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We report here numerous novel genes and multiple new signatures which

robustly predict prostate cancer (PC) recurrence. We extracted 696 differen-

tially expressed genes relative to a reported PC signature from the TCGA data-

set (n = 492) and built a 15-gene signature (SigMuc1NW) using Elastic-net

with 10-fold cross-validation through analyzing their expressions at 1.5 stan-

dard deviation/SD below and 2 SD above a population mean. SigMuc1NW

predicts biochemical recurrence (BCR) following surgery with 56.4% sensitiv-

ity, 72.6% specificity, and 63.24 median months disease free (MMDF)

(P = 1.12e-12). The prediction accuracy is improved with the use of Sig-

Muc1NW’s cutpoint (P = 3e-15) and is further enhanced (sensitivity 67%,

specificity 75.7%, MMDF 45.2, P = 0) when all 15 genes were analyzed

through their cutpoints instead of their SDs. These genes individually associate

with BCR using either SD or cutpoint as the cutoff points. Eight of 15 genes

are individual risk factors after adjusting for age at diagnosis, Gleason score,

surgical margin, and tumor stage. Eleven of 15 genes are novel to PC. Sig-

Muc1NW discriminates BCR with time-dependent AUC (tAUC) values of

76.6% at 11.5 months (76.6%–11.5 M), 73.8%-22.3 M, 78.5%-32.1 M, and

76.4%–48.4 M. SigMuc1NW is correlated with adverse features of PC, high

Gleason scores (odds ratio/OR 1.48, P < 2e-16), and advanced tumor stages

(OR 1.33, P = 4.37e-13). SigMuc1NW remains an independent risk factor of

BCR (HR 2.44, 95% CI 1.53–3.87, P = 1.62e-4) after adjusting for age at diag-

nosis, Gleason score, surgical margin, and tumor stage. In an independent PC

(MSKCC) cohort (n = 140), these 15 genes were altered in PC vs normal tis-

sue, metastatic PCs vs primary PCs, and recurrent PCs vs nonrecurrent PCs.

Importantly, a 10-gene subsignature SigMuc1NW1 predicts BCR in MSKCC

(P = 3.11e-15) and TCGA (P = 3.13e-12); SigMuc1NW1 discriminates BCR

at 18.4 M with tAUC as 82.5%. Collectively, our analyses support Sig-

Muc1NW as a novel and robust signature in predicting BCR of PC.
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1. Introduction

Prostate cancer (PC) is the most common malignancy

in men in the developed countries (Ferlay et al., 2015).

The disease progresses with a large degree of disparity.

While a large proportion of the low grade [Gleason

score 6/WHO grade (group) I or ISUP (the Interna-

tional Society of Urological pathology) grade 1]

tumors are not life-threatening, approximately 30% of

patients after radical prostatectomy (RP) will experi-

ence disease recurrence with a rise in serum prostate-

specific antigen (PSA) (Zaorsky et al., 2013); this

biochemical recurrence (BCR) indicates significantly

increased risk for PC metastasis and castration-resis-

tant prostate cancer (CRPC) (Semenas et al., 2012).

Metastasis is the leading cause of PC death. The stan-

dard treatment for metastatic PC is androgen depriva-

tion therapy (ADT), which offers palliative care as

resistance in the form of CRPC always occurs. In this

regard, intervention at the point of BCR will be more

effective than at time when PC has advanced to later

stages. Thus, effectively assessing PCs with increased

risk of BCR is highly desirable.

Recent developments have yielded three commer-

cially available mRNA expression-based multigene

panels, Oncotype DX (Genomic Prostate Score/GPS),

Prolaris (cell cycle progression/CCP), and Decipher

(Genomic Classifier/GC). Both the 17-gene Oncotype

DX and the 31-gene Prolaris improve risk stratification

of patients with high risk of PC recurrence at time of

diagnosis (Albala et al., 2016; Cuzick et al., 2011;

Klein et al., 2014; Knezevic et al., 2013; Oderda et al.,

2017) and after radical prostatectomy (RP) (Cooper-

berg et al., 2013; Cullen et al., 2015). The 22-gene

Decipher predicts metastasis following RP (Erho et al.,

2013; Karnes et al., 2013; Klein et al., 2016). While

these and other biomarkers assist decision making and

thus improve patient management, their clinical appli-

cation requires further validation (Lamy et al., 2017;

Martin, 2016; McGrath et al., 2016; Patel and

Gnanapragasam, 2016; Ross et al., 2016; Zhuang and

Johnson, 2016). There is a clear need to improve our

ability to stratify PCs with high risk of recurrence fol-

lowing RP. The challenge in accurately predicting PC

recurrence is in part attributable to a complex network

of pathways that drive the disease development.

The Mucin 1 (MUC1) network plays a role in BCR

after RP (Eminaga et al., 2016; Lin et al., 2017). MUC1

is a tumor-associated antigen that has been intensively

investigated (Apostolopoulos et al., 2015; Kufe, 2009;

Nath and Mukherjee, 2014). MUC1 is a glycoprotein

that is expressed on the apical surface of most epithelial

tissues (de Paula Peres et al., 2015; Wurz et al., 2014); its

glycosylation is altered in over 70% of cancers (Kufe,

2009; de Paula Peres et al., 2015). In PC, MUC1 expres-

sion is upregulated and aberrantly glycosylated (Arai

et al., 2005; Cozzi et al., 2005; Rabiau et al., 2009).

These abnormalities are associated with angiogenesis

(Papadopoulos et al., 2001) and adverse clinical features

(Eminaga et al., 2016). MUC1 upregulation weakly cor-

relates with shortening in disease-free survival (DFS) and

overall survival (OS) (Eminaga et al., 2016) and associ-

ates with adverse histopathology following RP (Durrani

et al., 2015). A 3-protein panel (AZGP1, MUC1, and

p53) is related to poor prognosis in men with local PC

(Severi et al., 2014). Increases in MUC1 mRNA expres-

sion were detected in metastatic PC. Genomic alterations

in a 25-gene MUC1 network were marginally associated

with PC recurrence (Wong et al., 2016). Among these 25

genes, genomic alterations in nine genes substantially

enhanced the association (Lin et al., 2017).

To further explore the biomarker value of the MUC1

network, we examined the transcriptome of the 9-gene

MUC1 genomic signature using the TCGA Provisional

dataset within cBioPortal, and established 696 differen-

tially expressed genes (DEGs). From these DEGs, a 15-

gene panel and multiple subpanels were constructed.

These signatures robustly associate with reductions in

DFS following RP in two independent PC datasets

(n = 492 and n = 140). Cutpoints have been derived,

which not only enhance the power of these signatures in

the stratification of men with higher risk of BCR but

also provide a guideline for the subsequent validation

and clinical application. Taken together, we have con-

structed a set of novel and robust signatures to assess

PC recurrence following RP.

