
ORIGINAL RESEARCH
published: 25 January 2021

doi: 10.3389/fncom.2020.605104

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2021 | Volume 14 | Article 605104

Edited by:

Dan Chen,

Wuhan University, China

Reviewed by:

Conrado Arturo Bosman,

University of Amsterdam, Netherlands

Zirui Huang,

University of Michigan, United States

Hak Keung Lam,

King’s College London,

United Kingdom

*Correspondence:

Liyong Yin

yinliyong81@163.com

Received: 11 September 2020

Accepted: 18 December 2020

Published: 25 January 2021

Citation:

Li Z, Du Y, Xiao Y and Yin L (2021)

Predicting Grating Orientations With

Cross-Frequency Coupling and Least

Absolute Shrinkage and Selection

Operator in V1 and V4 of Rhesus

Monkeys.

Front. Comput. Neurosci. 14:605104.

doi: 10.3389/fncom.2020.605104

Predicting Grating Orientations With
Cross-Frequency Coupling and Least
Absolute Shrinkage and Selection
Operator in V1 and V4 of Rhesus
Monkeys
Zhaohui Li 1,2, Yue Du 1, Youben Xiao 1 and Liyong Yin 3*

1 School of Information Science and Engineering, Yanshan University, Qinhuangdao, China, 2Hebei Key Laboratory of

Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China, 3Department of Neurology, The

First Hospital of Qinhuangdao, Qinhuangdao, China

Orientation selectivity, as an emergent property of neurons in the visual cortex, is of

critical importance in the processing of visual information. Characterizing the orientation

selectivity based on neuronal firing activities or local field potentials (LFPs) is a hot topic

of current research. In this paper, we used cross-frequency coupling and least absolute

shrinkage and selection operator (LASSO) to predict the grating orientations in V1 and V4

of two rhesus monkeys. The experimental data were recorded by utilizing two chronically

implanted multi-electrode arrays, which were placed, respectively, in V1 and V4 of

two rhesus monkeys performing a selective visual attention task. The phase–amplitude

coupling (PAC) and amplitude–amplitude coupling (AAC) were employed to characterize

the cross-frequency coupling of LFPs under sinusoidal grating stimuli with different

orientations. Then, a LASSO logistic regression model was constructed to predict the

grating orientation based on the strength of PAC and AAC. Moreover, the cross-validation

method was used to evaluate the performance of the model. It was found that the

average accuracy of the prediction based on the combination of PAC and AAC was

73.9%, which was higher than the predicting accuracy with PAC or AAC separately.

In conclusion, a LASSO logistic regression model was introduced in this study, which

can predict the grating orientations with relatively high accuracy by using PAC and AAC

together. Our results suggest that the principle behind the LASSO model is probably an

alternative direction to explore the mechanism for generating orientation selectivity.

Keywords: orientation selectivity, visual cortex, cross-frequency coupling, local field potential, LASSO

INTRODUCTION

Orientation is a basic and important characteristic of natural images. The detection of oriented
stimuli is generally known as orientation selectivity, i.e., neurons respond preferentially to
elongated stimuli oriented along a specific axis in the visual field but respond weakly to stimuli
oriented orthogonally to their preferred axis (Antinucci et al., 2016). Orientation selectivity was
first observed in cat primary visual cortex nearly 60 years ago (Hubel and Wiesel, 1962). Since
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then, numerous studies investigated the orientation selectivity in
visual systems of vertebrates and invertebrates, such as rodents
(Niell and Stryker, 2008), primates (Hubel and Wiesel, 1968;
Fisher et al., 2015), fish (Nikolaou et al., 2012), and insects
(Fisher et al., 2015). Moreover, it plays a key role in shape
perception and other visual information processing (Mansfield,
1974; Girshick et al., 2011; Lien and Scanziani, 2018; Crijns et al.,
2019). However, as an emergent property of neurons in the visual
cortex, how the orientation selectivity generates is still debated.
In the past decades, many studies have been devoted to exploring
the mechanism for generating the orientation selectivity. For
example, by measuring the dynamics of orientation tuning of
single neurons in the V1 cortex of macaque monkeys, it was
found that orientation selectivity is generated mainly by both
tuned enhancement and global suppression (Shapley et al.,
2003); orientation selectivity is similar for lateral geniculate
nucleus relay cells spiking and subthreshold input to V1 neurons,
indicating that cortical orientation selectivity is inherited from
the lateral geniculate nucleus in mouse (Scholl et al., 2013);
both the preferred orientation and the width of orientation
tuning were well-predicted by a feedforwardmodel of orientation
selectivity, which was constructed based on simple cells in the
cat visual cortex (Lampl et al., 2001). Because the neuronal firings
cannot reflect the synaptic activity of neurons in a local region,
which is closely related to advanced neurological functions,
the neural oscillations have also been applied to investigate
orientation selectivity. For instance, it is possible to estimate the
orientation selectivity of stimulus-evoked LFP signals in primary
visual cortex on the basis of the surrounding map of orientation
preference (Katzner et al., 2009); there is a weak correlation
between the preferred orientation of multi-unit activity and
gamma-band LFP recorded on the same tetrode, while there is a
strong correlation between the ocular preferences of both signals
(Berens, 2008). In this study, we also used some features extracted
fromneural oscillations to characterize the orientation selectivity.

