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Abstract: Environment perception is one of the major challenges in the vehicle industry nowadays,
as acknowledging the intentions of the surrounding traffic participants can profoundly decrease the
occurrence of accidents. Consequently, this paper focuses on comparing different motion models,
acknowledging their role in the performance of maneuver classification. In particular, this paper pro-
poses utilizing the Interacting Multiple Model framework complemented with constrained Kalman
filtering in this domain that enables the comparisons of the different motions models’ accuracy. The
performance of the proposed method with different motion models is thoroughly evaluated in a
simulation environment, including an observer and observed vehicle.

Keywords: filtering; constraints; IMM; maneuver targeting; maneuver classification; motion models

1. Introduction

Environment perception is vital for safe functionality as the decision-making layer
relies solely on its awareness of the given traffic scenario. Based on the current global
trend, the number of autonomous vehicles is expected to increase, requiring solutions for
new types of problems [1,2]. At present, the level of a considerable number of available
sensors, and thus the possible combination of sensor-fusions, can offer a wide scale in
cost and robustness [3]. Furthermore, the spread of the different type of driver assistance
systems create a demand for cost-effective testing methods in simulated environments [4].
Such methods have significant advantages like cost-effectiveness, test reproducibility,
investigating unsafe situations, different weather, and daytime conditions [5]. Vehicle
tracking evolved into a critical challenge in the automotive industry since it is necessary to
design advanced driver assistance systems such as Adaptive Cruise Control, Emergency
Braking System, Blind Spot Detection, or Collision Avoidance.

In the case of vehicle tracking, the next maneuver of the tracked object is unknown;
therefore, it cannot be decided in advance which motion model should be used during the
estimation, despite that the performance of the estimators relies highly on it [6]. Motion
models can be classified by complexity, starting from linear models [7], which are the
constant velocity (CV) and constant acceleration (CA) models. These models have limited
capabilities for describing more complex motions; however, the probability density function
is easier to handle. In the case of linear systems, from the data fusion point of view, Linear
Kalman Filter or Kalman Filter (KF) is the most commonly used approach [8]. Constant
Turn and Rate Velocity (CTRV) and Constant Turn Rate and Acceleration (CTRA) are more
complex curvilinear models considering rotation, where Extended Kalman Filter (EKF)
is a suitable solution that can handle nonlinearity. Generally, an appropriate choice of
the motion model can significantly increase the vehicle tracking system’s performance.
However, complexity does not always lead to a better performance [7]. There are many
ways to deal with the uncertainty of the used motion model, including the Multiple Model
(MM) filtering [9], where numerous filters can be designed and select the best prediction.
In other words, it examines all the possible combinations of the predefined models at
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each timestep and returns with the best estimation. Interacting Multiple Model (IMM),
which is a subtype of Multiple Model, is presented by Blom and Bar-Shalom [10] allows
different filters to run parallel and described in Section 2.3. Wenkang et al. compared
the traditional Square Root Cubature Kalman Filter (SCKF) to their IMM-SCKF algorithm
regarding vehicle state estimation [11]. The IMM is originally proposed with Kalman
filters [12], however particle filter realization also appeared in the literature [13–18].

The performance of the Kalman filter can be further increased by using state con-
straints. For example, suppose any boundaries limit the desired safe states. In that case,
those limits can be inserted in the filtering process as state constraints and improve its
performance with this additional information [19].

Kalman filter can handle state-space representations where both the measurement
and the transition equations are linear with Gaussian noise. Vehicle tracking tasks can also
be approached by Particle Filters (PF) [20], which is used for nonlinear and non-Gaussian
problems [21]. However, it is a computationally much more expensive methodology
than the Extended Kalman Filter, and any further increase in the number of particles
significantly slows down the data process. Object tracking has extended literature featuring
other techniques. Kowlaczuk et al. (2010) used Multiple Model Constrained Filtering
with Kalman Filter for air traffic control [22]. Farmer et al. (2002) applied Interacting
Multiple Model Kalman Filter for high-speed human motion tracking [23]. Zheng et al.
(2009) presented a face detection method using Particle Filter [24], and Kim et al. (2020)
introduced a vehicle position tracking method utilizing Lidar and radar measurements with
the help of EKF [25]. Zhao et al. (2018) implemented a multi-object tracking algorithm using
correlation filter [26]. Rakos et al. (2020) examined and compared various classification
methods for lane change tracking [27]. Toro et al. designed a multiple object tracking
algorithm, applying a particle filter-based Probability Hypothesis Density filter to track
hidden but likely present objects due to occlusion [28].