2. Materials and methods

2.1. cBioPortal

The cBioPortal (Cerami et al., 2012; Gao et al., 2013)

(http://www.cbioportal.org/index.do) database contains

the most well-organized and comprehensive data on

cancer genetics for various cancer types. The TCGA

Provisional datasets for individual cancer types cover

genetic abnormalities, transcriptomes determined by

either cDNA microarray or RNA sequencing, and the

detailed clinical characteristics including disease out-

comes (recurrence and mortality). The TCGA Provi-

sional PC dataset has 492 patients with localized PC.

2.2. Establishing of multigene panel signatures

The largest TCGA Provisional dataset within the

cBioPortal database (Cerami et al., 2012; Gao et al.,
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2013) (http://www.cbioportal.org/index.do), which

includes 492 patients with follow-up data, was used

to derive 696 DEGs that are associated with the 9-

gene signature of the MUC1 genomic network (Lin

et al., 2017). These DEGs were defined at q < 0.001.

Follow-up period, recurrence, and other clinical data

were also extracted. Elastic-net logistic regression

within the glmnet package in R was used to select

variables with major impacts on BCR with 10-fold

cross-validation; the mixing parameter of Elastic-net

a was used at: 0.2 and 0.8. When a = 0, Elastic-net

operates as Ridge regression which does not perform

covariate selection but shrink the coefficients of corre-

lated predictors toward one another. When a = 1, it

runs as Lasso which tends to select one covariate

among a group of related covariates; this will make a

signature less robust. To enhance selection of highly

related variables as a group while maintaining the

number of covariates to minimum, we used a range

of a value: 0.2 and 0.8. With this system, a 15-gene

panel was selected.

2.3. Assignment of signature scores to patients/

tumors

Individual component genes have been examined to

predict BCR using univariate Cox proportional haz-

ards (PH) regression; the Cox coefficients for individ-

ual component genes were obtained. The PH

assumption was also determined. This analysis was

performed using the R ‘survival’ package. The signa-

ture scores for individual patients were given using

Sum (coef1 + coef2 + . . . . . . + coefn), where coef1 . . .

coefn are the coefs of individual genes.

2.4. Cutpoint estimation

Cutpoint of signature in separation of recurrent tumor

from those without BCR was estimated using Maxi-

mally Selected Rank Statistics (the Maxstat package)

in R. We also retrieved the RNA expression data for

each component gene from the TCGA dataset; the cut-

points to discriminate PCs with BCR from those with-

out BCR for each RNA expression data were also

derived.

2.5. Regression analyses

Logistic regression was performed using R. Cox pro-

portional hazards (Cox PH) regression analyses were

carried out using the R survival package. The PH

assumption was examined.

2.6. Pathway enrichment analysis

The GAGE (Luo et al., 2009) and Reactome (Yu and

He, 2016) packages in R were used to analyze gene

sets and pathways that were enriched in DEGs using

the KEGG (Kyoto Encyclopedia of Genes and Gen-

omes) and GO (gene ontology) databases.

2.7. Statistical analysis

Fisher’s exact test was performed using the GraphPad

Prism 5 software. Kaplan–Meier surviving curves and

log-rank test were carried out using the R survival

package, and tools provided by cBioPortal. Univariate

and multivariate Cox regression analyses were run

using the R survival package. Time-dependent receive

operating characteristic (tROC) analysis was per-

formed using the R timeROC package. A value of

P < 0.05 is considered statistically significant.

3. Results

3.1. Identification of DEGs which are associated

with the 9-gene MUC1 genomic signature

Biochemical recurrence (BCR) after surgical resection

occurs in 30–40% of patients (Punnen et al., 2014);

approximately 40% of these patients will develop meta-

static disease (Briganti et al., 2015; Den et al., 2014).

Improving our ability in predicting BCR risk is clearly

critical in preventing metastatic progression. We have

recently constructed a 9-gene genomic signature from

the MUC1 genomic network (Lin et al., 2017); the sig-

nature effectively predicts BCR using the TCGA Provi-

sional dataset: sensitivity 34.8%, specificity 83.6%, and

median months disease free (MMDF) 73.36 months

(P = 5.57e-5) (Lin et al., 2017). BCR is a complex pro-

cess driven by multiple pathway alterations. In this

regard, we reasoned that the transcriptome associated

with the 9-gene genomic signature may yield a better sig-

nature. To investigate this possibility, we analyzed the

9-gene signature-associated transcriptome using the

TCGA Provisional dataset within the cBioPortal data-

base following the strategy outlined in Fig. 1A. Among

492 patients/tumors, 100 were positive for the signature

(Fig. 1A). A comparison to the mean expression of indi-

vidual genes between these 100 PCs and other 392 PCs

revealed a total of 696 differentially expressed genes

(DEGs), which were defined at q < 0.001 (Table S1).

These DEGs contained 416 downregulations and 280

upregulations (Fig. 1A; Table S1). Geneset enrichment

analysis of these DEGs using the KEGG (kegg)
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Fig. 1. Construction of a 15-gene signature. (A) Strategy used to produce the signature. The TCGA Provisional dataset within cBioPortal has

492 prostate cancers with gene expression profiled by RNA sequencing. The cohort was first divided into two populations: one (n = 100)

positive for a 9-gene signature derived from a MUC1 genomic network (Lin et al., 2017) and another (n = 392) negative for the signature.

From these two populations, 696 differentially expressed genes (DEGs) were identified based on the mean mRNA expression and q < 0.001.

These DEGs consist of 461 downregulated genes and 218 upregulated genes. For the downregulated genes, we have assigned tumors with

gene expression at 1.5 SD (standard deviation) lower than a reference population mean (�1.5 SD); for those upregulated genes, we have

located PCs with these gene expression at 2 SD above the population mean. We then performed model-building using regularization-coupled

covariate selection of these 696 DEGs for their impact on BCR using the Elastic-net penalty in the R glmnet package (Fig S1 for a typical

selection), which resulted in a 15-gene signature (SigMuc1NW). (B) PCs of the TCGA cohort with �1.5 SD (SLCP2A1 and CGNL1) and 2 SD

expression are shown using OncoPrint (top gray illustration) and clustered (bottom color image). The disease-free status is also included.

The illustration was generated using tools provided by cBioPortal.
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kegg.set.hs dataset and Gaga package in R revealed the

upregulation of the genesets regulating cell cycle, oocyte

meiosis, progesterone-mediated oocyte maturation

(Table S2A), and downregulation of the genesets medi-

ating focal adhesion and others (Table S2B). With the

Gene Ontology (go) go.sets.hs dataset, the upregulated

genesets include those regulating multiple aspects of cell

cycle progression, DNA metabolism, and other pro-

cesses related to cell proliferation (Table S2C). Down-

regulated genesets contain those that mediate cell

adhesion, extracellular processes, and other events

(Table S2D). Pathway enrichment analysis of the 696

DEGs using the Reactome package in R identified path-

ways regulating G1, M, DNA replication, and chro-

matid segregation (Table S2E). Collectively, the above

analyses reveal an association of the 696 DEGs with PC

cell proliferation, implying their potential in predicting

PC progression.

