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Abstract
Premise: Quantitative plant traits play a crucial role in biological research. However,
traditional methods for measuring plant morphology are time consuming and have
limited scalability. We present LeafMachine2, a suite of modular machine learning
and computer vision tools that can automatically extract a base set of leaf traits from
digital plant data sets.
Methods: LeafMachine2 was trained on 494,766 manually prepared annotations
from 5648 herbarium images obtained from 288 institutions and representing
2663 species; it employs a set of plant component detection and segmentation
algorithms to isolate individual leaves, petioles, fruits, flowers, wood samples,
buds, and roots. Our landmarking network automatically identifies and measures
nine pseudo‐landmarks that occur on most broadleaf taxa. Text labels and
barcodes are automatically identified by an archival component detector and
are prepared for optical character recognition methods or natural language
processing algorithms.
Results: LeafMachine2 can extract trait data from at least 245 angiosperm
families and calculate pixel‐to‐metric conversion factors for 26 commonly used
ruler types.
Discussion: LeafMachine2 is a highly efficient tool for generating large quantities of
plant trait data, even from occluded or overlapping leaves, field images, and non‐
archival data sets. Our project, along with similar initiatives, has made significant
progress in removing the bottleneck in plant trait data acquisition from herbarium
specimens and shifted the focus toward the crucial task of data revision and quality
control.
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Two decades ago, molecular sequencing experienced the
beginning of what would be several revolutions in the
generation of molecular data that ushered in a paradigm
shift in biology. Unfortunately, quantitative and morpho-
logical data have not experienced an equivalent develop-
ment. Although the global network of herbaria and
natural history collections have been diligently digitizing

collections over this time, rapid means of extracting
morphological information from those images have yet to
be developed. Specimens that often sat dormant in
cabinets became easily accessible through data portals
like the Global Biodiversity Information Facility (GBIF;
https://www.gbif.org) and iDigBio (https://www.idigbio.
org). However, using specimen images from this veritable
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forest of nearly 400 million preserved plant specimens to
address a specific research question poses many chal-
lenges, including the extraction of quantitative traits and
phenology data (Heberling, 2022). While it is possible
to use existing manual or semi‐automated methods to
extract quantitative traits from specimen images, the
process tends to be labor intensive and does not
scale beyond a few dozen or a few hundred images. The
adoption of robust computer vision and machine learning
workflows promises to augment and expedite researchers'
ability to parse, measure, and review digital specimens at
any project scale.

We previously published LeafMachine as a first step
toward large‐scale analysis of herbarium specimens
(Weaver et al., 2020). LeafMachine used pixel‐wise
semantic segmentation (binning each pixel into a
predetermined class) to split the image into five classes
for further processing. This process was effective, but it
was also error‐prone and could not handle complex
specimens. We were able to locate objects of interest like
leaves, stems, text, fruit, and flowers, but leaves that
overlapped or were obstructed by mounting tape could
not be measured. When a leaf candidate was identified,
we used a support vector machine to analyze its shape
traits, which greatly limited the number of supported taxa
given the relatively low degree of diversity captured by
our small training data set. The original training data set
had only 425 images, thus generalizability was also poor.
LeafMachine struggled to process images containing
lobed leaves, poor lighting, and cluttered backgrounds.
We also lacked autonomous methods to determine
specimen‐specific pixel‐to‐metric conversion factors
(CF; please see Table 1 for a full list of definitions), so
the process was not fully autonomous. At the time, our
lack of sufficient high‐quality training data and under-
estimation of the degree of heterogeneity in preserved
plant data sets prevented us from achieving our goal of
extracting trait and phenology data from all publicly
available images.

Since the publication of the original LeafMachine
software, the barrier to entry into machine‐assisted biologi-
cal research has been significantly lowered as a result of the
prolific use of machine learning in nearly all aspects of
modern life (Martens, 2018; Safadi and Watson, 2023).
Thanks to the monumental efforts of open‐source collabo-
rations and the equally monumental funding funneled into
the field by corporate backers, there are now highly accurate
plug‐and‐play machine learning architectures for object
detection, instance segmentation, panoptic segmentation,
scene detection, facial recognition, and pose estimation (He
et al., 2017; Wu et al., 2019; Kirillov et al., 2020; Jocher
et al., 2022). In combination with transfer learning, these
prebuilt network architectures allow researchers to focus
their efforts on generating high‐quality training data sets
(Yang et al., 2020).

In this paper, we introduce LeafMachine2, a modular
suite of computer vision and machine learning algorithms

that enables efficient identification, location, and measure-
ment of vegetative, reproductive, and archival components
from digital plant data sets (Figure 1). For LeafMachine2,
we took full advantage of this new paradigm by heavily
utilizing Meta AI's (New York, New York, USA) PyTorch
implementation of Detectron2 (Mask R‐CNN) and the
Ultralytics (Los Angeles, California, USA) implementation
of YOLOv5, one of many YOLO variants (He et al., 2017;
Wu et al., 2019; Jocher et al., 2022). These frameworks
are extremely flexible, well‐supported, and surprisingly
approachable. As a result, many recent projects have also
coalesced around these two frameworks with great success,
including efforts to segment leaves (Younis et al., 2020; Triki
et al., 2020, 2021; Guo et al., 2021; Hussein et al., 2021b; Gu
et al., 2022; Ott and Lautenschlager, 2022), segment plant
tissue (Love et al., 2021; Goëau et al., 2022; Milleville
et al., 2023), isolate plant organs (Davis et al., 2020; Pearson
et al., 2020; Triki et al., 2020; Ott and Lautenschlager, 2022),
extract specimen label data (Milleville et al., 2023), isolate
diseased or damaged leaf tissue (Kaur et al., 2022; Mu
et al., 2022; Kavitha Lakshmi and Savarimuthu, 2023),
measure bird skeletons (Weeks et al., 2023), isolate
preserved snakes (Curlis et al., 2022), segment fossils
(Panigrahi et al., 2022), or remotely monitor phenology
(Mann et al., 2022). However, rather than relying on a single
machine learning architecture to extract trait and archival
data from specimens, we developed a modular framework of
seven different machine learning algorithms that work in
tandem to comprehensively process each image (Table 2,
Figure 1). We designed LeafMachine2 to emulate the way a
human might extract data from a plant specimen—by
breaking down a complex problem into multiple discrete
steps.

LeafMachine2 is one of several recently developed
tools that are aimed at extracting quantitative trait data
from herbarium images (for a summary of the current
state of machine learning in a herbarium setting see
Hussein et al., 2022). Most methods have been semi‐
autonomous, requiring some form of human intervention
to measure traits. For example, TraitEx requires users to
draw a border around leaves of interest to aid with
segmentation, like some ImageJ workflows, and can take
approximately 10 minutes to measure each leaf (Maloof
et al., 2013; Kommineni et al., 2021). These workflows
rely on computer vision algorithms, typically superpixel
or graph cut segmentation, to extract leaf masks (Zhang
et al., 2018; Alajas et al., 2021). Manual intervention is
required because these methods are “static” and cannot
self‐adjust to handle variable input (changes in location,
size, or color of leaves). As a result, static computer vision
methods limit utility in non‐ideal scenarios and cannot
segment an individual leaf from among a group of
overlapping leaves or produce usable results if the leaf is
bisected with mounting tape without additional post‐
processing (Kommineni et al., 2021).

To overcome these limitations, many groups turned
to machine learning algorithms, typically some kind of
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TABLE 1 Definitions of specialized and abbreviated terms.

Term Definition

Archival component
detector (ACD)

A YOLOv5x6 object detection network trained to place bounding boxes around text, labels, barcodes, rulers,
color correction cards, attached items, envelopes, maps, photos, and paper weights. LeafMachine2 uses
these predicted bounding boxes to crop components from the full specimen image for component‐specific
analyses.

COCO format A standardized JSON format for object instance segmentation annotations widely used in the computer
vision community, introduced by the COCO (Common Objects in Context) data set.

Conversion factor (CF) The image‐specific ratio of pixels per metric unit. For LeafMachine2, all conversion factors refer to the
number of pixels in an image that correspond to 1 cm.

Convolutional neural
network (CNN)

A type of deep learning model primarily used for image recognition and segmentation that uses convolutional
layers to filter inputs for useful information. Convolutional layers in a neural network are like a set of
digital filters that scan across an image to detect and learn patterns, like how human eyes perceive
different shapes and textures.

Detectron2 A popular open‐source software system developed by Fundamental AI Research (FAIR) that implements
state‐of‐the‐art object detection algorithms, including Mask R‐CNN.

Graphics processing unit (GPU) A specialized type of processor designed for handling the computations required for 3D graphics rendering
and machine learning tasks.

Instance segmentation, leaf
segmentation

A machine learning task that involves identifying and delineating each distinct object of interest appearing in
an image down to the pixel level. Each class can contain numerous instances.

JavaScript Object Notation (JSON) A lightweight data format (a dictionary) that is easy for humans to read and write and easy for machines to
parse and generate. The JSON file for a simple spreadsheet may look like:
{“Header 1”: “Value 1”, “Header 2”: “Value 2”}

Large language model (LLM) A class of machine learning models that are trained on a large corpus of text data, which can generate human‐
like text based on the input they receive. ChatGPT is arguably the best‐known implementation, but there
are many variants. This field of machine learning is developing rapidly.

Machine‐assisted labeling (MAL) The process of using automated or semi‐automated systems to apply labels to data to expedite the creation of
training data sets.

Mask R‐CNN A convolutional neural network–based model designed for object instance segmentation, which both detects
objects in an image and generates a segmentation mask for each instance.