Even though a significant number of Kalman Filter-based methods can be found that
use the pre-fit residual, only a few apply the post-fit residual. Ormsby et al. presented a
solution, where they combined the traditional pre-fit and the post-fit residual, which serves
as a solution for other Multiple Model methods, like Multiple Model Adaptive Estimator
(MMAE) [29]. Henderson et al. considered the carrier-phase integer ambiguity problem
in the context of GPS positioning [30]. The authors used a multiple-model approach
with different ambiguity hypotheses. For model likelihood computation, the post-fit
residual and its covariance were used. Zhang et al. used the post-fit residual to estimate
the unknown measurement noise covariance matrix [31]. The utilization of the post-
fit residual increases the estimation performance and provides a better prediction for
maneuver classification. Moreover, selecting the best motion model is essential, likewise
considering a particular maneuver.

Contributions of the Paper

This work examines and compares four motion models (CV, CA, CTRV, and CTRA),
considering a maneuver classification method using constrained Kalman filtering with
multi-model estimation. The measurements come from radar and camera sources, and the
maneuvers of a road vehicle are detected and classified using various complexity of mo-
tion models. Later, the models are evaluated and compared based on their performance.
The constrained filters are arranged in the structure of the interacting multiple model esti-
mator. Constraints customize each filter to match a specific type of maneuver. The quality
of a filter is determined by examining the post-fit residual.

The current study only uses linear constraints, which enables the utilization of the
Kalman method. Therefore, the particle filtering approach is not necessary. On the other
hand, the primary purpose, to compare the motion models, gives the same problem for all
filtering paradigms.

The paper is structured as follows. Section 2 summarizes the theoretical background of
the presented method. The simulation framework for testing and the maneuver detection
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methods are presented in Section 3. Section 4 examines the performance of the estimator.
Concluding remarks are given in Section 5.

2. Methodology

In this study, multiple motion models are used for performance comparison purposes.
Therefore, the considered system is described in double measure concerning the motion
model; thus, the system can be described by a linear discrete-time dynamic model or a
nonlinear model [19]. The described model using linear state transition with time index k:

xk = Fkxk−1 + wk (1)

zk = Hkxk + vk (2)

where xk ∈ Rnx is the state vector, derived from the state transitions matrix Fk ∈ Rnx×nx and
wk ∈ Rnw process noise. zk ∈ Rnz is achieved through the observation model Hxk ∈ Rnz×nx

and observation noise vk ∈ Rnz . Both wk and vk is assumed to be a zero-mean Gaussian
noise, with covariance Qk: wk ∼ N (0, Qk) and Rk: vk ∼ N (0, Rk). The described model
uses nonlinear state transition with time index k:

xk = f (xk−1) + wk (3)

zk = h(xk) + vk (4)

where the new predicted state xk+1 is generated from function f and the measurement
prediction zk is calculated by function h.

2.1. Kalman Filter

Kalman Filter, which is the base of this study, is a linear recursive estimator [32]. For
nonlinear filtering problems, the Extended Kalman Filter is an effective solution, applying
the linearization through the computation of the Jacobian as the partial derivatives of the
matrices. The partial derivatives of Fk and Hk:

Fk =
∂ f
∂x

∣∣∣∣
x̂k−1|k−1

(5)

Hk =
∂h
∂x

∣∣∣∣
x̂k−1|k−1

(6)

The essential concept of the Kalman Filter is the following:

x̂k|k−1 = Fkx̂k−1|k−1 (7)

Pk|k−1 = FkPk−1|k−1FT + GkQkGT
k (8)

rk|k−1 = zk − Hkx̂k|k−1 (9)

Sk|k−1 = HkPk|k−1HT
k + Rk (10)

Kk = Pk|k−1HT
k S−1

k|k−1 (11)

x̂k|k = x̂k|k−1 + Kkrk|k−1 (12)

Pk|k = (I− Kk Hk)Pk|k−1 (13)

In (7) and (8), the a priori state estimate and the corresponding state covariance is
computed, while (9) and (10) define the pre-fit residual and its covariance, where Rk denotes
the measurement noise. In (11), the Kalman gain is calculated. The a posteriori state estimate



Sensors 2022, 22, 347 4 of 16

and error covariance are given by (12) and (13) For the Extended Kalman Filter (7) and (9)
should be replaced with

x̂k|k−1 = f (x̂k−1|k−1) (14)

rk|k−1 = zk − h(x̂k|k−1) (15)

The estimation quality is defined by a zero-mean PDF, using the pre-fit residual and
its covariance:

Λ = N (r, 0, S) (16)

The estimation quality can also be defined with the help of the post-fit residual and
its covariance:

rk|k = zk − Hkx̂k|k (17)