3.2. Construction of a 15-gene signature

SigMuc1NW to predict BCR following radical

prostatectomy (RP)

We then analyzed the contributions of these 696 DEGs

to BCR using the TCGA Provisional cohort, in which

the primary treatment was RP (cBioPortal). While the

classic system to construct a signature is to randomly

divide a dataset into a training set and testing set (Lin

et al., 2017), we chose to use the system of cross-vali-

dation. This system is selected due to our large number

of DEGs to be assessed for their impact on BCR and

the availability of the powerful machine learning pro-

grams in the glmnet R package. Based on the hetero-

geneity of PCs, we reasoned that these DEGs may

affect BCR when their expression is beyond a thresh-

old level. For the downregulated DEGs, we separated

PCs with their expression lower than 1.5 SD (standard

deviation) of a reference population mean from those

without this level of downregulation. For the upregu-

lated DEGs, we grouped PCs with DEG expressions

above 2 SD from the reference population mean

(Fig. 1A). A reference population was either tumors

within the dataset that are diploid for the gene of

interest or the intact tumor population (http://www.cb

ioportal.org/faq.jsp). The justifications of using the

levels of �1.5 SD downregulation and 2 SD upregula-

tion here were based on our publication (Ojo et al.,

2017) and to maintain a sufficient number of DEGs

available for variable selection as a value below

�1.5 SD or above 2 SD significantly reduced the num-

ber of qualified DEGs (data not shown).

Using this re-organized dataset containing the

downregulations, upregulations, follow-up period, and

recurrence status for each patient, we then performed

covariate selection with regularization using Elastic-net

logistic regression within the R glmnet package

(Fig. 1A). To balance the selection of highly correlated

covariates and minimization of the number of covari-

ates, we ran Elastic-net with the mixing parameter a
set at 0.2 or 0.8. A 10-fold cross-validation was used

in all selection settings. As expected, more covariates

were selected at a = 0.2 (n = 17) than a = 0.8 (n = 5)

(Fig. S1). We also performed covariate selection with a

different setting (s = 0.5) which resulted in more

covariates than the setting of a = 0.2. We then

removed those DEGs with coefficient < 0.01 in the

s = 0.5 setting and < 0.001 in the a = 0.2 setting. This

resulted in a panel of 15 genes (SigMuc1NW; NW

referring to network), including all 5 genes selected at

a = 0.8, 14 genes selected from a = 0.2 (including all 5

genes selected at a = 0.8), and 15 DEGs from s = 0.5

(including all 14 genes selected at a = 0.2) (Table 1).

Among the 15 genes, SLCO2A1 and CGNL1 are

downregulated and the rest are upregulated (Table 1).

Five genes CGNL1, SUPV3L1, TATDN2, CASKIN1,

and GOLGA7B are of unknown functions in either

prostate cancer tumorigenesis or tumorigenesis in gen-

eral (Table 1). Six genes (SLCO2A1, MGAT4B,

SLC25A33, MCCC1, OIP5, and CTHRC1) have been

shown to affect the tumorigenesis of other cancer types

but not PC (Blomme et al., 2013; Chen et al., 2013;

Guda et al., 2014; Ke et al., 2014; Lyons et al., 2017;

Ribeiro et al., 2014; Tarnowski et al., 2016) (Table 1).

OIP5 (Opa interacting protein 5) is a cancer testis anti-

gen and has been reported in other cancer types as a

type of tumor-associated antigen (TAA) (Tarnowski

et al., 2016); its detection in PC here suggests OIP5

being a TAA for PC. The remaining four genes VAV2

(VAV guanine nucleotide exchange factor 2), ASNS

(asparagine synthesis), DNMT3B (DNA methyltrans-

ferase 3 beta), and AURKA (Aurora kinase A) not

only all promote PC pathogenesis but also play a role

in the development of CRPC (Gravina et al., 2011;

Magani et al., 2017; Mosquera et al., 2013; Sircar

et al., 2012). VAV2 is a coactivator of androgen recep-

tor (AR) and sustains AR signaling under androgen

deprivation therapy (ADT) (Magani et al., 2017); it

also promotes angiogenesis and metastasis (Barrio-

Real and Kazanietz, 2012). AURKA plays a critical

role in mitosis (Dominguez-Brauer et al., 2015; Plot-

nikova et al., 2015) and promotes the development of

neuroendocrine PC under ADT (Beltran et al., 2011;

Mosquera et al., 2013). DNMT3B may regulate epige-

netic events to facilitate CRPC development (Hoff-

mann et al., 2007). Collectively, evidence supports an

association of SigMuc1NW with PC recurrence.
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In line with this possibility, univariate Cox propor-

tional hazards (PH) analysis revealed that all compo-

nent genes at the defined level expression (�1.5 SD

downregulation and 2 SD upregulation) significantly

predict BCR (Table 2). Except for TATDN2 and

OIP5, the PH assumption of the Cox model was con-

firmed. The prediction for some genes (MGAT4B,

ASNS, DNMT3B, and OIP5) is robust (Table 2), par-

ticularly considering the prediction being individual

gene-based.

In support of our selection of related genes, changes

in the 15 genes show an overlapping profile (Fig. 1B,

up panel) and their expression can be clustered

(Fig. 1B, bottom panel). The downregulation/upregu-

lation-based alterations and gene expression-derived

cluster are well matched (Fig. 1B), providing a valida-

tion for our covariate selection. Importantly, patients

with these changes are at risk of developing recurrent

PC; that is, these patients are enriched with recurrent

tumors (Fig. 1B, see the ‘Disease-free status’ illustra-

tion). Tumors positive to SigMuc1NW are also

robustly associated with reductions in disease-free sur-

vival (DFS) (Fig. 2A, P = 1.12e-12). The association

has a sensitivity of 56.4% and specificity of 72.6%,

which are significantly improved from the initially

reported 9-gene signature (sensitivity of 34.8%, speci-

ficity of 83.6%, P = 5.57e-5) (Lin et al., 2017). Consid-

ering the TCGA cohort had 10 total mortality, it is

intriguing that 8 of these 10 deaths occurred in

patients with SigMuc1NW-positive PC (Fig. 2B,

P = 0.00212), which are consistent with VAV2, ASNS,

DNMT3B, and AURKA being factors promoting

CRPC development (Gravina et al., 2011; Magani

et al., 2017; Mosquera et al., 2013; Sircar et al., 2012).

As expected, SigMuc1NW displays an overlapping pat-

tern with the 9-gene genomic signature used to select

DEGs (Fig. S2). Inclusion of SigMuc1NW substan-

tially enhanced the association of the 9-gene signature

Table 1. The component genes of SigMuc1NW.