Mean average precision (mAP) A common metric for measuring the accuracy of object detectors like Mask R‐CNN and YOLO. mAP
averages the precision scores at different recall levels, providing a single summary measure of a model's
performance across all threshold levels. mAP is an overall score of how well a system can identify and
correctly label objects in an image.

Plant component detector (PCD) A YOLOv5x6 object detection network trained to place bounding boxes around ideal leaves, partial leaves,
leaflets, individual fruits and seeds, groups of fruits and seeds, individual flowers, groups of flowers, buds,
roots, wood samples, and all plant material. LeafMachine2 uses these predicted bounding boxes to crop
components from the full specimen image for component‐specific analyses. Ideal leaves are sent to the
PLD and leaf segmentation networks.

PointRend A module that can be added to existing segmentation models to enhance the edge detection of CNNs,
generating more precise and detailed segmentation masks. LeafMachine2 uses PointRend to refine the
edges of masks produced by the Detectron2 Mask R‐CNN instance segmentation network to retain fine
details in a leaf outline, like leaf teeth.

Pseudo‐landmark Landmarks refer to biologically homologous points that consistently represent specific aspects of an
organism's morphology (Chitwood and Sinha, 2016; Klein and Svoboda, 2017). We designed
LeafMachine2 to look for visually similar prominent points, like tracing points along the midvein, for a
wide range of taxa. Therefore, we use the term pseudo‐landmarks because the homology of our detected
traits is unknown and varies by taxa, although we sometimes use the term “landmark” interchangeably in
the text.

Pseudo‐landmarks detector (PLD) A YOLOv5x6 object detection network trained to place fixed dimension bounding boxes at points that
correspond to pseudo‐landmark locations including apex and base angles, midvein length, lamina length
and width, lobe locations, and petiole length.

Ruler conversion The process of determining the number of pixels between unit markers on a scale bar or ruler, producing a
conversion factor that can be applied to pixel‐based measurements to yield a metric result.

(Continues)
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convolutional neural network (CNN), which can categorize
individual pixels as members of discrete classes (Ott
et al., 2020; Weaver et al., 2020; Younis et al., 2020; Triki
et al., 2020, 2021; Goëau et al., 2020, 2022; Guo et al., 2021;
Love et al., 2021; Hussein et al., 2021b; Gu et al., 2022; Ott
and Lautenschlager, 2022; Milleville et al., 2023). For the
task of isolating and measuring individual leaves, semantic
segmentation algorithms still lack the power to resolve
complex situations (e.g., overlapping leaves) because they
produce one mask that contains all leaf pixels and require
postprocessing to obtain usable results (Weaver et al., 2020;
Hussein et al., 2021b, 2022). Instance segmentation algo-
rithms improve on this as they can directly isolate a single
leaf from nearby leaves (Guo et al., 2021; Triki et al., 2021).

While full‐image instance segmentation is promising, it
requires substantial effort to create a suitable training data
set because every leaf in a training image must be manually
segmented. Some groups have implemented human‐in‐the‐
loop workflows to manage this task, iteratively winnowing
away partial leaves until only training masks for ideal leaves
remain (Mora‐Fallas et al., 2019).

LeafMachine2 offers an alternative approach by separat-
ing the task of identifying ideal and partial leaves from
the task of segmenting leaves. We use two YOLOv5
networks to first isolate (place bounding boxes around)
plant and archival components and then use an array
of component‐specific processing tools, including Mask
R‐CNN instance segmentation, to generate measurements

TABLE 1 (Continued)

Term Definition

Semantic segmentation A machine learning task that involves classifying each pixel in an image into a specific category or class.

YOLOv5, YOLOv5x6 The “You Only Look Once” (YOLO) real‐time object detection network. The YOLOv5x6 variant offers a
larger model size for increased performance for a larger computational cost.

F IGURE 1 LeafMachine2 workflow. A batch of images is processed by the plant component detector (PCD) (2) and archival component detector
(ACD) (6) networks. (2) Bounding boxes identifying predicted plant components. Each bounding box identifies a unique component, directing it to the
appropriate processing pipeline. (3) The PCD produces cropped images of each plant component. (4) Individual cropped leaves undergo instance
segmentation by the Detectron2 network, producing leaf outline masks for ideal leaves (green) and optionally partial leaves (blue). The first set of images
shows individual leaves, while the second set shows the compilation of the individual leaves back onto the full specimen image. (5) Cropped ideal leaves are
processed by the pseudo‐landmarks detector (PLD) and individual landmarks are measured. Please see Figure 2 for a description of each landmark
annotation. (6) Bounding boxes identifying predicted archival components. (7) Cropped archival components from the ACD are processed and cleaned into
binary images for downstream applications, like optical character recognition (OCR) or interpretation by large language models (LLMs). (8) The cropped
ruler image is processed by our scanline or template matching algorithms to identify unit markers. Located tick marks are shown as colored dots. Green and
cyan lines indicate the converted 1‐ and 5‐cm distances for quality control purposes. For more information about pixel‐to‐metric conversion, please see
Appendices S2 and S3. (9) The final overlay image shows all machine‐derived masks, measurements, and identified components. All the visuals in this figure
are sourced directly from the output files produced by LeafMachine2.
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(He et al., 2017; Wu et al., 2019; Jocher et al., 2022). Our
modular approach brings several primary benefits that
elevate the utility of LeafMachine2, sidestepping several
hurdles faced by previous attempts at automated plant trait
extraction. First, each network is specialized for a specific
task, so fine‐tuning performance for edge cases or expand-
ing support to more taxa or specimen preparation styles is
more manageable because new training data can remain
focused on a discrete task. Second, leaf segmentation and
landmark detection algorithms only run on individual ideal
leaf candidates, significantly lowering computational
requirements while producing exceptional leaf masks.
Third, manually generating ground truth segmentation
training data is streamlined because humans labeling the
images only need to focus on one leaf at a time. This
approach also promotes diversity in leaf sampling, as we can
subset leaves from each specimen for manual annotation,
thus expanding the number and variety of taxa and
specimens we can label given the constraints associated
with time and funds dedicated to manual annotation.

LeafMachine2 is a broadly useful tool that can
enhance a range of research areas, from botany to ecology
to agriculture. With LeafMachine2, we support at least
six different use cases. (1) LeafMachine2 can measure
quantitative leaf traits by identifying and isolating
(cropping) ideal and partial leaf candidates. Cropped leaf
images are sent to our leaf segmentation algorithm to
generate leaf masks, which are used to measure shape
properties, including elliptic Fourier descriptors, for
every leaf (Neto et al., 2006). Leaf candidates are also
processed with our landmark detection algorithm to

identify and validate pseudo‐landmarks including apex
and base angles, midvein length, lamina length and width,
lobe locations, and petiole length. (2) LeafMachine2 can
detect the presence or absence of plant organs by isolating
individual fruits, groups of fruits, individual flowers,
groups of flowers, roots, wood samples, and buds, scoring
the presence or absence of these traits for most flowering
taxa. (3) We currently support the identification of 37
ruler types and can determine specimen‐specific CFs for
26 ruler types, with more support in future iterations. (4)
LeafMachine2 uses machine learning algorithms to isolate
and binarize (clean) text contained within the specimen
image, increasing the efficiency and effectiveness of
optical character recognition (OCR) and large language
model interpretation techniques. (5) By processing a
batch of images, LeafMachine2 can screen for the
presence of several archival components including
attached items and envelopes that may contain tissue or
seeds, maps printed alongside specimen labels, photo-
graphs attached to specimen sheets, or even paper-
weights. Fruits and seeds can be identified even if
contained by plastic bags. (6) We have also found that
LeafMachine2 can be used to generate training data for
new machine learning networks because it can be
configured to save and record vast amounts of interme-
diate metadata. We find metadata extremely useful for
training other machine learning networks to perform
novel tasks or for diagnosing unexpected results.
For example, all leaf masks can be exported in the
Common Objects in Context (COCO; Lin et al., 2014)
format for training instance segmentation algorithms

TABLE 2 Machine learning components. Data sets in parentheses indicate the parent data set, “L” data sets are cropped from full specimen images. For
a more detailed description of each machine learning component, see Appendix S1.

Component Training data sets
ML
architecture ML type

No. of
specimens

No. of
annotations

Plant component
detector

D‐5GENUS, D‐TARGET YOLOv5x6 Object detection 3001 321,406

Archival
component
detector

All D sets YOLOv5x6 Object detection 5573 101,374

Ruler classifier R‐CLASS ResNet18 Object classifier 5573 12,242

Ruler
segmentation

R‐DOC DocEnTr small
8×8 patch

Semantic
segmentation

778 2852

Ruler binary
classifier

R‐BINARY ResNet18 Object classifier 778 8622

Leaf segmentation L‐SEG (D‐5GENUS,
D‐TARGET)

Detectron2 +
PointRend

Instance
segmentation

1183 15,606

Landmarks
identifier

L‐LAND (D‐TARGET) YOLOv5x6
Object
detection

Object detection 1381 32,664

Label
segmentation

R‐DOC DocEnTr small
8×8 patch

Semantic
segmentation

778 2852

TOTAL 5573 494,766
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(Figure 1, section 4). LeafMachine2 is a multifaceted tool
with the ability to transform botanical research by
streamlining data extraction, organ detection, image
processing, and even aiding in the development of new
machine learning algorithms.

METHODS

In the following sections, we outline the LeafMachine2
workflow and our training data sets, followed by a
description of each of the seven machine learning compo-
nents. Finally, we test LeafMachine2's performance across
angiosperms and end with a discussion of outstanding
challenges.