Sk|k = (I− HkKk)Sk|k−1(I− HkKk)
T (18)

2.2. Constrained Filtering

The Kalman filtering method is one of the most acknowledged filtering approaches;
however, occasionally, it is not robust enough [33]. In different cases, like maneuver classi-
fication, filter categorization can be a necessary solution that is reachable using constraints,
where the system is conditional to it, of which estimation can violate those, in case of the
inadequacy of integration of constraints in the system model or the filtering process. There
are numerous approaches to integrating the system model’s constraints or filtering methods,
such as measurement augmentation or estimation projection. Constrained filtering can
utilize this additional information and produce classes of outputs. The classification can be
achieved using defined upper or lower bounds. Constraints are differentiated in several
ways: equality or non-equality constraints, linear or nonlinear, soft or hard.

Linear equality constraints are formulated as follows:

Dkxk = dk (19)

and non-equality constraints:
Dkxk ≤ dk (20)

where dk ∈ Rnc is the constraint vector and Dk ∈ Rnc×nx is the constraint matrix.

2.2.1. Estimation Projection

One of the solutions to the problem is the estimation projection [19]. It investigates
even the state estimate fulfill a defined constraint. In this case, the state is projected in the
constrained space, which is formulated as follows:

x̂d
k|k = arg min

x

(
x− x̂k|k

)>
W
(

x− x̂k|k

)
(21)

where x̂d
k|k is the constrained state estimate, x̂k|k is the unconstrained updated estimate,

and W is a positive definite symmetric weighting matrix, which is chosen as P−1
k|k ; thus, the

form of the estimation is
x̂d

k|k = x̂k|k + Kp
k (dk − Dkx̂k|k) (22)

where Kp
k is

Kp
k = Pk|kDT

k (DkPk|kDT
k )
−1 (23)

and the covariance of the constrained state estimate is

Pd
k|k = Pk|k − Kd

k DkPk|k (24)
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Estimation projection can handle non-equality constraints filtering problems using
the form of (20). The rows of D and d corresponding to the active constraints are chosen
if x violates those; thus, a newly formulated constraint matrix and vector are created,
with which (21) can be solved:

Dkx̂k|k = dk (25)

2.2.2. Measurement Augmentation

The other used solution for equality constraint state estimation is measurement aug-
mentation [34]. Equality constraint (19) can be extended by additional noise (δk), consider-
ing the constraints as soft constraints; thus, it has to be satisfied relatively:

Dkxk = dk + δk (26)

The augmented measurement equation is[
zk
dk

]
=

[
Hk
Dk

]
︸ ︷︷ ︸

Hd
k

xk +

[
vk
δk

]
(27)

or in shorter form:
zd

k = Hd
k xk + vd

k . (28)

The covariance of the augmented noise term vd
k is Rd

k . When the noise term δk is zero,
it is called Perfect Measurements (PM) and handled as hard constraints. The equations are
the same as the Kalman Filter equations, but with augmented elements:

rd
k|k−1 = zd

k − Hd
k x̂k|k−1 (29)

Sd
k = Hd

k Pk|k−1(Hd
k )

T + Rd
k (30)

Kd
k = Pk|k−1(Hd

k )
T + Rd

k (31)

x̂k|k = x̂k|k−1 + Kd
k rd

k|k−1 (32)

Pk|k = (I− Kd
k Hd

k )Pk|k−1 (33)

2.3. Multi-Model Estimation

The multiple model (MM) approach helps to reduce the uncertainties of the model,
which assumes that the system behaves according to one of a finite number of models [9].
The fundamental concept of the multiple model approach is to run the designed models
parallel and select one with the highest performance [35]. In this study, the significant uncer-
tainties are regarding motion models and sensors considering maneuver tracking problems.

Each model calculates its likelihood based on its constrained post-fit residual and
the corresponding covariance designed using (22)–(24) in case of estimation projection
as follows:

rd
k|k = zk − Hkx̂d

k|k (34)

where rd
k|k is the constrained post-fit residual. The corresponding covariance is formulated

as follows:
Sd

k|k = Sk|k + HkKd
k DkP−1

k|k HT
k (35)

The zero-mean PDF is defined with the help of (16). In the case of measurement
augmented constraints, (29) and (30) are used for probability estimation.

2.4. Motion Models

Vehicle tracking must provide a decent position estimation. The two assets of the
motion models predict the vehicle’s future position and describe the dynamic behavior [7].
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The performance of the estimator relies on the type of the motion model; thus, it is also
feasible to compare motion models for certain applications [6]. However, it is challenging
to select an appropriate motion model in advance. Motion models can be classified based
on their complexity. In this study, four distinctive motion models are applied: Constant
Velocity (CV) and Constant Acceleration (CA) models, which are linear models, and Constant
Turn Rate and Velocity (CTRV) and Constant Turn Rate and Acceleration (CTRA), which are
curvilinear models (see Figure 1).