Gene Locus Name Role in PC/other tumorigenesis References

SLCO2A1a 3q22.1-q22.2 Solute carrier organic anion

transporter family member 2A1

Unknown/inactivation of it

facilitates color cancer

formation

Guda et al., 2014;

CGNL1a 15q21.3 Cingulin like 1 Unknown/unknown NA

SUPV3L1b 10q22.1 Suv3 like RNA helicase Unknown/unknown NA

TATDN2b 3p25.3 TatD DNase domain containing 2 Unknown/unknown NA

MGAT4Bb 5q35.3 Mannosyl (alpha-1,3-)-glycoprotein

b-1,4-N-

acetylglucosaminyltransferase,

isozyme B

Unknown/upregulation in

murine hepatocellular

carcinoma

Blomme et al., 2013;

VAV2b 9q34.2 Vav guanine nucleotide exchange

factor 2

An androgen receptor (AR)

coactivator; enhancing AR

signaling in PC/

Magani et al., 2017;

SLC25A33b 1p36.22 Solute carrier family 25 member 33 Unknown/a mitochondrial UTP

carrier; contributing to IGF-

induced cell growth

Lyons et al., 2017;

MCCC1b 3q27.1 Methylcrotonyl-CoA carboxylase 1 Unknown/gain of function was

reported in oral squamous cell

carcinoma

Ribeiro et al., 2014;

ASNSb 7q21.3 Asparagine synthetase Contributing to CRPC/ Sircar et al., 2012;

CASKIN1b 16p13.3 CASK interacting protein 1 Unknown/unknown NA

DNMT3Bb 20q11.21 DNA methyltransferase 3 beta Likely facilitating CRPC/ Gravina et al., 2011;

AURKAb 20q13.2 Aurora kinase A Contributing to CRPC/ Mosquera et al., 2013;

OIP5b 15q15.1 Opa interacting protein 5 Unknown/a cancer testis

antigen detected in colorectal

cancer

Tarnowski et al., 2016;

CTHRC1b 8q22.3 Collagen triple helix repeat

containing 1

Unknown/promoting

tumorigenesis in multiple

cancer types

Ke et al., 2014;

GOLGA7Bb 10q24.2 Golgin A7 family member B Unknown/unknown NA

a�1.5 SD downregulated genes.
b2 SD upregulated genes.

NA: not available.
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with BCR (Fig. S3A,C) and significantly correlates

with a reduction in overall survival (OS) (Fig. S3B).

3.3. SigMuc1NW effectively discriminates

recurrent PCs from those without BCR

To examine the effectiveness of SigMuc1NW in sepa-

ration of recurrent PC from those without BCR, we

have assigned the alterations of the 15 genes with their

Cox efficient (Table 2). The cumulative scores of

SigMuc1NW for individual patients were then

calculated as ∑(fi)n (fi: Cox coefficient of genei, n = 15)

(Table S3). The sensitivity and specificity of the scores

derived from SigMuc1NW in discrimination of BCR

was analyzed using time-dependent ROC (tROC). The

scores discriminate recurrent PC with tAUC (area

under curve) ranging from 74.9% at 11.5 and

32.1 months to 69.7% at 48.4 months (Fig. 3A), reveal-

ing SigMuc1NW being particularly effective in predict-

ing earlier BCR. To further investigate this application,

we determined the cutpoint of the SigMuc1NW scores

in the separation of recurrent from nonrecurrent PC

using Maximally Selected Rank Statistics using the

Maxstat package in R (Fig. S4) and converted the

scores into binary code; scores ≤ 1.7833 (cutpoint,

Fig. S4) were assigned ‘0’ and scores > 1.7833 were

assigned ‘1’. PCs with scores above the cutpoint have a

dynamically faster profile of BCR than those with

scores not above the cutpoint (Fig. 3B). Intriguingly,

the cutpoint-positive tumors even developed BCR in a

shorter time frame (Fig. 3B; MMDF 33.1, 95% CI

30.9–73.4) compared to SigMuc1NW-positive PCs

(Fig. 2A; MMDF 63.2, 95% CI 40–77.3). The cutpoint

thus not only will facilitate clinical examination of Sig-

Muc1NW but also enhances its predictive power. Addi-

tionally, both mean and quartile 3 (Q3) scores can

stratify patients with high risk of BCR with comparable

effectiveness as SigMuc1NW (comparing Fig. 3C,D to

Fig. 2A). Both mean and Q3 scores cover 48 and 46

recurrent PCs, respectively (Fig. 3C,D) which are more

than the 41 recurrent PCs marked by the cutpoint

(Fig. 3A). Thus, the mean (0.918), Q3 (1.019), and

Table 2. Association of the component genes of SigMuc1NW with

PC recurrencea.

Genes Coefb HRc 95% CId P-value

SLCO2A1e 1.5813 4.861 1.763–13.4 0.00225**

CGNL1e 0.9902 2.692 1.546–4.686 0.000464***

SUPV3L1f 0.8437 2.325 1.168–4.629 0.0163*

TATDN2f 1.3132 3.718 1.855–7.45 0.000213***

MGAT4Bf 1.5178 4.562 2.245–9.272 2.73e-5***

VAV2f 1.1027 3.012 1.671–5.429 0.000244***

SLC25A33f 1.096 2.992 1.55–5.777 0.00109**

MCCC1f 0.8336 2.302 1.322–4.007 0.00321**

ASNSf 1.3456 3.84 2.064–7.145 2.15e-5***

CASKIN1f 1.0286 2.797 1.55–5.047 0.000636***

DNMT3Bf 1.2919 3.64 1.928–6.87 6.73e-5***

AURKAf 1.0966 2.994 1.692–5.298 0.000166***

OIP5f 1.365 3.914 2.022–7.576 5.13e-5***

CTHRC1f 0.7981 2.221 1.15–4.289 0.0174*

GOLGA7Bf 2.0406 7.695 2.388–24.79 0.00063***

aUnivariate Cox analysis was performed using the TCGA Provisional

cohort (n = 492).
bCox coefficient.
cHazard ratio.
dConfidence interval.
eGene expression was < �1.5 SD of the reference population mean.
fGene expression was at > 2 SD of the reference population mean.

*P < 0.05; **P < 0.01; ***P < 0.001.

Fig. 2. SigMuc1NW is associated with reductions in disease-free survival (DFS) and overall survival (OS) in patients with PC. The TCGA

Provisional cohort was used in these analyses. (A) The effect of SigMuc1NW on DFS. MDF: months disease free; MS: months survival;

MMDF: median months disease free; NA: not available as MMDF being not reached. Numbers of patient at risk at the start of the indicated

follow-up period were included. (B) The impact of SigMuc1NW on OS. MMS: median months survival. Kaplan–Meier and log-rank test were

performed using the R survival Package.
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cutpoint (1.7883) scores can also be used to predict

BCR following RP with a range of BCR risk. We fur-

ther demonstrated SigMuc1NW (1.62e-4), cutpoint

(P = 2.05e-5) (Table 3), Mean (P = 1.19e-4), and Q3

(P = 1.67e-4) (data not shown) being independent risk

factors for PC recurrence after adjusting for age at diag-

nosis, RP Gleason scores, surgical margin, and TMN

tumor stage. When the World Health Organization

(WHO) PC grading system [WHO grade (group) I-V] or

its equivalent ISUP (the International Society of Uro-

logical Pathology) grade (Egevad et al., 2016; Gordet-

sky and Epstein, 2016) (Table S3 for details) instead of

Gleason grade was used, SigMuc1NW (P = 2.05e-4),

cutpoint (P = 1.91e-5), Mean (P = 1.37e-4), and Q3

(P = 1.86e-4) remain an independent risk factor for

BCR. The demographics of the TCGA dataset with

respect to the clinical characteristics used in the above

multivariate Cox analyses are included (Table S4).