In fact, neural oscillations are rhythmic patterns of electrical
activity produced by the interaction of neurons in the nervous
system (Buzsaki, 2004), which have been ubiquitously observed
in the mammalian brain and involved in many brain functions
(Fries, 2005; Womelsdorf et al., 2007; Minarik et al., 2018).
An essential characteristic of neural oscillations is that they
coordinate across spatial and temporal scales, which can
be depicted by cross-frequency coupling (CFC) (Jensen and
Colgin, 2007; Canolty and Knight, 2010). As well-known,
while larger populations generally oscillate and synchronize
at lower frequencies, smaller ensembles are active at higher
frequencies (Buzsaki, 2006). Therefore, CFC would facilitate
flexible coordination of neural activity simultaneously in time
and space (Aru et al., 2015). It is not only the primary manner
for the nervous system to encode external stimuli but also an
important way to express and exchange information (Belluscio
et al., 2012; Hyafil et al., 2015; Zheng et al., 2016; Zhang
et al., 2017; Yeh and Shi, 2018). Based on the three properties
of a signal, i.e., frequency, amplitude, and phase, there are
four fundamental types of CFC, including phase–frequency
coupling (PFC) (Roberts et al., 2013), phase–phase coupling
(PPC) (Belluscio et al., 2012), phase–amplitude coupling (PAC)

(Tort et al., 2010), and amplitude–amplitude coupling (AAC)
(Yeh et al., 2016). PAC reflects the degree that the amplitude of
higher-frequency oscillations is modulated by the phase of lower-
frequency oscillations (Canolty et al., 2006), which is the most
common and important type of CFC and plays a major role in the
brain functions such as motion (Cheung et al., 2019; Khamechian
and Daliri, 2020), memory (Tseng et al., 2019), learning (Zaleshin
and Merzhanova, 2019), and sleep (Cox et al., 2019). There are
many algorithms to estimate PAC, such as mean vector length
(MVL) (Canolty et al., 2006), modulation index (MI) (Tort
et al., 2008), and generalized eigendecomposition-based cross-
frequency coupling framework (gedCFC) (Cohen, 2017). Among
these, the gedCFC can effectively identify false couplings and
weak patterns of CFC in noisy data accurately (Cohen, 2017).
Thus, it was employed in this study to measure the PAC of LFP in
V1 and V4. On the other hand, AAC measures the correlation
between the amplitude envelopes of two neural oscillations at
different frequencies (Yeh et al., 2016). It has also been used to
explore some brain functions, e.g., the AAC between theta and
low-frequency gamma (30–50 Hz) waves in the hippocampus can
predict the spatial memory performance of rats (Shirvalkar et al.,
2010). In this study, a method based on the Pearson correlation
coefficient was used to investigate the AAC available in V1 and
V4. In addition, the PFC and PPC were not observed to vary
with the grating orientation. Thus, they were not discussed in the
next sections.

Considering the wide application and good effects of CFC
in studying brain functions, we constructed a LASSO logistic
regression model based on PAC and AAC to predict the
grating orientations. We hope it could provide an alternative
direction to explore the mechanism of orientation selectivity.
LASSO is a regression analysis method that performs both
variable selection and regulation to enhance the prediction
accuracy and interpretability of the statistical model it produces
(Friedman et al., 2010; Ciuperca, 2012). It can effectively avoid
the problems of over-fitting and high correlation in the least
squares estimation, and solve the problem of multicolinearity
in regression analysis (Zhou et al., 2017; Zhang et al., 2018).
LASSO has been widely used in many fields, such as the
prediction of disease outcomes (Tang et al., 2018) and genome-
wide (Waldmann et al., 2019). Because of its uncertainty and
randomness, the LASSO logistic regression model is very suitable
to simulate the encoding process of the nervous system (Traub
et al., 2004; Palva et al., 2005). Moreover, it has been proved that
LASSO works well for any degree of correlation if suitable tuning
parameters are chosen (Hebiri and Lederer, 2013). Therefore, in
this study, we combined PAC and AAC to build a prediction
model for the grating orientation based on the LASSO logistic
regression model.