LeafMachine2 overview

LeafMachine2 v.2.1 was developed with Python 3.8.4 and
requires PyTorch 1.11 (Paszke et al., 2019) and CUDA 11.3
(Nvidia, Santa Clara, California, USA). We have tested and
validated performance on both Windows 10 (Microsoft,
Redmond, California, USA) and Ubuntu 20.04 (https://
ubuntu.com/) workstations with at least one GPU. We
have not tested and do not recommend running LeafMa-
chine2 without a discrete Nvidia GPU. Full installation
instructions and source code can be found at https://
github.com/Gene-Weaver/LeafMachine2 (see Data Availa-
bility Statement). Currently, LeafMachine2 is run from the
command line, but users can adjust approximately 100
different configurable parameters with a configuration file.
LeafMachine2 is designed to process locally stored images
and supports downloading images using Darwin Core
Archive (DWC) occurrence and image files. Users can
query an online data portal like GBIF, download the
corresponding DWC files, and point LeafMachine2 to
these files. LeafMachine2 will begin downloading images
(parallelized for increased speed) and immediately begin
processing the images. With default settings (Appendix S1;
see Supporting Information with this article), LeafMa-
chine2 can process 150–200 images per hour, on average,
using a consumer‐grade GPU with 8 GB of VRAM and at
least 8 CPU processing cores, depending on the number of
leaves in each image and the input image resolution. The
plant component detector (PCD) and archival component
detector (ACD) process all images in the project, and the
project is then split into batches based on how much
system RAM is available. Batches can be parallelized across
up to 8 CPU cores for improved performance. For quality
control purposes, a summary image showing all identified
components and measured traits is produced for every
specimen and saved as a page in a PDF (Figure 1, section
9). For each run, LeafMachine2 saves a copy of the
configuration file and logs for reference or debugging
along with a multitude of configurable output files. Data

are exported as a CSV file and can be merged with the
parent DWC files.

Specimen training data sets

Training data set development was a major focus of this
project. To ensure generalizability, we prioritized taxonomic
diversity, institutional diversity, and diverse specimen
quality (Table 3). We queried GBIF and downloaded the
DWC records for the 7,204,118 preserved Magnoliopsida
specimens that had both images and geospatial coordinates
(Appendix 1). We sampled these records to create four
specimen image data sets (Table 3). To bolster institutional
diversity, we also obtained DWC files for 195 herbaria
(some were duplicated in GBIF) and included up to 10
randomly sampled images from each herbarium in the data
set D‐HERB. We chose 51 species, based on their apparent
morphological diversity and frequent representation in
GBIF, to represent our D‐TARGET data set, which includes
herbaceous and woody taxa. We randomly sampled 50
images per species to account for intraspecific diversity. For
Lecythidaceae, we split the 50 images between two species.
The D‐5GENUS data set contains up to five randomly
chosen species per genus of North American woody
perennials (165 genera), one image per species, which adds
morphological breadth to our training data set. Overall, our
specimen data sets include 5648 specimens representing
2663 species from 288 institutions.

Data set annotation

Manually annotating training data is an arduous and time‐
consuming endeavor. Our team of seven labelers has logged
more than 2000 hours to generate the 494,766 annotations
used to train LeafMachine2. To our knowledge, this is the
most comprehensive manually annotated training data set
for herbarium specimen analysis to date (Hussein
et al., 2022). We labeled images using an academic license
for the Labelbox platform (https://labelbox.com), which
enabled our labeling team to annotate images remotely,
programmatically manage large data sets with the Labelbox
API, employ machine‐assisted labeling (MAL), and review
labels. For efficiency, we employed MAL whenever possible.
This involved manually labeling enough images to train a
rudimentary version of a given machine learning network
and then processing another batch of images using the
machine learning network to generate annotations that were
uploaded into Labelbox for revision. For plant components,
this roughly tripled productivity; 15 minutes per specimen
was reduced to five minutes. For archival components,
however, we saw a seven‐fold increase in productivity
because the archival labels required substantially less
editing. We implemented a comparable method for both
segmentation and landmark labels. We utilized the built‐in
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segmentation tools of Labelbox to create segmentation
masks, which we further refined to produce high‐quality
training masks. With this labeling workflow, it is relatively
simple to add support for new classes and export the
annotations to retrain a custom version of our component
detectors.

Labeling procedure

Our staff labelers were trained to identify nine archival
components and 11 plant organs (Table 4). Archival
components were mostly uncontroversial, due to the
relative homogeneity of class instances when compared to
plant components. We bounded rulers tightly, minimizing
white space and focusing on unit markers. For the label
class, we annotated all text found within the image, except
for text within a barcode bounding box and ruler unit labels.
If we encountered long text blocks, we split the text section
between multiple bounding boxes based on the principle of
minimizing white space. We differentiated between envel-
opes and attached items based on their visual appearance,
even though both classes serve the same utility (i.e.,
containing loose tissue). Extraneous objects were either
labeled as weights or ignored. The diverse range of plant
organs, combined with the broad taxonomic scope of our
training data set, posed significant challenges. Several plant
organ instances defied straightforward classification, pre-
senting us with difficult decisions. For example, some

specimens are collected primarily for their floral or fruit
characteristics and often display mixed stages of reproduc-
tive development. This necessitated subjective decisions
regarding the classification of intermediate developmental
stages, which is likely the root cause for much of the
uncertainty in the final PCD.

Component detection

Archival component detector

Specimen vouchers typically contain additional archival
components in addition to plant material including
barcodes, labels, text, and rulers. Data contained within
barcodes and labels may already be present in the
specimen's DWC record, but the global backlog of millions
of non‐databased specimens leaves room for computational
assistance (Davis, 2022; Hardisty et al., 2022; Heberling,
2022). One approach is to isolate archival components from
the full image. Working with smaller images improves
the performance of downstream processes and improves the
efficiency of label transcription by humans, or soon by large
language models (LLM). Isolating rulers also enables image‐
specific CF determination. We use the ACD for this task,
which is a YOLOv5x6 object detector that is modified to
support nine classes and our bounding box dimensions
(Jocher et al., 2022). To maintain broad generalizability, our
training data set was drawn from 288 herbaria and included

TABLE 3 Training data sets.

Resolutionc

Data set namea,b
No. of
images

No. of
species

No. of
herbaria

Train/
validation/test Minimum Average Maximum

D‐HERB 1755 1287 277 80/10/10 573 × 800 (0.5) 3159 × 4637 (14.6) 5000 × 7500 (37.5)

D‐3FAM 831 831 65 80/10/10 2927 × 5000 (14.6) 3924 × 5669 (22.2) 5000 × 7500 (37.5)

D‐5GENUS 562 562 47 80/10/10 2960 × 5000 (14.8) 4024 × 5803 (23.4) 5000 × 7500 (37.5)

D‐TARGET 2500 51 75 80/10/10 2610 × 3781 (9.9) 3786 × 5644 (21.4) 5232 × 7500 (39.2)

Total unique 5648 2663 288

R‐CLASS 12,242 12,242 277 80/20/0 19 × 127 (0.002) 170 × 1337 (0.23) 924 × 7360 (6.8)

R‐BINARY 8622 8622 277 80/20/0 19 × 127 (0.002) 170 × 1337 (0.23) 924 × 7360 (6.8)

R‐DOC 2852 133,801 277 80/10/10 19 × 127 (0.002) 170 × 1337 (0.23) 924 × 7360 (6.8)

L‐SEG 5105 298 71 80/10/10 13 × 27 (0.001) 499 × 768 (0.38) 3980 × 4848 (19.3)

L‐LANDd 5761 (2132) 202 (15) 42 80/20/0 16 × 31 (0.001) 525 × 808 (0.42) 3553 × 4749 (16.9)

a“D” data sets are full herbarium specimen images. “R” data sets are rulers cropped from full herbarium specimen images. “L” data sets are ideal leaves cropped from full
herbarium specimen images.
bD‐HERB = data sets containing institutional diversity; D‐3FAM = up to three random species from 341 families, one image each; D‐5GENUS = one random image per species, up
to five random species per genus, for 165 genera of North American woody perennials; D‐TARGET = select group of 51 species of herbaceous and woody angiosperm species, 50
images each; R‐CLASS = cropped ruler images from data set D‐HERB; R‐DOC = binary image subset of data set R‐CLASS, up to 50 images per ruler class; R‐BINARY = same
images as data set R‐DOC but prepared for two‐class prediction (i.e., pass or fail); L‐SEG = data set of segmented leaf, petiole, and leaf hole masks; L‐LAND = subset of cropped
ideal leaves from data set D‐TARGET for landmark detection.
cImage resolutions are reported in pixel dimensions with parentheses around the approximate megapixels.
dNumbers in parentheses for data set L‐LAND report counts excluding the 188 Icacinaceae species that are part of the landmarking data set.
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some non‐standard specimen images like book pages,
cleared leaves, and field images (Table 3). We trained the
ACD in three stages, following MAL procedures, for a total
training duration of 600 epochs (~300 h) on an Ubuntu
system with 128 GB of system memory and two Nvidia
Quadro P6000s with a total of 48 GB of VRAM. All
LeafMachine2 networks were trained on this machine. We
achieved a final mean average precision (mAP) of 94.7%
and recall of 90.3%. For more detailed training information,
see Appendix S1.