3.4. Enhancing the predictive efficiency of

SigMuc1NW

To further demonstrate SigMuc1NW being effective

and robust, we analyzed the signature using the actual

gene expression data instead of using SD (standard

deviation)-based distribution. For this purpose, the

RNA sequencing data for all 15 SigMuc1NW genes

were retrieved from the TCGA dataset and estimated

Fig. 3. SigMuc1NW scores effectively stratify PCs with a high risk of recurrence. (A) All tumors within the TCGA Provisional cohort were

scored for SigMuc1NW (see Results for details). The scores were analyzed for discrimination of tumors with high risk of recurrence using

tROC. AUC at the indicated period of time (tAUC) along with the status of disease recurrence are indicated. DF: disease free. (B) The

cutpoint of SigMuc1NW scores for effectively separating PCs with high risk of recurrence from low risk PCs was estimated (Fig S4 for

details), followed by assigning binary codes to tumors based on the cutpoint (see Results for details). The effects of cutpoint on DFS of the

patients in the TCGA cohort were then determined. (C, D) The effects of Mean and Q3 scores of SigMuc1NW on BCR in PC patients in the

TCGA Provisional cohort. Kaplan–Meier and log-rank test were performed using the R survival Package. The vertical dot line shows MMDF.

The color dot curves are for 95% CI.

1566 Molecular Oncology 12 (2018) 1559–1578 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Muc1 gene network associates with PC recurrence Y. Jiang et al.



for cutpoints in separating recurrent PCs (Table 4).

All tumors were given a binary code for all 15 genes

as described above with exception for both downregu-

lated genes SLCO2A1 and CGNL1 in which tumors

with expression less than the cutpoint were assigned

‘1’. Univariate Cox PH analysis was carried out with

the PH assumption confirmed for all genes. All 15

genes, as defined by their cutpoint, significantly predict

BCR (Fig. 4). Additionally, SLCO2A1, SUPV3L1,

TATDN2, MGAT4B, VAV2, SLC25A33, ASNS, and

OIP5 remain as independent risk factors of BCR after

adjusting for age at diagnosis, RP Gleason scores, sur-

gical margin, and TMN tumor stage (Table 5). These

observations are appealing considering their single

gene-based nature, and that 8/15 component genes of

SigMuc1NW possesses independent predicting value to

BCR, which further supports SigMuc1NW as a signa-

ture for BCR.

Using the Cox coefficients (Table 4), all cutpoint-

positive events were converted to the respective coeffi-

cient values (Table S5). Based on the robustness defined

by P-values (Fig. 4), we formulated three subsignatures

SigCut1, SigCut2, and SigCut3 (Fig. 4). All tumors

were then scored for SigCut1, SigCut2, and SigCut3

using ∑(fi)n (fi: Cox coefficient of genei, n = 3, 6, or 15).

All three subsignatures discriminate recurrent PC effec-

tively with tAUC > 70% (Fig. 5A). The respective cut-

points were determined: 1.0331/P = 6.166e-8 for

SigCut1, 4.0135/P = 1.005e-11 for SigCut2, and 5.4067/

P = 7.97e-15 for SigCut3. The respective binary code

for individual subsignature was then assigned to all

tumors, which was used to perform survival analysis.

All three subsignatures dramatically associate with

reductions in DFS with SigCut2 and SigCut3 being

more robust (Fig. 5B–D). Nonetheless, they predict

BCR with a range of effectiveness in terms of the num-

ber of recurrent tumors included, the duration of

MMDF, and sensitivity/specificity: 71.4%/63.9% for

SigCut1, 41.8%/87.5% for SigCut2, and 67.7%/75.7%

for SigCut3 (Fig. 5B–D). These three subsignatures can

thus be used together to predict recurrent PCs; this will

significantly enhance their predictive power.

Table 3. Univariate and multivariate Cox analysis of SigMuc1NW for PC recurrence.

Factors

Univariate Cox analysis Multivariate Cox analysis Multivariate Cox analysis

HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value

Siga 4.16 2.74–6.36 5.54e-11* 2.44 1.53–3.87 1.62e-4* NA NA NA

Cutpointb 4.6 3.03–6.97 6.44e-13* NA NA NA 2.67 1.70–4.20 2.05e-5*

Agec 1.03 0.99–1.06 0.0981 0.999 0.97–1.03 0.9711 1.001 0.97–1.03 0.9756

GSd 2.19 1.76–2.72 1.49e-12* 1.62 1.25-2.11 2.71e-4* 1.62 1.25–2.10 2.86e–4*

SMargine 2.25 1.48–3.41 0.000137* 1.25 0.79–1.98 0.3306 1.28 0.81–2.02 0.2976

TumStgef 3.68 2.08–6.51 8.19e-6* 1.82 0.97–3.40 0.0614 1.82 0.96–3.45 0.0668

aSigMuc1NW.
bSigMuc1NW-derived cutpoint.
cAge at diagnosis.
dRadical prostatectomy Gleason score.
eSurgical margin.
fTumor stages (0 for ≤ T2; 1 for T3 and T4).

HR, hazard ratio; CI, confidence interval; NA, not available.

*P < 0.05.

Table 4. SigMuc1NWa component genes defined at their cutpoints

associate with BCR.

Genes Cutpointb P-value Coefc P-value

SLCO2A1 497.3292 0.09128 0.7967 0.00499**

CGNL1 3066.229 0.004126** 0.7966 0.000372***

SUPV3L1 545.8928 0.007953** 0.7992 0.000187***

TATDN2 1756.057 0.002471** 0.8731# 8.48e-5***

MGAT4B 1818.718 6.389e-5*** 1.0331 2.61e-6***

VAV2 1489.06 0.000547*** 0.9402 9.94e-6***

SLC25A33 297.5508 0.2522 0.8503 0.0218*

MCCC1 1233.159 0.001077** 1.0179 1.2e-5***

ASNS 1041.086 0.01123* 1.0544 0.000109***

CASKIN1 106.4046 0.02646* 0.7006 0.00125**

DNMT3B 61.4086 0.008576** 0.9082 0.000175***

AURKA 81.1249 3.807e-5*** 1.0223 1.12e-6***

OIP5 16.4317 4.237e-7*** 1.242# 2.64e-8***

CTHRC1 180.8622 0.01389* 0.7608 0.000537***

GOLGA7B 23.2022 0.01249* 0.7623 0.000581***

aRNA sequencing data of SigMuc1NW’s component genes were

retrieved from the TCGA Provisional dataset (cBioPortal).
bCutpoint was estimated using Maximally Selected Rank Statistics

in R.
cCoefficient to BCR was determined using univariate Cox propor-

tion hazard analysis.
#PH assumption was at P < 0.05.