MATERIALS AND METHODS

Experiment Procedure and Visual
Stimulation
All procedures were conducted in compliance with the National
Institutes of Health Guide for the Care and Use of Laboratory
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Animals, and were approved by the Institutional Animal Care
and Use Committee of Beijing Normal University. Two adult
male rhesus monkeys were used for data recording in the
experiment. During behavioral training, a titanium post was
attached to the skull with bone screws to immobilize the
animal’s head. The general anesthesia was induced with ketamine
(10 mg/kg) and maintained with isoflurane (1.5–2.0%). The
monkeys were first trained to accomplish a simple fixation
task. Then, two 6 × 8 multi-electrode arrays (with electrode
length 0.5–0.6 mm, interelectrode spacing 0.4 mm, and typical
electrode impedance was a few hundred kiloohms; Blackrock
Microsystems) were chronically implanted into V1 and V4,
respectively (Li et al., 2016, 2019). The neural electrophysiological
data were recorded at 10 kHz using a 128-channel Cerebus
system (Blackrock Microsystems).

In the experiment, the visual stimuli were generated by a
stimulus generator system (ViSaGe) and presented on a 22-inch
CRT monitor with a viewing distance of 100 cm. The visual
stimuli, i.e., drifting sinusoidal gratings, were displayed within a
circular patch of 4◦ visual angle in diameter. Other parameters
of the gratings were constant in the whole experiment, such
as the temporal frequency of 4 Hz, the spatial frequency of
2 cycles/degree, and the contrast of 99%. Every stimulus was
displayed on the screen for 2 s and repeated 30 times. On each
trial, the grating appeared in a pseudorandom order with the
orientation ranging from 0◦ to 360◦ in steps of 22.5◦. After a
lever was pulled by the animal, a fixation point (FP) of 0.1◦ was
presented on the CRT center. Within the next 600 ms, the animal
was required tomaintain its fixation on the circular area of 0.6◦ in
radius around the FP for 200 ms. The stimulus was displayed for
2 s, followed by a 200-ms blank interval. Then, the FP was slightly
dimmed, and the animal must release the lever within 600 ms for
a drop of juice as reward (Li et al., 2016, 2019).

Phase–Amplitude Coupling
The generalized eigendecomposition-based cross-frequency
coupling framework (gedCFC) was employed to measure the
PAC in this study. The gedCFC combines source-separation
algorithms and the dynamics of mesoscopic neurophysiological
processes to conceptualize CFC as network interactions with
diverse spatial or topographical distributions (Cohen, 2017).
Eigendecomposition involves finding certain vectors that are
associated with square matrices. The basic eigenvalue equation is
Ax = λx, where A is a square matrix, x is the eigenvector, and
λ is the eigenvalue. It means that multiplying the eigenvector x
by matrix A has the same outcome as multiplying x by a single
number λ. In other words, matrix A merely stretches or shrinks
x without changing its direction.

The eigenvalue equation can be generalized to two square
matrices A and B, as Ax = Bxλ. If A is a covariance matrix
of a “signal” dataset, and B is a covariance matrix of a
“reference” dataset, then the generalized eigendecomposition can
be understood to produce eigenvectors that identify directions of
maximal power ratio in the matrix product B−1A, i.e., directions
that best differentiate matrix A from B. The gedCFC identifies
multichannel CFC-related networks by contrasting covariance
matrices computed from to-be-maximized data features (matrix

A) against to-be-minimized data features (matrix B). The two
covariance matrices should be similar enough to suppress CFC-
unrelated activity, while being different enough to isolate the
neural networks that exhibit CFC. More details of the gedCFC
algorithm can be found in the reference (Cohen, 2017).