Plant component detector

To locate plant components, we employ another net-
work using the same architecture as the ACD but trained
to isolate 11 common plant organs (Table 4). The PCD
was trained to bin reproductive structures into four
categories: “fruit” (e.g., acorn, hickory nut), “fruits”
(e.g., a fruiting cluster of grapes), “flower” (a single
flower), and “flowers” (an inflorescence). Where possi-
ble, we annotated individual flowers or fruits within a
larger fruiting cluster or inflorescence. In LeafMachine2
v.2.1, we treat leaflets as simple leaves. Our PCD was
trained to identify and isolate compound leaves (pin-
nate, bipinnate, and palmate) and individual leaflets, but
we found that the PCD would frequently classify simple
leaves as leaflets. In future iterations, it may be possible
to include several PCD networks, each trained to classify
one leaf type.

The PCD was trained in two stages, first with half of the
images from data set D‐TARGET, then with data sets
D‐TARGET plus D‐5GENUS. After training the PCD for
450 epochs, we achieved a mAP of 45.2% and a recall of
40%. While these metrics are substantially lower than the
ACD, the data set is significantly more heterogeneous and
both mAP and recall will improve as we add more
specimens to our training data sets. Tracking performance
metrics is helpful for selecting the best‐trained network,
but we are most interested in generalizability and how
consistently the PCD performs as part of the LeafMachine2
framework for taxa not represented in the training data sets.
The ACD and PCD networks are responsible for feeding
cropped images to downstream processes. If the PCD fails
to identify a leaf, then that leaf will not be segmented or
processed for pseudo‐landmarks.

TABLE 4 Annotation counts. Total number of ground truth
annotations per class sorted by machine learning component.

Type Annotation Count

Plant components Ideal leaf 41,748

Partial leaf 90,607

Leaflet 70,665

Seed/fruit one 24,573

Seed/fruit many 1356

Flower one 56,601

Flower many 6388

Bud 22,233

Specimen 6299

Roots 895

Wood 41

Total 321,406

Archival components Label 59,880

Ruler 14,045

Barcode 13,399

Color card 8628

Envelope 3430

Attached item 943

Photo 70

Weights 680

Map 299

Total 101,374

Landmarks Lamina tip 3247

Lamina base 3325

Petiole tip 2924

Lobe tip 7507

Width 3323

Midvein trace 3322

Petiole trace 2771

Apex angle 3089

Base angle 3156

Total 32,664

Segment Lamina 9709

Petiole 1710

Hole 4187

Total 15,606

Ruler R‐CLASS 12,242

R‐BINARY 8622

TABLE 4 (Continued)

Type Annotation Count

R‐DOC 2852

Total 23,716

Total annotations 494,766
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Processing rulers and labels

Obtaining an accurate CF is crucial for utilizing trait
measurements obtained from digital images. The three most
common methods for obtaining CFs are (1) using a tool like
ImageJ or TraitEx to manually place two points in an
image to capture a known distance (Maloof et al., 2013;
Kommineni et al., 2021), (2) including a high‐contrast
object of known dimensions into images and then
extracting its pixel dimensions in post‐processing (Easlon
and Bloom, 2014), or (3) correlating a known metric
distance with image resolution given rigid imaging proce-
dures (Weeks et al., 2023). These methods are either labor
intensive or require a uniform imaging environment,
which is a serious impediment when processing herbarium
specimens at scale. Few dynamic methods that rely on
machine learning and computer vision techniques have
been developed to automate CF determination. One study
used an object detection algorithm to locate the number “2”
and the number “3” on rulers to compute CFs, but was
limited to only two ruler types; the authors advocated for
an approach that located tick marks directly (Karnani
et al., 2022). With LeafMachine2, we required a more
generalizable procedure for obtaining image‐specific CFs.
While developing this project, we observed significant
discrepancies in ruler quality between herbaria. Some
herbaria place high‐quality, high‐contrast, machine‐
readable rulers in their images, while others used “rulers
of convenience,” or even toys (Appendix S2: “Interesting
rulers and failed conversions”). Moreover, we also observed
faded, bent, damaged, occluded, and poorly imaged rulers
that make it difficult, if not impossible, to autonomously
obtain CFs. We encourage herbarium curators to scrutinize
our CF methods and results and hope that future dig-
itization efforts make use of high‐contrast machine‐readable
rulers (Appendix S2).

To meet this need, we developed a system of three
machine‐learning networks to preprocess rulers, increasing
the performance and precision of calculated CFs. The
previously described ACD first places a bounding box
around a ruler's unit markers, minimizing unwanted text or
noise; rulers are then sent to an image classifier to predict
the ruler type so that unit markers can be interpreted
appropriately. To obtain a CF, we first convert the ruler into
a binary image where unit markers are white and everything
else is black. We binarize each ruler in three different
ways: threshold sweep, segmentation (DocEnTr; Souibgui
et al., 2022), and skeletonization. Finally, we use another
machine learning network, an image classifier, to determine
whether the binarization was successful. The stack of three
binary images is processed by our scanline or template
matching algorithms to identify and cross‐validate distances
between unit markers. We compute the mean CF from all
identified unit markers (typically hundreds of points) and
overlay 1‐cm, 5‐cm, and 1‐inch reference lines in a
summary image for quality control. For a more detailed
description of this procedure, please refer to Appendix S3.

Leaf segmentation

We designed LeafMachine2 such that ideal leaves and,
optionally, partial leaves (Figure 1, blue masked leaves)
cropped from the full image by the PCD undergo instance
segmentation individually. This works similarly to the way
that one can blur the background in a Zoom call, but in this
case, our goal is to separate the foreground (leaf) from
everything else. To obtain training images, we processed
data sets D‐5GENUS and D‐TARGET with the PCD and
randomly sampled 5105 ideal leaves from among more than
15,000 leaves identified by the PCD. Our labelers used the
Labelbox auto‐segment tool as a starting point and then
manually refined the ground truth masks, including
segmenting each leaf's petiole and any internal holes.
Critically, if an extraneous object intruded inside the leaf
outline, we included the obstruction in the mask with the
goal of teaching the network how to properly segment tricky
leaves. We used the Labelbox API to export the annotations
and converted them to the COCO format in preparation for
training (https://cocodataset.org). After training a modified
Detectron2 implementation of Mask R‐CNN, enhanced
with PointRend for greater mask precision, for 100,000
iterations, the network achieved a Mask R‐CNN training
accuracy of 99.1% and a PointRend training accuracy of
95.7% (He et al., 2017; Wu et al., 2019; Kirillov et al., 2020).
For more training information, see Appendix S1.

Pseudo‐landmark detection

Segmentation masks are useful for measuring traits that are
derived from a leaf's outline but lack the information
necessary to measure many other distinguishing structural
traits like venation, angles, or interior distances; they are
also susceptible to errors when measuring lamina length
and width (Ellis et al., 2009). In Figure 2, Leaves E, G, and R
demonstrate that some trilobed and deltoid leaves confound
minimal bounding box algorithms, resulting in incorrect
laminar dimensions for length and width. Similar problems
occur with curved leaves. In Figure 2, Leaf T shows that
tracing the midvein (black line) provides a more refined
measurement of lamina length. To bridge this performance
gap, we developed a pseudo‐landmarks detector (PLD)
using the same YOLOv5x6 machine learning architecture as
described for both the ACD and PCD. As a starting point,
we identified a set of pseudo‐landmarks shared by most
broadleaf plants that include the lamina tip and base, lamina
width, apex and base angles, midvein length, petiole length,
and lobe locations. Our labeling team annotated this
landmark set on 2132 cropped leaf images representing 15
species selected from data set D‐TARGET, along with 3629
images representing 188 Icacinaceae species, totaling 5761
images and 202 species. We converted these points to fixed
dimension bounding boxes, ranging in size from 9–27 pixels
depending on image resolution, and trained the PLD for 200
epochs using the same settings as with our PCD.
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F IGURE 2 (See caption on next page).
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RESULTS

Testing ruler conversion performance

Using default LeafMachine2 settings, we processed all
10,619 cropped ruler images in the R‐CLASS data set that
were used to train the ruler classifier and visually
assessed the ruler summary images (Figure 1, section 8)
to determine the proportion of correct CFs by ruler class.
Correct CFs were determined for at least 80% of ruler
occurrences for seven ruler classes and were correct for
at least 50% of ruler occurrences for 16 ruler classes
(Figure 3A, colored boxes). Overall, the best‐performing
rulers were high‐contrast metric rulers.

Ruler conversion validation

For a more detailed test, we processed data set D‐3FAM,
which contained 20 ruler types (represented by colored dots
in Figure 3B), using default LeafMachine2 settings to test
the performance of our CF determination algorithms with a
simulated real‐world data set. These rulers were part of the
ruler classifier training data set but were “unseen” to our
template matching and scanline algorithms. To serve as a
baseline, our image labeling team manually placed points on
every unit marker for each unit type present in each of the
1274 rulers in data set D‐3FAM. This is more rigorous than
typical manual methods where only two points are placed at
the beginning and end of a known distance (Weaver
et al., 2020; Kommineni et al., 2021). For each manually
annotated ruler, we calculated the standard deviation of the
points used to determine the 1‐cm CF, and the resulting
average residual standard deviation (avgRSD) of 0.8%
served as the baseline for acceptable performance.
Figure 3B shows the results of a t‐test between the manually
labeled and autonomously generated CFs. We removed
known unsupported rulers prior to the t‐test. If an
autonomous CF had a pooled standard deviation greater
than 10%, then the ruler class was deemed to be
unsupported, leaving 708 of the original 1275 rulers. The
t‐statistic was 2.784 and the P value was 0.006, clearly
demonstrating that there is room for improvement, as our
autonomous methods generated significantly different CFs
compared to the manual method. However, there are a few
notable takeaways. First, 58.8% of the autonomous CFs fell
within the bounds of the avgRSD, with most belonging to

Rulers 2 and 7. Ruler 2 is used by the New York Botanical
Garden (NYBG), and Ruler 7 was developed for the Global
Plants Initiative and is widely used by many herbaria.
Second, of the best‐performing rulers (Figure 3B, indices
0–500), most of the outlier values correspond to poor‐
quality images and display either low resolution, bad
lighting, or damaged rulers. Poor image quality translates
to inconsistency. Of the best‐performing autonomously
determined CFs (Figure 3B, indices 0–400), the pooled
standard deviation for each ruler is lower than the
corresponding manually determined CF. With algorithmic
refinement, this consistency can likely be extended to more
ruler types. Third, identifying unit markers directly (e.g.,
using a modified version of our landmark detection
algorithm) would likely improve consistency, particularly
for poor‐quality images, as this would bypass the need to
create binary ruler images, which were a common failure
point.