*P < 0.05; **P < 0.01; ***P < 0.001.
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The Q1 (1.647), Median (3.589), and Q3 (6.386)

scores all effectively stratify PC with high risk of BCR

with a range of effectiveness in terms of sensitivity/

specificity/MMDF (median month disease free)/P-value

being 93.4%/31.8%/81.2/6.76e-6 for Q1, 80.2%/56.9%/

66.9/6.73e-11 for Median, and 56%/82%/40/0 for Q3

Fig. 4. All 15 component genes are significantly associated with PC recurrence and the formulation of three subsignatures. The mRNA

expression data for the 15 genes were retrieved from the TCGA Provisional dataset (cBioPortal). Individual cutpoints were derived, and

binary codes were assigned to all tumors. The hazard ratio (HR) of PC recurrence for all individual genes was determined using the

univariate Cox proportional hazards (PH) mode. The PH assumption was evaluated and confirmed. These analyses were carried out using

the R survival package. Individual HR, the 95% CI, and P-value are included. The inclusion of component genes in SigCut1, SigCut2, and

SigCut3 were shown, which was based on the P-values.

Table 5. Univariate and multivariate Cox analysis of SigMuc1NW component genes defined at cutpoint for PC recurrence.

Factors

Univariate Cox analysis Multivariate Cox analysis

HR 95% CI P-value HR 95% CI P-value

Agea 1.03 0.99–1.06 0.0981 NSe

GSb 2.19 1.76–2.72 1.49e-12* 1.71–1.89f (1.32–1.46)–(2.20-2.41)f 4.48e-7*–1.4e-5*,f

SMarginc 2.25 1.48–3.41 0.000137* NSe

TumStged 3.68 2.08–6.51 8.19e-6* 1.62–2.07 (0.85–1.08)-(3.08–3.96)f 0.0272*,h–0.139f,g

SLCO2A1 2.22 1.27–3.87 0.00499* 1.82 1.04–3.19 0.0369*

SUPV3L1 2.22 1.46–3.38 1.87e-4* 2.08 1.36–3.19 7.98e-4*

TATDN2 2.39 1.55–3.70 8.48e-5* 2.15 1.37–3.37 8.35e-4*

MGAT4B 2.81 1.83–4.32 2.61e-6* 1.77 1.23–2.78 0.0128*

VAV2 2.56 1.69–3.89 9.94e-6* 1.93 1.26–2.95 0.0024*

SLC25A33 2.34 1.13–4.84 0.0218* 2.25 1.08–4.67 0.0297*

ASNS 2.87 1.68–4.90 1.09e-4* 1.91 1.09–3.36 0.0239*

OIP5 3.46 2.24–5.36 2.64e-8* 1.94 1.20–3.12 0.00638*

aAge at diagnosis.
bRadical prostatectomy Gleason score.
cSurgical margin.
dTumor stages (0 for ≤ T2; 1 for T3 and T4).
eNot significant.
fRange of HR, 95% CI, and P-values resulted from multivariate Cox analysis with the individual genes.
gThe P-values for SLCO2A1 (P = 0.0749), MGAT4B (P = 0.0891), ASNS (P = 0.0917), and OIP5 (P = 0.139).
hThe P-values for SUPV3L1 (P = 0.0431*), TATDN2 (P = 0.0272*), VAV2 (P = 0.0364*), and SLC25A33 (P = 0.0334*).

HR, hazard ratio; CI, confidence interval.
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Fig. 5. Analyses of SigCut1, SigCut2, and SigCut3 for their association with reductions in DFS. The TCGA Provisional dataset was used

here. (A) All tumors were scored for SigCut1, SigCut2, and SigCut3 using the respective Cox coefficient. Time-dependent AUCs for

individual signature at the current follow-up period and the corresponding recurrent status are shown. (B-D) The associations of SigCut1,

SigCut2, and SigCut3 with BCR. (E) The Q1, Median, Cutpoint, and Q3 scores of SigCut3 were analyzed for the stratification of PC with

high risk of recurrence. The number of risk individuals at the indicated follow-up period is included. The multiple Kaplan–Meier curves and

log-rank test were performed using the R survival package.
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(Fig. S5). When Q1, Median, Q3, and cutpoint of Sig-

Cut3 are used together, it offers an impressive system to

stratify recurrent and nonrecurrent PCs with only a few

recurrent cases in tumors with score < Q1 (Fig. 5E).

Furthermore, in comparison with SD-defined Sig-

Muc1NW (Fig. 2A), SigCut3 is clearly more effective

(Fig. 5D). After adjusting for age at diagnosis, RP

Gleason scores, surgical margin, and TMN tumor

stage, SigCut1 (P = 0.00308), SigCut2 (P = 1.55e-5),

and SigCut3 (P = 2.97e-6) independently predict

BCR, respectively. All three signatures are associated

with adverse features of PC: high tumor stages (T3

and T4) at odds ratio/95% CI of 1.78/1.51–2.12
(P = 2.39e-11) for SigCut1, 1.55/1.37–1.77 (P = 1.33e-

11) for SigCut2, and 1.33/1.23–1.44 (P = 8.47e-13) as

well as for Gleason scores (8–10) at the respective

odds ratio/95% CI of 2.19/1.86–2.6 (P < 2e-16), 1.84/

1.62–2.1 (P < 2e-16), and 1.48/1.37–1.61 (P < 2e-16).

Taken together, these observations validate the effi-

cacy of SigMuc1NW.

3.5. Validation of SigMuc1NW

We have made an effort to determine the individual

component gene expression in PCs. The MKSCC

(Cancer Cell 2010) (Taylor et al., 2010) dataset within

cBioPortal has 216 PCs/patients with mRNA expres-

sion profiled using microarray; the expression data

were organized for comparison between normal pros-

tate tissues and PC (cBioPortal). Importantly, all pri-

mary PCs have been treated and the follow-up

information is available; this cohort thus supports sur-

vival analysis. To further validate SigMuc1NW con-

structed using RNA sequencing data from the TCGA

Provisional dataset, mRNA expression data for all 15

component genes along with all clinical information

were extracted from the MKSCC dataset. Tissues can

be grouped into normal prostate (n = 29), primary

PCs (n = 149), recurred PCs (n = 36), and metastatic

PCs (n = 9) (cBioPortal). Using this setting, we

demonstrated significant reductions of CGNL1 in pri-

mary PCs over normal prostate tissues, in metastatic

PCs compared to localized PCs, and in recurrent PCs

compared to nonrecurrent PCs among the two down-

regulated genes (SLCO2A1 and CGNL1) of Sig-

Muc1NW (Fig. 6A–C). Significantly higher levels for

most upregulated genes identified in SigMuc1NW were

shown in the above comparisons (Fig. 6A–C), support-
ing the authenticity of SigMuc1NW.

Following our system described above, cutpoints for

all 15 genes were estimated, binary codes were

assigned, and association of individual genes with

BCR was determined using Cox PH regression

(Table 6). Except MCCC1 being reversely associated

with DFS and four genes without a significant correla-

tion with DFS, other 10 genes significantly or robustly

(CGNL1 and CTHRC1) predict BCR risk (Table 6).