Amplitude–Amplitude Coupling
The Pearson correlation coefficient was used to measure the
amplitude–amplitude coupling strength of LFPs. First is the
band-pass filtering the LFPs in V1 and V4 to obtain low-
frequency (4–12 Hz) and high-frequency (30–90 Hz) neural
oscillations, denoted as x (t) and y (t), respectively. Second is the
extracting of the amplitude of x (t) by:

A(t) =

√

x(t)2 +H[x(t)]2 (1)

where H[x(t)] is the Hilbert transform of x (t):

H[x(t)] = x(t) ∗
1

π t
=

1

π

∫ +∞

−∞

x(τ )

t − τ
dτ . (2)

Similarly, we can get the amplitude B (t) of y (t). Finally, the
Pearson correlation coefficient between A (t) and B (t) as the
strength of AAC is calculated:

r = corr(A(t),B(t)) =
cov(A(t),B(t))

σ (A(t))σ (B(t))
. (3)

Least Absolute Shrinkage and Selection
Operator Logistic Regression Model
For an ordinary linear model:

Y = Xβ + ε (4)

where Y = (y1, y2, . . . , yn)
T is the response variable, X =

(X(1),X(2), . . . ,X(d)) is the covariate, β = (β1,β2, . . . ,βd)
T is

the regression coefficient, ε = (ε1, ε2, . . . , εn)
T is the random

variable andεi ∼ N(0, σ 2). The smallest penalty likelihood
function is used as the regression coefficient estimate (Breiman,
1995; Tibshirani, 1996), which is calculated by

⌢

β = arg min
β∈Rd

(||Y − Xβ||2 + λ
∑d

j = 1
|βj|), (5)

where λ is the weight coefficient of LASSO.
In this study, the input data were the PAC and AAC, including

the strength values in V1 and V4, respectively, and the strength
values between V1 and V4. The output is the grating orientation
corresponding to the cross-frequency coupling strength. If a
specific input is denoted by I, then the conditional probability of
the corresponding output (O1 and O2) can be calculated by:

Pr(O = O1|I) =
1

1+ e−xTw
, (6)

Pr(O = O2|I) =
1

1+ ex
Tw

. (7)
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FIGURE 1 | The schematic diagram of the least absolute shrinkage and selection operator (LASSO) logistic regression model.

FIGURE 2 | The schematic diagram for the calculating procedure of phase–amplitude coupling (PAC).

where x is the cross-frequency coupling strength, and w is
the weight vector. As shown in Figure 1, the inputs are first
multiplied by the weight vectors, respectively, and then added up.
Next, a non-linear logic process is solved, i.e.,:

∂(x) =
1

(1+ ex)
. (8)

Therefore, the conditional probabilities can be calculated, which
represents the possibility that an output corresponded to the
input. The weighted vector to the larger possibility is determined

as the feature obtained by training the current data set. In this
study, the weight of the penalty function is set to 100, and the
penalty function takes the Elastic Net. Here, we briefly introduced
the main idea of the LASSO model. The training and predicting
were implemented by using the glmnet toolbox in MATLAB.

In order to test the performance of the model, the cross-
validation method was employed in this study. The error of
prediction and the sum of their squares were calculated (Hawkins
et al., 2003; Braga-Neto and Dougherty, 2004; Vehtari et al.,
2016). In each verification, all samples were randomly divided
into M parts. M – 2 of them were used as training set, and the
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FIGURE 3 | The PAC of local field potential (LFP) for monkey G and monkey H. (A) The PAC between V1 and V4 of monkey G. (B) The PAC in V1 of monkey G. (C)

The PAC in V4 of monkey G. (D) The PAC between V1 and V4 of monkey H. (E) The PAC in V1 of monkey H. (F) The PAC in V4 of monkey H. In these panels, the

gray lines represent the PAC of LFP recorded by individual electrodes, and the black lines plot their means.

remaining 2 as testing sets. The correct rate for each prediction is
denoted by Ri, i = 1, 2, · · · , L, where L is the total number of the
training trials. Therefore, the overall accuracy of the prediction is
calculated as:

R =

∑L
i = 1 Ri

L
(9)

RESULTS

First, before constructing the LASSO model, it is necessary to

investigate the correlation between the cross-frequency coupling

(PAC and AAC of the LFP) and the grating orientation in V1 and

V4. Thus, we used the eegfilt.m function in the EEGLAB toolbox
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FIGURE 4 | The amplitude–amplitude coupling (AAC) of LFP for monkey G and monkey H. (A) The AAC between V1 and V4 of monkey G. (B) The AAC in V1 of

monkey G. (C) The AAC in V4 of monkey G. (D) The AAC between V1 and V4 of monkey H. (E) The AAC in V1 of monkey H. (F) The AAC in V4 of monkey H. In these

panels, the gray lines represent the AAC of LFP recorded by individual electrodes, and the black lines plot their means.