Qualitative performance of leaf segmentation

In Figure 2, leaves A–Q, we demonstrate LeafMachine2's
segmentation ability in difficult circumstances; all leaves in
Figure 2 are from data set D‐3FAM and were not part of the
training data set. These leaves were selected as exemplars,
but more than 8000 ideal leaf segmentations extracted from
the D‐3FAM test data sets can be viewed at https://zenodo.
org/record/7764379 (see Data Availability Statement). Ex-
ceptional masks are produced for a wide variety of leaf
shapes, even for lobed and toothed taxa. LeafMachine2
successfully ignores mounting tape and returns complete
leaf masks, bypassing the need for shape matching or
connected component analyses as is required by other
methods (Hussein et al., 2021a). Accurate segmentation of
individual leaves is possible from a group of leaves, even
when obstructions are present (Figure 2, leaves E, K–Q).
Green leaf masks indicate an ideal leaf candidate, as
predicted by the PCD, while blue masks indicate partial
leaves. As seen in Figure 2, partial leaves can also produce
usable leaf masks, which is another benefit of our modular
approach of decoupling leaf identification from leaf
segmentation. Users can take advantage of this depending
on the project requirements. If the data set is large and it is
preferable to minimize the data curation workload, then
users can restrict LeafMachine2's PCD by using a high
confidence threshold (90%) and opting to only segment

F IGURE 2 Segmentation and pseudo‐landmark examples. All leaves are from the D‐3FAM data set and were not part of the segmentation of
landmarking data sets. Ideal leaves, as predicted by the PCD, are green masks while partial leaves are blue masks. (Leaves A–Q) A sample of leaves
demonstrating segmentation performance when leaves have complex outlines; these are obstructed by mounting tape, overlapping leaves, or a combination
of obstructions, notably leaves L, P, and Q. (Leaves R–V) A sample of leaves showing pseudo‐landmark performance. For landmark overlay images, the red
line is lamina width, the cyan line traces the petiole, the solid black line traces the midvein, the dotted white line is the line of best fit for the points that
comprise the midvein, the solid white line is the base to tip length, blue bullseye points are lobe tips, pink angles are less than 180 degrees, orange angles are
reflex angles greater than 180 degrees, the green dot is the lamina tip, and the solitary red dot is the lamina base. Green bounding boxes are the minimal
rotated bounding box. Petioles are either pink or orange masks, and holes are purple. Leaf V shows bounding boxes around fruit and buds.
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ideal leaves. This will yield comparatively fewer leaves, but
these will be of high quality and high confidence; therefore,
this option is best suited for large‐scale projects. If the
priority is maximizing leaf extractions, then both ideal and
partial leaves can be segmented and measured at a lower
PCD confidence threshold (10%); this option is also useful
for data sets that contain damaged or incomplete leaves
that would otherwise be overlooked. Figure 4 illustrates
changing the PCD confidence threshold; higher confidence
values return few leaves, but the quality of mask segmenta-
tion remains unchanged in the leaves that are identified at

all confidence levels, which is a benefit over traditional
Mask R‐CNN implementation where the confidence of a
leaf identification is linked to the quality of the generated
mask. This is true not only for herbarium specimens, but
also for field images processed with FieldPrism (Weaver and
Smith, 2023), the Leafsnap data set (Kumar et al., 2012), and
even iNaturalist‐style photographs (Figure 4). Given these
promising results, we will continue to explore use‐cases
beyond standard herbarium vouchers.

For each segmented leaf, we automatically calculate
standard shape metrics including area, perimeter, convex hull,

F IGURE 3 Ruler conversion performance. (A) The 37 ruler types that our ruler classifier was trained to recognize, arranged from best performing to
worst (left to right). Rulers 30–37 are block‐based rulers that can be identified but not converted; however, they are well‐suited for our template‐matching
procedures and will be supported in future iterations. The colored boxes below each ruler correspond to the conversion factor (CF) determination success
rate within the data set R‐CLASS. The numerator is the proportion visually assessed to be a correct conversion based on the quality control output (see
Appendix S2, images 1–38), and the denominator is the total number of rulers of that class present in the data set R‐CLASS. Rulers with a zero can be
identified by the ruler classifier but were not present in R‐CLASS. Colored shape identifiers are placed above each ruler image for the ruler classes that are
present in both data sets R‐CLASS and D‐3FAM. (B) Results of a t‐test between manually obtained CFs and autonomously generated CFs for 708 rulers in
the test data set D‐3FAM. The y‐value of each point is the percent difference from the manually converted CF (left y‐axis). Points are sorted by autonomous
CF pooled standard deviation, with lower values to the left and higher values to the right (right y‐axis). Inconsistently converted rulers have higher index
values, while consistent rulers have lower index values. Accurate autonomous conversions fall between the average residual standard deviation (avgRSD)
dotted lines. The two recommended ruler types (rulers 2 and 7) are denoted by green star‐shaped markers.
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F IGURE 4 (See caption on next page).
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length and width (by fitting a rotated bounding box based on
the diameter of a minimum bounding circle), centroid,
convexity, concavity, circularity, and aspect ratio. Users can
optionally set LeafMachine2 to calculate elliptic Fourier
descriptors for each leaf outline, which are plotted as a dark
purple line in all summary images (Figure 1, sections 5 and 9).
LeafMachine2 can also calculate measurements for segmented
petioles and can attempt to locate holes in the lamina,
although the latter has shown inconsistent results. Meineke
et al. (2020) demonstrate a more nuanced approach for
identifying leaf holes and damage that could be incorporated
into LeafMachine2 in future iterations.

Qualitative performance of pseudo‐landmark
detection

After training for 200 epochs, our PLD achieved a final
mAP of 20.9% and a recall of 29.6%. These values are
underwhelming but were expected. Our labelers may have
only placed 20 points along a midvein, and the PLD is
meant to replicate those exact 20 points. However, the pixel
information that describes the midvein between each
ground truth point appears nearly indistinguishable from
the pixel information of actual ground truth points. If the
PLD predicts the location of a midvein point 10 pixels to the
left of the ground truth point, it still lies on the midvein.
Therefore, while the PLD may suggest reduced certainty, we
found the results to be quite usable (Figure 5A, middle
column). Unfortunately, with some landmarks (e.g., lamina
width), we observed such low confidence due to this
behavior that the PLD was overly conservative and often
refrained from making a prediction (Figure 1, section 5,
bottom image).

Testing LeafMachine2 across angiosperms

To stress test LeafMachine2, we assembled a test data set
(D‐3FAM) consisting of one image for up to three species
per angiosperm family. Both the species and images were
randomly chosen. We did not reject any images as we
wanted to see how well LeafMachine2 performed on a set of
uncurated images. D‐3FAM contained 831 images from 65
herbaria representing 831 species from 341 purported
angiosperm families; 51 of the D‐3FAM families were also
present in the training data set, although none of the images
were shared between data sets. We did not clean or curate
taxonomy. With this test data set, we wanted to gain deeper

insight into LeafMachine2's performance on unseen taxa
(not in the training data set), assess its real‐world utility,
and uncover common pitfalls as we continue to develop
algorithms and expand training data sets. We used default
settings to process D‐3FAM; notably, only ideal leaves with
a 50% PCD confidence threshold were segmented and
landmarked (Figure 4). Below, we describe our qualitative
assessment of LeafMachine2's ability to segment leaves,
identify pseudo‐landmarks, and identify the presence or
absence of organs. Summary images for this run can be
viewed at the previously mentioned Zenodo repository (see
Data Availability Statement).

Scoring phenology

Reproductive structures among flowering plants are highly
heterogeneous, and our training data set does not
adequately capture their immense diversity. Even so, we
found that LeafMachine2 performed beyond our expecta-
tions and managed to accurately score the presence or
absence (although not necessarily every instance) of all plant
organs present in the image for 245 of the 341 families in
D‐3FAM (Figure 5A, green boxes). Lowering the PCD
confidence to 10% detects still more occurrences of non‐
laminar organs at the cost of class accuracy. The PCD can
also successfully isolate small structures like vegetative and
reproductive buds, which has been challenging for other
methods (Triki et al., 2020).

