort, which could enable a more
reliable pretherapy diagnostic basis for subsequent treatment
strategy making.

Over the past 30 years, previous studies exploring the
use of radiological and/or clinical information in IHPC and
meningioma preoperative diagnosis have shown some progress.
He et al. have proved that the apparent diffusion coefficient
(ADC) value was efficient for IHPC and AM (26). However,
they concluded that conventional MRI and clinical factors fail
to correlate with the pathological classification of IHPC and
AM. Our rigorously proposed fusion radiomics signature derived
from conventional MRI achieved superior performance with
an AUC of 0.913 for IHPC and AM diagnosis, which was a
significant improvement over the diagnostic power of the ADC
value, which had an AUC of only 0.86. We acknowledge that, as
other studies have shown, the ADC value contributes to IHPC
and meningioma diagnosis (21, 26). However, in this paper, we

demonstrate the unexploited power of conventional MRI data.
Both conventional and functional MRI data should be fully
utilized to increase the radiological diagnosis accuracy for IHPC
and meningioma.

In our study, the dural tail sign was incorporated as the only
clinic-radiological factor in the HMDT model. Previous studies
have proved that narrow-based dural attachment and the absence
of a dural tail sign were distinguishable factors in the diagnosis of
IHPC and meningioma (8, 10, 11, 27). In our study, the dural
tail sign presented a statistically different distribution in IHPCs
and meningiomas with a p < 0.01. This was in concordance with
previous results. Because the dural tail sign was associated with
the chronic stimulation of meninges by the dural-attached lesion,
although IHPC and meningioma are both dural-based tumors,
their entirely different origin, growth rate, and malignancy may
lead to such diversified manifestations of dural attachment and
dural tail sign (27). Integrating the dural tail sign into the
HMDT did not significantly improve its diagnostic ability, which
implies that the quantified fusion radiomics signature has a more
significant role in diagnosis than previously reported qualitative
radiological factors. However, although it did not show a
significant increase, adding the dural tail sign into the HMDT
did boost its numerical accuracy. This shows the advantage of the
integrated HMDT over the conventional radiological factor and
single fusion radiomics signatures.

With regard to radiomic features, our results showed that
the majority of selected features turned out to be wavelet
features, which reflected multiscale information relating to
tumor/edema areas. Through scale and translation operations,
wavelet transformation could provide details focused on either
high-frequency or low-frequency domains, leading it to be
termed a “microscope in mathematics.” Interestingly, we found
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FIGURE 3 | Nomogram, calibration curve, and decision analysis curve. The nomogram that showed a linear presentation of the HMDT was shown in (A). The

calibration curves in training and validation cohorts were shown in (B,C), respectively. Decision analysis curves in the training and validation cohorts were shown in

(D,E). The y-axis represents the net benefit and the x-axis represents the threshold probability.
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FIGURE 4 | Typical radiologically misdiagnosed cases. The four graphs in row were T2WI in axial view, CE-T1WI in axial and coronal view, and pathological image,

respectively. Lesions in Cases (A,B) were supratentorial, posterior, and close to midline in location with internal serpentine signal voids, and absence of peritumoral

edema on T2WI; irregular shape, unclear margin, and absence of the dural tail sign on CE-T1WI. Enhancement in Case (A) was heterogeneous, while in Case (B), it

was homogeneous. Lesions in Cases (C,D) were supratentorial and lateral in location with extensive peritumoral edema on T2WI; homogeneous enhancement,

regular shape, and clear margin on CE-T1WI. Lesion in Case (C) grew in the lateral ventricle without apparent blood supply. Lesion in Case (D) located in the frontal,

presenting with internal serpentine signal voids and clear dural tail sign. Actually, Cases (A,D) were pathologically confirmed meningiomas; Cases (B,C) were

pathologically confirmed IHPCs.

that for tumor habitat on CE-T1WI, 9 out of 20 features were
two-dimensional high-frequency transformation-based features.
These features described the edge and details of the tumor region.
Consistent with existing knowledge, after injection of Gd-DTPA,
CE-T1WI could clearly display detailed radiological edge and
intratumoral information including the boundary between the

tumor and the normal brain tissue, intratumoral micronecrosis,
blood supply, and capillary permeability. In terms of the tumor
habitat on T2WI, 8 out of 20 features were, on the contrary,
two-dimensional low-frequency transformation-based features.
These features provided a general view of the tumor, but did not
capture its detailed characteristics. Not surprisingly, compared
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with CE-T1WI, T2WI focused more on the peritumoral edema
area. Because of the lower contrast between the edema area
and surrounding lesions/tissues, edge information would be
weaker on T2WI, but it otherwise displayed the general intensity
distribution of the ROI.

In our sample cohort, the majority of cases misdiagnosed
as IHPCs were WHO grade I meningiomas, and AMs account
for one third of these meningiomas. Thus, WHO grade I
meningiomas, especially AMs, should be further stratified as a
distinct subgroup. Previous studies have also pointed out the
difficulty of AM and IHPC diagnosis (28–30). In this respect,
the HMDT exceeded our expectations, displaying extremely
satisfactory diagnostic ability with an AUC of 0.914 and 0.913 in
the validation cohorts for WHO grade I meningioma and AM
diagnosis, respectively. This showed that the HMDT not only
successfully distinguishes IHPC and meningioma in the overall
population but also can accurately diagnose IHPC in difficult
cases, providing excellent preoperative guidance for clinicians.

Although this study achieved exciting initial results, a couple
of limitations should be mentioned. First, only conventional
MR sequences were used in the analysis. Functional MRI data
are worthy of further exploration. Second, with a larger sample
size, deep learning-based radiomics could be further applied.
Third, manual segmentation to draw the tumor lesion was time
consuming and labor intensive. Semiautomatic segmentation
algorithms should be explored via a neuronetwork on both tumor
and peritumoral edema areas.

In conclusion, the HMDT developed as the result of this study
can realize high-accuracy diagnosis for IHPC and meningioma
through machine learning–based radiomics analysis. The study
results indicate that there is no doubt that the HMDT can be used
as a clinical tool that has excellent robustness and subpopulation
diagnostic power, and that will significantly improve the
preoperative diagnosis of IHPC and meningioma, providing
crucial information for the planning of subsequent treatment.
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