(Delorme and Makeig, 2004) to extract neural oscillations in
different frequency bands from the raw recordings. Specifically,
in the calculation of PAC, the low-frequency oscillations
were obtained by using a 0–30-Hz band-pass filter, and the

high-frequency oscillations were acquired by utilizing a 30–200-
Hz band-pass filter (Esghaei et al., 2015). The diagrammatic
sketch for the computing process of PAC is illustrated in Figure 2.
Also, we can get the AAC in a similar way. The PAC and AAC
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FIGURE 5 | Mean square error of the LASSO model trained with different features. (A) PAC for monkey H. (B) AAC for monkey H. (C) Combined features of PAC and

AAC for monkey H. (D) PAC for monkey G. (E) AAC for monkey G. (F) Combined features of PAC and AAC for monkey G.

between the low-frequency and high-frequency LFP for all the
recording electrodes in V1 and V4 are illustrated in Figures 3, 4,
respectively. In fact, before performing the CFC analysis, we have
removed the trials with no signals. After getting the results, the
values outside the range of mean ± 2 standard deviations were
considered as outliers and excluded. Clearly, the cross-frequency
coupling strengths, including PAC and AAC, exhibit obvious
orientation selectivity. It means that they are effective indices
for characterizing the orientation selectivity. More concretely,
although the PAC and AAC respond to the non-preference-
oriented stimulus, and the preferential orientation stimulus are
significantly different, the PAC reflects the grating orientation
more clearly than the AAC. On the other hand, the values of
PAC and AAC in V1 are greater than that in V4, and the values
for monkey H are relatively lower than that for monkey G. The

main reasons for these differences are listed as follows: One is
that there are individual differences between the two monkeys,
and consequently, their responses to the drift gratings are not
identical. Another one is that the electrodes located in the V4
of Monkey H are probably close to the color-coded region in
the experiment.

Next, it is feasible to construct the LASSO model with
PAC and AAC in order to predict the grating orientations.
The results of cross-validation for Monkey G and H are
demonstrated in Figure 5. It can be found that when
the model was trained with an individual feature, i.e.,
PAC or AAC separately, the mean square error of cross-
validation is relatively high. While the model was trained
with combined features, i.e., PAC and AAC together, the
mean square error of cross-validation is small. This means
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TABLE 1 | The prediction accuracy in the four experiments.

Feature EX1 EX2 EX3 EX4 Average

PAC 64.9% 67.9% 63.8% 62.4% 64.8%

AAC 62.4% 65.7% 61.5% 60.8% 62.6%

PAC+AAC 74.6% 76.0% 73.2% 71.8% 73.9%

TABLE 2 | The prediction accuracy for the LASSO model with the two combined

features in the four experiments.

Experiment EX1 EX2 EX3 EX4

22.5&202.5 72.5% 73.2% 70.6% 68.4%

45&225 80.2% 81.5% 79.4% 78.8%

67.5&247.5 68.6% 69.3% 66.2% 62.2%

90&270 75.7% 77.1% 74.5% 73.2%

112.5&292.5 77.1% 79.5% 76.7% 75.4%

135&315 78.7% 78.9% 77.2% 77.6%

157.5&337.5 72.2% 75.4% 70.8% 68.1%

180&360 71.8% 72.7% 70.1% 70.7%

Average value 74.6% 76.0% 73.2% 71.8%

that the LASSO model works more robustly with the two
combined features.

Then, we randomly chose four experiments from the cross-
validation test as examples, which were denoted as EX1, EX2,
EX3, and EX4. The prediction accuracy of the four experiments is
shown in Table 1. Obviously, the LASSO model with the input of
PAC or AAC separately performs similarly to predict the grating
orientation. In fact, the prediction accuracy of the PAC model
is ∼2% higher than the accuracy of the AAC model. However,
the prediction accuracy of the model with the combined features
(PAC and AAC) is significantly higher (p < 0.05, two-sided sign
test). The improvement is nearly 10%, which means that the
LASSO model with combined features performs much better
than that with the individual features to predict the orientations.
To further illustrate the performance of themodel with combined
features, the accuracies under different orientations and their
average values in the four experiments are listed in Table 2. It can
be found that the model works well with similar accuracy for all
the orientations.