Identifying and segmenting leaves

We further scrutinized a random sample of 100 images
from D‐3FAM by counting instances of failure and success.
Within this sample, we counted 953 true‐positive leaf
masks, of which 118 (12.4%) were incomplete or spilled
beyond the actual leaf edge. It is important to note that true‐
positive leaf masks first depend on the PCD to isolate the
leaf and then the segmentation algorithm to accurately
extract the leaf outline. We also observed 54 instances
(5.6%) where LeafMachine2 segmented an object that was
not a leaf, typically a flower or miscellaneous vegetative
material. This is in line with our training metrics, which
showed a 6% error rate for confusing leaves with non‐leaf
objects (Appendix S1). LeafMachine2's PCD failed to
identify 43 leaves that met our definition of an ideal leaf
and failed to fully capture the entire outline of six leaves
(0.6%), leading to an incomplete segmentation. Of the 953

F IGURE 4 Leaf detection with archival and non‐archival data sets, with varying PCD confidence. The left column is the original image. Ordered by
decreasing levels of PCD confidence from left to right are full image masks of ideal leaves (or leaflets). (A) Herbarium voucher of Quercus coccinea
(Fagaceae). (B) Herbarium voucher of Pilostyles blanchetii (Apodanthaceae). (C) Herbarium voucher of Brookea tomentosa (Plantaginaceae). (D)
FieldPrism‐processed field image of Quercus havardii (Fagaceae) (courtesy of the Morton Arboretum). (E) Leafscan image of Koelreuteria paniculata
(Sapindaceae). (F) iNaturalist‐style photograph of Nyssa sylvatica (Nyssaceae) (photo credit William Weaver).
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F IGURE 5 Qualitative performance of LeafMachine2, by family and task, across 341 plant families, as identified by the home herbaria. We visually
inspected LeafMachine2's quality control summary images for the 831 species/images in the D‐3FAM test data set produced with default settings and a PCD
confidence of 50%. (A) We followed a power ranking scheme to assign qualitative ratings to families with more than one image, conservatively rounding
down in the case of split ratings between the images. For leaf segmentation, a “good” rating indicates that most leaf masks are high‐quality, a “marginal”
rating indicates that usable masks are present but require manual filtering, and a “poor” rating indicates that no usable masks are present. For landmarks, a
“good” rating indicates that at least one usable and accurate landmark skeleton was present, a “marginal” rating indicates that only partial landmark
skeletons were present, and a “poor” rating means that no landmarks could be identified. For component identification, a “good” rating means that
LeafMachine2 scored the presence of all non‐laminar organs, but not necessarily all instances of each organ. A “marginal” rating indicates that some non‐
laminar organs were not identified, while “poor”means that LeafMachine2 misidentified or failed to identify most non‐laminar organs. Bolded families were
included in the LeafMachine2 training data set. (B) An image of Umbellularia californica (Lauraceae) as an example of “good” ratings in all categories.
(C) An image of Morella cerifera (Myricaceae) as an example of “marginal” ratings in all categories. (D) An image of Sarcobatus vermiculatus
(Sarcobataceae) as an example of “poor” ratings in all categories.
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true‐positive leaf masks, LeafMachine2 located at least four
pseudo‐landmarks for 200 leaves (21%), corresponding to
the “good” category in Figure 5. We attribute this low
success rate to the minimal taxonomic diversity in the
L‐LAND data set and to the drawbacks of our PLD, as
previously discussed. With future iterations, the inclusion of
more ground truth points or increased bounding box
dimensions for high‐resolution images could result in a
higher success rate. Modified pose estimation or facial
recognition algorithms are also promising for this task.

DISCUSSION

LeafMachine2 offers unique capabilities that allow for the
extraction of quantitative trait measurements from a broad
range of taxa. Our PCD focuses on identifying and isolating
leaves with complete outlines (i.e., ideal leaves), including
those bisected by tape or stems but excluding those partially
concealed by other leaves or objects. Each ideal leaf
undergoes processing by our leaf segmentation algorithm,
generating an outline mask. This allows for the measure-
ment of multiple traits (e.g., area, convex hull, perimeter,
length, width, centroid, convexity, concavity, circularity,
aspect ratio, lobedness, toothedness), as well as the
calculation of Fourier descriptors. Moreover, our PLD also
processes each ideal leaf, enabling the measurement of
pseudo‐landmarks that are challenging or impossible to
determine from an outline mask, including tracing petiole
and midvein lengths, counting lobes, and measuring apex
and base angles. LeafMachine2's workflow modularity
allows for specific task optimization while offering the tools
necessary to measure a fundamental set of traits for a wide
range of angiosperm species (refer to Figure 5). Below, we
outline future adaptations and suggested improvements to
further increase the reliability and scope of LeafMachine2's
capabilities.

Extending LeafMachine2 methods

Our PLD methods are quite flexible and could be readily
adapted to more specialized and focused applications. For
example, we experimented with detecting other features
including sinus angles for oak leaves and measuring prickle
and spine dimensions for Acacia specimens. For these tasks,
we manually labeled a relatively small number of images,
about 200 for each set, to serve as new training data. In both
cases, we leveraged transfer learning by replacing the final
classification layer with the new classes while retaining the
original weights of the PLD algorithm to aid with general-
izability. This principle could be extended to other scenarios
to yield more consistent results, such as identifying genus‐
specific landmarks by drawing training images from a single
genus. Future iterations of LeafMachine2 will include PLD
versions trained on more taxa and specialized versions for
the detection of taxa‐specific traits.

Expanding the training data set

While the versatility of LeafMachine2 is demonstrated in
Figure 5, we also see that LeafMachine2 would be improved
by a focused expansion of training data for poor‐performing
taxa (families with mostly red or blue boxes). Future
sampling strategies should target more herbaceous and non‐
woody taxa to bolster the quality of measurements for taxa
that display morphologies that are underrepresented in the
current training data set. When inspecting the 8000 leaves
generated for our validation test, we observed a bias toward
small leaves. While we sampled taxa uniformly, the number
of leaves present on specimen sheets varies. Taxa with small
leaves are disproportionately represented in our PCD
training data set and are therefore more likely to be
correctly identified by the PCD when processing new
images (Appendix S1, Figure H); future sampling strategies
should include more specimen images for large‐leaf taxa to
compensate. At times, leaves that could potentially be
segmented successfully are not forwarded to the segmenta-
tion algorithm (Appendix S1, Figures J and K). Additional
information relating to sampling and training biases can be
found in Appendix S1.

Recommendations for future digitization
efforts

While developing automated algorithms for LeafMachine2,
we observed several specimen preparation and imaging
practices that negatively affect the quality of quantitative
trait measurements. First, the rulers used by herbaria for
archival digitization are not broadly standardized, which
presents challenges for projects that aim to extract
quantitative trait data. While parsing our results, two rulers
stand out for their reliable machine readability (i.e., the
consistency with which pixel distance is converted into
metric distance): the ruler used by NYBG (Figure 3A, ruler
2) and the JSTOR Plants ruler (Figure 3A, ruler 7). These
rulers are high contrast, simple, and provide unit markers
for unit cross‐validation. Other ruler types may have these
features but can be overly complex or detailed (Figure 3A,
rulers 21 and 22; Appendix S2). Curators should consider
the machine readability of rulers and how automated
systems might interpret them. For future digitization efforts,
we recommend that curators adopt either the NYBG or
JSTOR ruler types and permanently affix rulers to the copy
stand so that the ruler is rectilinear with the camera,
contains no reflections, and is not on top of the specimen
sheet. The inclusion of multiple rulers or rulers with both
metric and imperial units should be avoided. Please see
Appendix S2 for additional ruler recommendations and a
discussion of challenges associated with different ruler
types.

Second, specimen sheets for taxa with compound leaves
were often too cluttered to be usable for anything other than
leaflet measurements. We found that few specimen sheets
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present solitary compound leaves, but instead present
interlaced and overlapping compound leaves, making the
identification of the whole leaf too challenging for existing
algorithms. This task is better suited for a more discrete
analysis where the data set is curated or created to include
only solitary leaves, which would then require only minimal
adjustment of the existing LeafMachine2 algorithms. For
future collection efforts of taxa with compound leaves, we
recommend that accessions include examples of solitary
compound leaves or are arranged in a way that presents at
least one solitary leaf, where possible.

Looking ahead

We demonstrate that LeafMachine2, and similar projects,
are beginning to reduce the phenological trait acquisition
bottleneck in biological research but are also introducing a
new challenge—the curation of machine‐derived trait
measurements. Machine learning tools and their generated
data are increasingly commonplace in many research fields.
Within the scope of natural history collections, we see two
pressing issues that must be addressed by the larger
scientific community: (1) how to maintain, review, and
revise the torrent of machine observations, measurements,
and annotations that will soon exist and (2) how research
groups should effectively compare or compile data given
that unique specimens will be processed repeatedly using
different methods.

Regarding the first issue, LeafMachine2 alone can ge-
nerate thousands of data points per specimen. There is
currently no infrastructure capable of supporting these
data as part of a digital extended specimen, much less one
that can integrate the measurements with those produced
by other projects. We need new, scalable, and flexible data
management standards and infrastructure. One possible
approach for validating machine‐derived data is to take a
similar approach as iNaturalist (https://www.inaturalist.
org/) with taxa identification: crowd‐sourced voting. While
this would bolster confidence, it too would struggle to
keep pace with trait extraction. We have already tested
LeafMachine2 on tens of thousands of specimens. On
average, LeafMachine2 locates 10 leaves per image and
calculates 20 measurements per leaf; thus, a data set of
10,000 images (a small fraction of the images available
through GBIF and other institutions) will yield two million
data points. The only data curation solution at this scale is
more computational filtration, validation, and comparison,
likely powered by machine learning. To ensure that human
resources are allocated most efficiently, it is imperative that
we develop robust validation procedures before we start to
process specimens en masse.