We then formulated a subsignature with these 10 genes

(SigMuc1NW1). As described above, all tumors were

scored for SigMuc1NW1 using their coefficients

(Table 6). Analysis with tROC shows tAUC values

being from 76.6% to 82.5% (Fig. 7A). SigMuc1NW1

thus effectively discriminates recurred PCs from nonre-

current tumors across all follow-up period from

18.4 months to 65 months (Fig. 7A); this efficiency

matches that of SigMuc1NW in the discrimination of

recurrent PCs in the TCGA cohort (Fig. 5A). Addi-

tionally, using the binary code derived from Q1 (0),

Median (1.805), Q3 (3.727), and cutpoint (6.2136)

scores of SigMuc1NW1, all these classifications signifi-

cantly stratify recurrent PCs (Fig. 7B–E). The respec-

tive sensitivity/specificity/PPV (positive predictive

value) are 36.1%/98.1%/86.7% for cutpoint, 97.2%/

35.6%/34.3% for Q1, 75%/59.6%/39.1% for Median,

and 52.8%/84.6%/54.3% for Q3 (Fig. 7B–E). The

PPV for cutpoint is robust (86.7%). Collectively,

through combination of Q1, Median, Q3, and cut-

point, PC recurrence could be effectively predicted for

patients in the MSKCC cohort. The similar situation

was also demonstrated in the TCGA cohort using Sig-

Muc1NW. In a reverse validation effort, we demon-

strated that SigMuc1NW1 is also robustly associated

with BCR in the TCGA cohort and significantly corre-

lates with a reduction in OS in the TCGA dataset

(Fig. 8A,B). Taken together, we provide a thorough

validation of SigMuc1NW and SigMuc1NW1.

Finally, we made an attempt to compare the perfor-

mance of SigMuc1NW to Prolaris (cell cycle progres-

sion/CPC) (Cuzick et al., 2011) in predicting BCR.

The basis for this comparison was the similarities

between SigMuc1NW to CPC: (a) like CPC, Sig-

Muc1NW affects cell cycle progression (Table S2A

and S2C; also see Discussion), and (b) similar to CPC,

SigMuc1NW predicts BCR. As the CPC component

genes promote cell cycle progression, we analyzed their

effects on BCR using the 2 SD expression level. In the

TCGA Provisional cohort, CPC is not correlated with

a reduction in OS but significantly associated with

BCR (Fig. S6). However, the predictive accuracy is

lower than SigMuc1NW (comparing Fig. 2 and

Fig. S6). Considering Prolaris being a real-time PCR-

based signature and SigMuc1NW being derived from

RNA seq, this comparison may not fully realize Pro-

laris effectiveness in predicting BCR. Nonetheless, it

suggests that SigMuc1NW (Fig. 2A, MMDF 63.24,

P = 1.12e-12) offers comparable efficacy to Prolaris
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(Fig. S6, MMDF 66.89, P = 1.34e-4) in assessing PC

recurrence.

4. Discussion

Progression to biochemical recurrence is a major turn-

ing point in PC development; from there, a large pro-

portion of PC will metastasize (Shipley et al., 2017),

leading to ultimate death. The current treatments to

metastatic PC are essentially palliative. It is thus

highly desirable to effectively stratify PCs with higher

risk of BCR following RP, allowing early intervention

prior to metastatic progression.

MUC1 drives tumor progression in multiple tumor

types (Kufe, 2009; de Paula Peres et al., 2015; Wurz

et al., 2014) through activating important oncogenic

proteins including EGFR, b-catenin, NF-jB, PKM2,

and other pathways (Kufe, 2009; Singh and Hollings-

worth, 2006; Wong et al., 2015). In line with its func-

tions, a 9-gene genomic signature was recently

constructed from the MUC1 genomic network, which

predicts BCR with a relatively good effectiveness (Lin

et al., 2017). Using a novel system, we report here a

robust improvement of this 9-gene genomic signature

in predicting BCR by systemically exploring its associ-

ated transcriptome. To our best knowledge, this is the

first thorough analysis not on a single gene-associated

but rather on a multigene signature-associated tran-

scriptome consisting of 696 genes (Table S1). Because

of the complex nature of cancer progression, in this

case the progression to BCR, we chose not to focus on

a specific aspect or pathway of tumorigenesis and

instead performed a systemic examination of these 696

genes for their predictive power in BCR.

Fig. 6. Alterations in the expression of the component genes in an independent PC population. Gene expression data determined by

microarray were extracted from the MSKCC dataset (Robinson et al., 2015) within cBioPortal. The mRNA levels in normal and PC tissues

(A), in primary PC and metastatic PC (B), and in nonrecurrent and recurrent PC (C) were determined. The number of cases used in the

comparisons is indicated. Means � SD are graphed. Statistical analyses were performed using Student’s t-test (2-tailed). *P < 0.05,

**P < 0.01, and ***P < 0.001.
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This novel and comprehensive analytic approach has

resulted in a new 15-gene panel. In the panel, 73.3%

(11/15) of genes have not been reported to associate

with PC. These 11 new PC genes include MGAT4B and

OIP5. The former may play a role in the alteration of

protein glycosylation, which is well known for being an

important aspect of tumorigenesis (Munkley et al.,

2016). Abnormalities in MUC1 glycosylation have been

well demonstrated in tumorigenesis (Kufe, 2009; de

Paula Peres et al., 2015). Thus, the inclusion of

MGAT4B in the 15-gene panel is in accordance with the

panel being derived from a 9-gene MUC1 genomic sig-

nature (Lin et al., 2017). The presence of OIP5 in Sig-

Muc1NW suggests the protein as a tumor-associated

antigen (TAA) in PC. TAAs have been extensively

investigated in cancer diagnosis and therapy (Scheid

et al., 2016). In this regard, the OIP5’s potential in PC

diagnosis and therapy should be pursued.

As the construction of SigMuc1NW was not aimed

on specific pathways, the gene panel covers multiple

pathways. In addition to the potential effects on pro-

tein glycosylation though MGAT4B, the panel con-

tains proteins with RNA helicase activity (SUPV3L1,

Table 1) and DNA methyltransferase activity

(DNMT3B, Table 1). These activities are important in

gene expression and epigenetic alterations, which are

well known to facilitate caner progression. Sig-

Muc1NW also have a component of cell proliferation.

AURKA is emerging as an important regulator of

mitosis and a critical player in tumorigenesis. As such,

AURKA is a hotly pursued in cancer therapy

(Dominguez-Brauer et al., 2015; Plotnikova et al.,

2015). Additionally, OIP5 is also known as Mis18b
which has recently been shown to play an important

role in chromatid separation during mitosis (Nardi

et al., 2016; Stellfox et al., 2016), adding another

appealing feature for its inclusion in SigMuc1NW.

Intriguingly, among the 15 genes, only four are known

to function in PC and all four genes facilitate CRPC

development, which is in accordance with the detection

of SigMuc1NW elevation in mCRPCs (Table 6). As

alterations in gene expression and the epigenetic pat-

terns are involved in CRPC, the 15-gene panel may

also predict CRPC development, which will be exam-

ined in the future.