DISCUSSION AND CONCLUSION

We recorded the neural data in V1 and V4 of two rhesus
monkeys by utilizing two chronically implanted multi-electrode
arrays. In the experiment, the monkeys performed a selective
visual attention task, where the stimulus was a drifting sinusoidal
grating. Then, we extracted the PAC and AAC available in
the LFPs and constructed a LASSO model to predict the
grating orientation.

According to previous studies about the primate visual cortex,
selectivity for the orientation of a visual stimulus is an emergent
property of neurons in V1 (Hubel and Wiesel, 1968; Ferster and
Miller, 2000; Ringach et al., 2002a). In fact, V4 also seems to

FIGURE 6 | Mean-square error of the LASSO model with three features.

be involved in the processing of orientation information. V4
was originally characterized as a color area (Zeki, 1973, 1983).
However, subsequent studies also found prominent orientation
selectivity among V4 cells (Schein et al., 1982; Mountcastle et al.,
1987; Schein and Desimone, 1990; Roe et al., 2012). Therefore,
we simultaneously implanted two 6 × 8 multi-electrode arrays
in V1 and V4 to perform the data recording. Then, it is feasible
to calculate the PAC and AAC in these two areas to characterize
the orientation selectivity. Moreover, cognitive functions rely on
the coordinated activity of neurons in different brain regions.
Specifically, there are interactions in the link between V1 and
V4 (van Kerkoerle et al., 2014; Bastos et al., 2015). Thus, we
also investigated the PAC and AAC between the LFPs in V1
and V4, which were used as the input of the LASSO model.
In fact, most previous studies about the orientation selectivity
were based on neuronal firing activities (Ringach et al., 2002b;
Scholl et al., 2013; Mazurek et al., 2014). Instead, we used
LFP in a larger scale to construct a prediction model in this
study, which could effectively predict the grating orientation.
We think the principle behind this model is a novel direction
for exploring the orientation selectivity. Specifically, LASSO is
a regression analysis method, which performs variable selection
and regulation to enhance the prediction accuracy. Relating the
manner for selection and regulation of CFC in LASSO with the
neural information processing in visual cortex is an alternative
avenue to reveal the mechanism for generating orientation
selectivity. However, there is still a long way to achieve this goal,
and we will make more efforts in future studies.

As far as the features for characterizing the orientation
selectivity are concerned, the firing spikes of neurons is indeed
the most frequently used. However, our results show that
the PAC and AAC of the LFPs in V1 and V4 also exhibit
diverse preferences to related orientations. While LFP reflect
the oscillation of an ensemble of neurons, spikes are the firing
activities of an individual neuron (Katzner et al., 2009; Buzsáki
et al., 2012). Then, it is necessary to examine the performance
of the LASSO model when the firing rate is considered as
an additional input feature. To identify the firing spikes, the
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recorded raw signals were first filtered by using a 300–3,000-
Hz band-pass filter. Then, we determined the spiking time
with a threshold detection method and extracted the spike
waveforms. Finally, an unsupervised method based on wavelets
and superparamagnetic clustering were used to classify the spikes
(Quiroga et al., 2004). Figure 6 shows the mean square error
of the LASSO model with three features, i.e., PAC, AAC, and
spike firing rate. Compared with panel (C) in Figure 5, there is
no obvious improvement on the result of cross-validation. Also,
the predicting accuracy is not significantly improved (p > 0.2,
two-sided sign test). Here, only the results of monkey H is
presented. A similar result for monkey G can be obtained.
The reason for this result is that LFP represents the activity
of multiple neurons in a local region (Buzsáki et al., 2012),
and the CFC extracted from LFP is probably associated with
the spikes fired by individual neurons. Therefore, adding the
firing rate as an input feature cannot improve the predicting
performance. In future studies, we will use additional responses
extracted from LFP as inputs of the LASSO model. Hopefully,
an optimal combination of the features can be determined, and
consequently, the prediction accuracy and robustness of the
model will be improved.

In conclusion, a novel method is proposed in this paper to
predict the grating orientation, which is based on the LASSO
logistic regression model with two combined features of PAC
and AAC. Although the average prediction accuracy of the
model is 73.9%, i.e., the method cannot predict the orientation
perfectly, it is worthwhile to make some efforts to improve the
performance of the model. Our results suggest that the LASSO

model can effectively predict the grating orientation, which
provides an alternative direction for further research to explain
the orientation selectivity.
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