To the second issue of how we can effectively compare
or compile data given that specimens will be processed
repeatedly by different methods, we chose to use only GBIF
images because of duplicated specimens between data
portals. This phenomenon means that the total number of

unique specimen images present across multiple portals is
lower than the number of images claimed by portal queries
(Kommineni et al., 2021). As an example, iDigBio also
houses herbarium vouchers, but numerous institutions
deposit images into both portals, resulting in the same
image being assigned two distinct identifiers. We support
calls for a global federated specimen identification system
as a part of a larger movement toward a flexible and
comprehensive digital extended specimen concept to enable
the effective mobilization of machine‐derived data at scale
(Lendemer et al., 2020; Hardisty et al., 2022).

LeafMachine2 will continue to evolve as we add
support for more traits and taxa, contributing data to
answer endless biological research questions. Even so, we
look ahead to when every digitized herbarium specimen
has a comprehensive set of measured traits and ask, Will
it be enough? We suspect that this fantastic corpus of
botanical descriptions will be revolutionary but will also
amplify known contemporary sampling and taxonomic
biases (Loiselle et al., 2008; Willis et al., 2017; Daru
et al., 2018; Kozlov et al., 2021; Meineke and Daru, 2021;
Davis, 2022; Heberling, 2022) and shift focus toward
traits that cannot be captured by two‐dimensional
images of preserved tissue (Borges et al., 2020). There-
fore, let this resurgence in attention paid to herbaria also
serve as a catalyst for preserving not only physical
specimens, but also digital‐only collections. These
collections may include snapshot vouchers (i.e., non‐
destructive, photogrammetrically validated field images
of living plant tissue; Weaver and Smith, 2023) or three‐
dimensional scans of living tissue (James et al., 2023).
Herbaria are indeed a bastion of global biodiversity
memory, but modern questions also require integrative
data sets, and maintaining the status quo will not be
enough.
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SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. Training information for LeafMachine2
networks.

Appendix S2. Ruler conversion examples.

Appendix S3. Ruler conversion procedures.
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Appendix 1. A list of the data sets that provided
training images for our machine learning algorithms. We
sampled from among these data sets to create our
annotated data sets of herbarium specimen vouchers.
The data set is available from GBIF at
https://doi.org/10.15468/dl.bh9dem.

Herbarium data set Data set DOI

Allan Herbarium 10.15468/x5ucvh

Appalachian State University 10.15468/ivsxey

Arizona State University 10.15468/a2o8vy

Arkansas Natural Heritage Commission
Herbarium

10.15468/v94jsu

Artportalen (Swedish Species Observation System) 10.15468/kllkyl

Asociación Jardín Botánico La Laguna 10.15468/gfwydn

Auckland Museum Botany Collection 10.15468/mnjkvv

B.M. Kozo‐Polyansky VSU 10.15468/xyqng3

Bell Museum 10.15468/bihrxd

Berea College 10.15468/hcwetj

Black Hills State University Herbarium 10.15468/ptcrqx

Botanical Collections of the Abo Akademi 10.15468/mpsjrk

Botanical Museum Berlin‐Dahlem 10.15468/ed17cn

Botanische Staatssammlung München 10.15468/ni5yho

Botanische Staatssammlung München 10.15468/sookye

Botanische Staatssammlung München 10.15468/zinzhd

Botanische Staatssammlung München 10.15468/zdcclb

Botanische Staatssammlung München 10.15468/lqetda

Botanische Staatssammlung München 10.15468/dixlft

Botanischer Garten und Botanisches Museum
Berlin‐Dahlem Herbarium

10.15468/tgwryf

Herbarium data set Data set DOI

Brauckmann at the Botanische Staatssammlung
München

10.15468/onfqgb

BRI AVH 10.15468/jsffsa

Brown University 10.15468/kpsj8r

Brown University Herbarium 10.15468/njgg1a

Bush Heritage ‐ Carnarvon Station Reserve 10.15468/q0dhpr

Cal Poly State University 10.15468/mypdjd

Cal State LA Herbarium 10.15468/36qz6p

California Botanic Garden Herbarium 10.15468/0yosx9

California State University Fullerton 10.15468/1uvzxh

California State University San Bernardino 10.15468/t885ps

California State University, Long Beach 10.15468/3y25yl

California State University, Northridge 10.15468/nrcdx7

Canadian Museum of Nature Herbarium 10.15468/kowta4

Cape Breton University Collection 10.15468/7dtqgn

Capture of Primary Biodiversity Data for West
African Plants

10.15468/9czcig

Carnegie Museum of Natural History Herbarium 10.15468/d51v1f

CAS Botany 10.15468/7gudyo

CBNA 10.15468/oc5zh7

CEN herbarium 10.15468/wasmx9

Central Michigan University Herbarium 10.15468/iykbez

Central Siberian Botanical Garden 10.15468/qdfdqq

Central Siberian Botanical Garden Herbarium 10.15468/5wcerp

Centro de Pesquisas do Cacau 10.15468/vg8rjh

Charles University Prague 10.15468/8xrt7r

CHAS Botany Collection (Arctos) 10.15468/ji4vbl

Chico State Herbarium 10.15468/ckxw7v

Clamence Lortet herbarium 10.15468/e64fbk

Clemson University Herbarium 10.15468/srjd22

Colección de plantas vasculares del herbario de la
Universitat de Valencia

10.15468/xmki52

Colección Herbario Federico Medem Bogota 10.15472/ighftu

Colorado Plateau Museum of Arthropod
Biodiversity

10.15468/du1hci

CRI Herbarium 10.15468/vvctbg

CRSN herbarium from Kahuzi‐Biega National Park 10.15468/bhvwem

CRSN Herbarium 10.15468/ra9vp0

CRSN herbarium 10.15468/exh7vo

CSBG 10.15468/c1y9q2

CSBG SB RAS 10.15468/67ouin
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Herbarium data set Data set DOI

CSBG SB RAS 10.15468/be6owh

CSBG SB RAS 10.15468/zw7jnn

CSBG SB RAS Digital Herbarium 10.15468/6f3ybc

CSBG SB RAS Digital Herbarium 10.15468/7anvyu

CSBG SB RAS Herbarium Collections 10.15468/sunx5n

Dataflos 10.15468/dcc6j8

Desert Botanical Garden Herbarium 10.15468/abe1lg

Dr. Sultan Ahmad Herbarium 10.15468/xaju4z

E. C. Smith Herbarium 10.15468/zc4csq

Earth Sciences Collection (Arctos) 10.15468/4n2ev3

Eastern Kentucky University 10.15468/fy8dsi

Estonian Museum of Natural History 10.15468/bquqpv

Estonian University of Life Sciences 10.15468/m3x9uu

Fairchild Tropical Botanic Garden 10.15468/hdpruf

Field Museum of Natural History 10.15468/pyjtoc

Field Museum of Natural History 10.15468/4nodxs

Field Museum of Natural History 10.15468/nxnqzf

Flora of Sumatra: ANDA Herbarium 10.15468/ue7xyn

Flora of the Korean Peninsula 10.15468/0vcvsq

Flora of the Korean Peninsula 10.15468/fyxnsd

Flora Sumatra: (ANDA)‐Part 2 10.15468/55evew

Forest Herbarium Ibadan 10.15468/uhnd5n

Forest Herbarium Ibadan Nigeria 10.15468/rhbyxz

Fresno State Herbarium 10.15468/puyrj8

Genus Medicago in CSBG Herbarium 10.15468/jvrxeh

George Mason University 10.15468/t8ar55

Georgian Academy of Sciences 10.15468/6tbhmd

Harvard University Herbaria 10.15468/o3pvnh

Harvard University Herbarium 10.15468/29fhdy

Herbario Joao de Carvalho e Vasconcellos 10.15468/olfpjv

Herbario Museo de La Salle Bogota 10.15472/ppzpea

Herbarium Berolinense, Berlin 10.15468/dlwwhz

Herbarium Fennoscandicum 10.15468/ekpyfw

Herbarium GAT 10.15468/hiiw6b

Herbarium Generale 10.15468/dg4cb4

Herbarium Generale 10.15468/83cb4a

Herbarium Hamburgense 10.15468/31iaih

Herbarium Horti Botanici Pisani 10.15468/soyil7

Herbarium of Andalas University 10.15468/sncpxn

(Continues)

Herbarium data set Data set DOI

Herbarium of Numto Nature Park 10.15468/g4gcrg

Herbarium of the University of Granada 10.15470/k97bjm

Herbarium of Yugra State University 10.15468/z8mpt5

Herbarium Senckenbergianum 10.15468/ucmdjy

Herbarium Willing at Herbarium Berolinense,
Berlin

10.15468/abcz8i

Herbier du Québec 10.5886/jd11sg3p

Herbier Louis‐Marie 10.5886/3p8ltbg7

Herbiers Universitaires de Clermont‐Ferrand 10.15468/9axq0b

Humboldt State University 10.15468/qguk7r

HVASF herbarium 10.15468/kz6y6z

IAN herbarium 10.15468/cv2dmt

IICT Herbario 10.15468/iinlqm

Institut Botanic de Barcelona 10.15468/pff0t6

Institut Scientifique Mohamed V University 10.15468/48pwft

Institute of Biological Problems of the North, Far
East Branch RAS

10.15468/ms9q2t

Instituto do Meio Ambiente do Estado de Alagoas 10.15468/mu8w57

Intermountain Herbarium 10.15468/t43wjj

Jardins botaniques and Conservatoire Botanique of
Nancy

10.15468/g1zohr

JOI Herbarium 10.15468/pf6pv2

Kathryn Kalmbach Herbarium 10.15468/axrelr

Kenai National Wildlife Refuge (Arctos) 10.15468/ycpd7y

Komarov Botanical Institute 10.15468/udzn9d

Komi Republic 10.15468/336sdv

KULPOL Herbarium 10.15468/h9qfje

KUZ Herbarium 10.15468/4ru3f6

Lajitietokeskus FinBIF 10.15468/4g56tp

Lord Fairfax Community College Herbarium 10.15468/c2gj2t

MAG Herbarium 10.15468/ahqbdc

Marie‐Victorin Herbarium 10.5886/rzav8bu2

Masaryk University 10.15468/soarvd

McGill University Herbarium 10.5886/srzbj7

Meise Botanic Garden Herbarium 10.15468/wrthhx

MEL AVH 10.15468/rhzrxw

Melu AVH 10.15468/2yyu7i

MHA Herbarium 10.15468/827lk2

Ministerio del Medio Ambiente de Chile 10.15468/ezyu58

Missouri Botanical Garden 10.15468/mmbcpb

(Continues)
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Herbarium data set Data set DOI