Figure 1. The applied motion models and their relations.

The lowest level motion models based on their complexities are Constant Velocity (CV)
and Constant Acceleration (CA) models. Linear models have the benefit of ensuring a great
state probability distribution, yet both of these models presume straight motions only; thus,
the state vectors are as follows:

xcv = (x, y, θ, v, ω)T (36)

xca = (x, y, θ, a, v, ω)T (37)

where the acceleration a can be derived from the velocity v, of which lateral and longitudinal
components are calculated using the heading angle θ. Yaw rate ω is ignored in linear models.
Curvilinear motion models Constant Turn Rate and Velocity (CTRV) and Constant Turn Rate
and Acceleration (CTRA) are on a level above, which can take into account the rotations.
The state vectors are as follows:

xctrv = (x, y, θ, v, ω)T (38)

xctra = (x, y, θ, a, v, ω)T (39)

However, for the utilization of these models, due to their nonlinearity, a filter is needed,
which can manage it. Therefore, in this study, the previously mentioned Extended Kalman
Filter (EKF) is used for that objective.

3. Evaluation

This section presents the case study of the maneuver classification method using
constrained Kalman filtering and IMM. Figure 2 shows the flowchart of the constrained
IMM filter. The built scenario, the actors, the established trajectory, and the simulation
environment is described in Section 3.1. The constraints corresponding to the maneuvers
are introduced in Section 3.2 and the type of the constraints likewise. The estimation
method and the used measurements are conferred in this subsection additionally.
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Figure 2. Dataflow of the proposed method.

Figure 3. Observer (rear) and maneuvering vehicle (front) in the simulation.

3.1. Environment

The study is implemented in Simulink, using Automated Driving Toolbox provided
by Matlab. In the scenario, two actors take place (see Figure 3). The observed vehicle
moves along a predefined trajectory performing various maneuvers. The observer moves
behind and predicts the maneuvers using radar and camera measurements. Two types of
maneuvers can be distinguished corresponding to the lateral motion and the longitudinal,
are described in Tables 1 and 2.

Table 1. Lateral maneuvers of the observed vehicle.

Maneuver Start Time [s] End Time [s]

Left lane 0 5
Lane change 5.1 6.4
Right lane 6.5 11.7
Lane change 11.8 12.6
Left lane 12.7 18.4
Lane change 18.5 19
Right lane 19.1 23.2
Lane change 23.3 23.9
Left lane 24 26.6
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Table 2. Longitudinal maneuvers of the observed vehicle.

Speed Start Time [s] End Time [s]

Gaining distance 0 1.5
Collision warning 1.6 3.1
Distance keeping 3.2 4.1
Losing distance 4.2 8.5
Distance keeping 8.6 24
Losing distance 24 26.6

The observer vehicle moves behind and takes measures via radar. Moreover, the ob-
server vehicle also detects the lane line using camera information; therefore, it can describe
the used lane line. The radar takes measurements in polar coordinates; thus, the collected
information is the angle γ, velocity v, and distance r between the two actors. The state
space is represented in various forms based on the used motion model. Four types of
motion models are used and compared in this study: the previously mentioned CV, CA,
CTRV, and CTRA. The state-space representations are described in (36)–(39); therefore,
the radar measurements zr = [γ, v, r] transformation is mandatory to be consistent with
the state vector during the filtering process. The distance part of the measurement vector
and the state-vector is not identical; therefore, the associated part of the covariance matrix
R1 = diag(σ2

θ , σ2
r ) is needed to be transformed likewise. The corresponding covariance is

calculated using the Jacobian polar to Cartesian transformation:

Rp = JR1 JT (40)

J =
[
−r sin θ cos θ
r cos θ sin θ

]
(41)

and

Rp =

[
σ2

r cos2 θ + σ2
θ r2 sin θ (σ2

r − σ2
θ r2) cos θ sin θ

(σ2
r − σ2

θ r2) cos θ sin θ σ2
θ r2 cos2 θ + σ2

r sin θ

]
(42)

The yaw rate is derived from camera information, which allows detecting lane line
as a polynomial. Camera measures the curvature derivative κ̇, curvature κ, the heading
angle θ and the lateral offset ylat; thus, zc = [κ̇, κ, θ, ylat]. Yaw rate ω is calculated using
the camera measurement of curvature derivative and curvature. Moreover, the distance
measure of the radar sensor is mandatory likewise.