Inclusion of genes functioning in multiple pathways

is likely a major attributor for the robust nature of the

signature. SigMuc1NW and a set of its subsignatures

all effectively stratify PC with increased risk of BCR

with P-value being the lowest (0) and are able to dis-

criminate recurrent PC with tAUC >75%. Through

combination of the subsignatures, sensitivity, speci-

ficity, and PPV can be achieved at high levels, 97.2%/,

98.1%, and 86.7% (Fig. 7B–E). Collectively, these evi-

dences strongly indicate that the signatures constructed

in this study will have important clinical applications

in predicting PC recurrence.

This possible clinical application is supported by

that the 15-gene panel is likely not overfitted. (a) The

overfitting issue is largely taken care of by modeling

the 696 DEGs with covariate selection coupled with

regularization (Elastic-net penalty in R) with 10-fold

Table 6. Cutpoint and Cox coefficients of SigMuc1NW component genes in the MSKCC cohorta

Genes Cutpointb P-value Coefc HR 95% CI P-value

SLCO2A1 8.155098 0.7073 0.6364 1.89 0.7835–4.558 0.157

CGNL1 10.02132 0.004758** 1.4679 4.34 2.084–9.038 8.8e-5***

SUPV3L1 7.655546 0.7029 �0.6931 0.5 0.2277–1.098 0.0841

TATDN2 7.755133 0.969 �0.5149 0.5976 0.2476–1.442 0.252

MGAT4B 8.536576 0.01469* 1.3245 3.76 1.833–7.712 0.000302***

VAV2 7.801308 0.2076 0.8258 2.284 1.184–4.405 0.0138*

SLC25A33 8.653056 1 0.4752 1.608 0.6248–4.14 0.325

MCCC1 7.789343 0.2982 �1.0768 0.3407 0.1467–0.7911 0.0122*

ASNS 7.946625 0.01918* 1.1815 3.259 1.567–6.78 0.00157**

CASKIN1 8.142854 0.04935* 1.0985 3 1.529–5.886 0.0014**

DNMT3B 7.199673 0.06077 1.0373 2.822 1.385–5.749 0.00428**

AURKA 7.215284 0.03781* 1.0552 2.873 1.435–5.75 0.00288**

OIP5 6.026397 0.05557 0.9789 2.662 1.374–5.156 0.00372**

CTHRC1 7.827664 0.0001814*** 1.631 5.109 2.4–10.88 2.33e-5***

GOLGA7B 7.534541 0.1695 1.1095 3.033 1.371–6.71 0.00617**

aMicroarray data of SigMuc1NW’s component genes were retrieved from the MSKCC dataset (cBioPortal).
bCutpoint was estimated using Maximally Selected Rank Statistics in R.
cCoefficient to BCR was determined using univariate Cox proportion hazard analysis.

*P < 0.05; **P < 0.01; ***P < 0.001.
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cross-validation. (b) The component genes were

directly examined using a different system: maximally

selected rank statistics-derived cutpoint; importantly,

this system clearly improved the effectiveness of the

SD-based signature. (c) The signatures were robust in

two independent PC cohorts (TCGA Provisional and
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Fig. 7. SigMuc1NW1 robustly predicts PC recurrent in an independent PC dataset. The follow-up data along with mRNA expression data for
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details). Time-dependent AUCs were derived (A). The stratification of PC with increased risk of recurrence was analyzed using the cutpoint
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MSKCC). (d) RNA was profiled through RNA

sequencing (TCGA) and microarray analysis

(MSKCC). (e) The 15-gene panel is robustly associated

with adverse feature of PC: Gleason scores and tumor

stages. These associations likely resulted in the reduced

HR of Gleason scores and tumor stages when they

were analyzed with SigMuc1NW in multivariate Cox

analysis (Table 3).

Between two commercially available multigene pan-

els, Oncotype DX (12 genes plus 5 reference genes) and

Prolaris (31 genes), there are no overlapping genes (Cuz-

ick et al., 2011; Knezevic et al., 2013). This suggests the

coexistence of different genesets with predictive values

toward PC recurrence, which might be attributable to

the complex mechanisms involved in disease progres-

sion. In this regard, our newly established SigMuc1NW,

which contains a different set of genes from Oncotype

DX and Prolaris, will enrich our ability to assess the

risk of PC recurrence. While our research comprehen-

sively supports that the signatures constructed here will

have attractive clinical applications, realization of this

potential requires further investigation.

5. Conclusions

We have formulated a novel strategy to derive differen-

tially expressed genes (DEGs) relative to a reported PC

signature from the most comprehensive and large PC

genomic dataset (the TCGA dataset) and to systemically

analyze these DEGs (n = 696) for pathways affected

and impacts on PC recurrence. In this effort, a novel

multigene set (n = 15 genes, SigMuc1NW) has been

constructed. SigMuc1NW robustly predicts PC recur-

rence and is an independent risk factor of PC recurrence

after adjusting for age at diagnosis, Gleason score, sur-

gical margin, and tumor stage. Among these 15 compo-

nent genes include 5 candidate oncogenic genes and 6

novel PC genes; within these 11 novel genes affecting

PC recurrence, 6 genes (SLCO2A1, SUPV3L1,

TATDN2, MGAT4B, SLC25A33, and OIP5) individu-

ally predict PC recurrence after adjusting for the above

clinical factors. Collectively, we have identified novel

genes affecting oncogenesis in general and PC pathogen-

esis in particular as well as constructed a novel and

robust multigene set predicting PC recurrence using our

system reported here. This system will have applications

in exploration of publically available datasets for factors

affecting cancer progression.
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was produced using the TCGA Provisional dataset

(n = 492, cBioPortal).

Fig. S3. The combined signature is significantly associ-

ated with reductions in DFS and OS in PC patients.

Fig. S4. Cutpoint estimation.

Fig. S5. SigMuc1NW scores effectively stratify PCs

with elevated risk of recurrence following RP.

Fig. S6. CPC geneset is associated with a reduction in

DFS but not OS in PC patients.

Table S1. Differentially expression genes (DEGs) of a

9-gene signature identified in the TCGA Provisional

dataset.

Table S2. (A) Upregulation of gene sets among the

696 DEGs associated with the 9-gene genomic

signature within the kegg.sets.hs dataset. (B)

Downregulation of gene sets among the 696 DEGs

within the kegg.sets.hs dataset. (C) Upregulation of

gene sets among the 696 DEGs within the GO.sets.hs

dataset. (D) Downregulation of gene sets among the

696 DEGs within the GO.sets.hs dataset. (E) Pathways

affected by the 696 DEGs associated with the 9-gene

genomic signature.

Table S3. Scores of the component genes and some

clinical characteristics of patients with prostate cancer

in the TCGA Provisional dataset within cBioPortal.

Table S4. Demographics of the TCGA patient popula-

tion. The clinical characteristics were extracted from

the TCGA Provisional dataset within cBioPortal along

with the indicated clinical data.

Table S5. Cutpoints of individual gene expression

determined by RNA sequencing.
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