Moscow University Herbarium 10.15468/cpnhcc

MUFAL herbarium 10.15468/viuv6v

Muséum National d'Histoire Naturelle, Paris 10.15468/kw8pex

Muséum National d'Histoire Naturelle 10.15468/nc6rxy

Museu Botanico Municipal Curitiba 10.15468/v52pmc

Museu de Biologia Mello Leitao 10.15468/dmkg7b

Museu Paraense Emalio Goeldi 10.15468/rdq4nx

Museum d'Histoire Naturelle of Aix‐en‐Provence 10.15468/fqykeb

National Academy of Sciences of Republic of
Armenia

10.15468/xn64eb

National Museum of Natural History Luxembourg 10.15468/s2iu7d

Natural History Museum 10.5519/0002965

Natural History Museum Rotterdam 10.15468/kwqaay

Natural History Museum, Vienna 10.15468/5sl7sh

Naturalis Biodiversity Center 10.15468/ib5ypt

Naturhistorisches Museum Mainz 10.15468/l0wmu8

Naturhistoriska Riksmuseet 10.15468/jbcsfu

NCSM Herbarium Collection 10.36102/dwc.12

NEON Biorepository 10.15468/ggrfcb

NEON Biorepository 10.15468/bmmg36

NEON Biorepository 10.15468/bmmdp5

Newhaven Sanctuary Observations 10.15468/mwgsdh

NHMD Vascular Plants Collection 10.15468/4zygkn

Nitraria komarovii 10.15468/jp2qco

NMNH 10.15468/hnhrg3

North Carolina State University 10.15468/9ufthy

Northern Arizona University 10.15468/b7tfpa

Norwegian Species Observation Service 10.15468/zjbzel

Nova Scotia Museum of Natural History 10.15468/tl3cde

NSW AVH data 10.15468/jf3yae

NSW South Coast 10.15468/px2xfi

Plant Resources Center 10.15468/g85t8z

Qarshi Botanical Garden 10.15468/pjxa84

Quaid‐i‐Azam University Herbarium 10.15468/bp6jy3

Queensland Museum 10.15468/lotsye

R. L. McGregor Herbarium 10.15468/htptzr

Real Jardín Botanico 10.15468/mug7kr

Rhoen and Vogelsberg 10.15468/hbhfi3

Rio de Janeiro Botanical Garden
Herbarium

10.15468/7ep9i2

Herbarium data set Data set DOI

Rio de Janeiro Botanical Garden Herbarium
Collection

10.15468/bbsqoa

Royal Botanic Garden Edinburgh Herbarium 10.15468/ypoair

Royal Botanic Gardens, Kew 10.15468/ly60bx

Royal Botanic Gardens, Kew 10.15468/rvrsru

Royal Ontario Museum Green Plant Herbarium 10.5886/g7j6gct1

Rutgers University 10.15468/1n787c

Rutgers University 10.15468/hhnd4h

Sagehen Herbarium 10.15468/fl8uov

SAMES herbarium 10.15468/l0hdtn

San Diego Natural History Museum 10.15468/lneqwn

San Diego State University Herbarium 10.15468/8sx2ag

San Francisco State University 10.15468/6zdzvc

San Jose State University 10.15468/t3a60p

SANT Herbarium 10.15468/dgbpla

Santa Barbara Botanic Garden 10.15468/adb2bb

Sociata des Sciences Naturelles et Mathamatiques
de Cherbourg

10.15468/lmznjw

South Australian Museum Australia 10.15468/wz4rrh

South‐Siberian Botanical Garden 10.15468/y6xmme

Species recordings from the Danish National portal
Arter.dk

10.15468/q3yy4u

Staten Island Museum 10.15468/ctqpb5

Steiermarkisches Landesmuseum Joanneum 10.15468/dmdck6

SVER Herbarium 10.15468/xwzszg

SVER Herbarium 10.15468/5npjcc

Tallinn Botanic Garden 10.15468/hfs8d4

Terre d'huiles 10.15468/wr1vhd

Texas Tech University 10.15468/uyakmh

The Exsiccatal Series 10.15468/qxmief

The James C. Parks Herbarium at Millersville
University

10.15468/qdatdf

The New York Botanical Garden 10.15468/5y84ye

The New York Botanical Garden Herbarium 10.15468/6e8nje

The Vascular Plant Collection at the Botanische
Staatssammlung Manchen

10.15468/vgr4kl

TKM Herbarium 10.15468/sfxvrv

Towson University 10.15468/podgza

TRH, NTNU University Museum 10.15468/zrlqok

Tropicos Specimen Data 10.15468/hja69f

TUL Herbarium 10.15468/ca08cm
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Herbarium data set Data set DOI

TULGU Herbarium 10.15468/5nret6

Turku University 10.15468/nsyt4y

UAM Herbarium (Arctos) 10.15468/iawody

UC Davis Herbarium 10.15468/on4axg

UiT Tromsa Museum 10.15468/14epds

Universidad del Valle de Guatemala 10.15468/u339qt

Universidade de Sao Paulo 10.15468/nt6dng

Universidade Estadual de Feira de Santana 10.15468/gsy3jn

Universidade Estadual do Norte Fluminense 10.15468/qsaagd

Universidade Estadual do Oeste do Parana 10.15468/eqp1dr

Universidade Federal da Bahia 10.15468/tbtrr3

Universidade Federal de Goias 10.15468/fw6hdt

Universidade Federal de Parana 10.15468/fpf5j6

Universidade Federal de Rondania 10.15468/5cjyj6

Universidade Federal de Sergipe 10.15468/9xujh5

Universidade Federal de Uberlandia 10.15468/cshs8n

Universidade Federal do Ceara 10.15468/s8xuen

Universidade Federal do Espírito Santo 10.15468/kasze8

Universidade Federal do Oeste do Para 10.15468/ztzkde

Universidade Federal do Rio Grande do Norte 10.15468/gtxawd

Universidade Federal do Rio Grande Do Sul 10.15468/suhqjx

Universidade Federal Rural do Rio de Janeiro 10.15468/0svt7m

Universidade Regional de Blumenau 10.15468/vse5f3

Universidade Tecnológica Federal do Parana 10.15468/4b74v2

Universita de Montpellier 10.15468/gyvkrn

Universita Lyon 10.15468/7m584w

University of Balochistan Herbarium 10.15468/qrau0v

University of British Columbia Herbarium 10.5886/rtt57cc9

University of California Santa Barbara Herbarium 10.15468/qpxmw0

University of California Santa Cruz 10.15468/uavt0t

University of California, Los Angeles Herbarium 10.15468/33k42a

University of California, Riverside 10.15468/ai1kou

(Continues)

Herbarium data set Data set DOI

University of Cincinnati 10.15468/bhgpmq

University of Cincinnati 10.15468/xkca3p

University of Colorado Museum of Natural History 10.15468/wyofjv

University of Florida Herbarium 10.15468/v5wjn7

University of Gothenburg 10.15468/asgd85

University of Graz Institute of Plant Sciences 10.15468/axtkuz

University of Hargeisa Herbarium 10.15468/qvbvdp

University of Jena, Herbarium Haussknecht 10.15468/8arhjc

University of Kentucky 10.15468/fi4vfu

University of Lethbridge Herbarium 10.5886/wrt547hq

University of Manitoba Herbarium 10.5886/2fva5p4r

University of Michigan Herbarium 10.15468/nl8bvi

University of New Mexico Herbarium 10.15468/dlvoyt

University of North Carolina at Chapel Hill 10.15468/63vxjd

University of Sargodha Herbarium 10.15468/n4k5s9

University of South Carolina 10.15468/fmj4at

University of South Florida Herbarium 10.15468/mdnmzb

University of Tartu Natural History Museum 10.15468/5hqb2z

University of Tartu Natural History Museum and
Botanical Garden

10.15468/d59dmk

University of Tennessee 10.15468/64w2b1

University of Tennessee Fungal Herbarium 10.15468/da30il

University of Tennessee Vascular Herbarium 10.15468/ok8qvz

University of Vermont 10.15468/crnsua

University of Vermont 10.15468/zsgiog

University of Vienna, Institute for Botany 10.15468/tnj8wm

UTEP Plants (Arctos) 10.15468/yhb6ky

Vascular Plant Herbarium, Oslo 10.15468/wtlymk

Vascular Plant Herbarium, UiB 10.15468/ofn0lf

Western Carolina University Herbarium 10.15468/sk26v2

Yale Peabody Museum 10.15468/hrztgn

Yale Peabody Museum 10.15468/0lkr3w
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