Yaw rate ω is calculated as follows:

ω = ρ̇v (43)

where v is the doppler velocity and ρ̇ is

ρ̇ = κ̇x + κ (44)

where x is the longitudinal component of the distance measurement.
For each motion model, position error and maneuver probabilities are calculated.

The maneuver probabilities are collected using IMM, which allows running the correspond-
ing filters parallel, where each filter exemplifies a constrained specified maneuver. The
filters are implemented in Simulink. The state transition matrices F and matrices H are the
following, where T = 0.1 s is the sampling time:

FCV =


1 0 −Tv sin θ T cos θ 0
0 1 Tv cos θ T sin θ 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 (45)
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HCV =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

 (46)

FCA =



1 0 −Tv sin θ T2

2 cos θ T cos θ 0
0 1 Tv cos θ T2

2 sin θ T sin θ 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 T 1 0
0 0 0 0 0 0


(47)

HCA =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 (48)

The yaw rate ω is ignored by the constant velocity and constant acceleration motion
models; hence, the 0 value does not evolve through the state transition matrix F and matrix
H. Furthermore, heading angle θ and acceleration a are not measured, only predicted; thus,
ignored likewise in matrix H.

The state transition F and measurement H matrices for the CTRV model are

FCTRV =


1 0 ∂ f CTRV

x
∂θ

∂ f CTRV
x
∂v

∂ f CTRV
x
∂ω

0 1
∂ f CTRV

y
∂θ

∂ f CTRV
y
∂v

∂ f CTRV
y
∂ω

0 0 1 0 T
0 0 0 1 0
0 0 0 0 1

 (49)

where the partial derivatives are

∂ f CTRV
x
∂θ

=
v
ω

cos(θ + ωT)− v
ω

cos θ (50)

∂ f CTRV
x
∂v

=
sin(θ + ωT)− sin θ)

ω
(51)

∂ f CTRV
x
∂ω

=
v

ω2 (cos(θ + ωT) + ωT sin(θ + ωT)− cos θ) (52)

∂ f CTRV
y

∂θ
=

v
ω

sin(θ + ωT)− v
ω

sin θ (53)

∂ f CTRV
y

∂v
=

cos θ − cos(θ + ωT)
ω

(54)

∂ f CTRV
y

∂ω
=

v
ω2 (cos(θ + ωT) + ωT sin(θ + ωT)− cos θ) (55)

and

HCTRV =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 . (56)
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The state transition F and measurement H matrices for the CTRA model are

FCTRA =



1 0 ∂ f CTRA
x
∂θ

∂ f CTRA
x
∂a

∂ f CTRA
x
∂v

∂ f CTRA
x
∂ω

0 1
∂ f CTRA

y
∂θ

∂ f CTRA
y
∂a

∂ f CTRA
y
∂v

∂ f CTRA
y
∂ω

0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 T 1 0
0 0 0 0 0 1


(57)

where the partial derivatives are

∂ f CTRA
x
∂θ

=
a(sin θ − sin(θ + ωT)) + ω(aT + v) cos(θ + ωT)− vω cos θ

ω2 (58)

∂ f CTRA
x
∂a

=
− cos θ + Tω sin(θ + ωT) + cos(θ + ωT)

ω2 (59)

∂ f CTRA
x
∂v

=
sin(θ + ωT)− sin θ

ω
(60)

∂ f CTRA
x
∂ω

=
2a cos θ + (Tω2(aT + v)− 2a) cos(θ + ωT)−ω(2aT + v)) sin(θ + ωT) + vω sin θ

ω3 (61)

∂ f CTRA
y

∂θ
=
−a(cos θ + a cos(θ + ωT)) + ω(aT + v) sin(θ + ωT) + v sin(θ + ωT)− v sin θ

ω2 (62)

∂ f CTRA
y

∂a
= − sin θ + Tω cos(θ + ωT)− sin(θ + ωT)

ω2 (63)

∂ f CTRA
y

∂v
=

cos θ − cos(θ + ωT)
ω

(64)

∂ f CTRA
y

∂ω
=

2a sin θ + (Tω2(aT + v)− 2a) sin(θ + ωT) + ω(2aT + v)) cos(θ + ωT)− vω cos θ

ω3 (65)

and

HCTRA =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (66)

Curvilinear motion models (CTRV, CTRA) allow yaw rate and require nonlinear filters;
therefore, Extended Kalman Filter is used. Thus, linearization is mandatory, which is
described above. The heading angle θ and acceleration a is ignored likewise in the case of
linear models. The noise for the motion model is a discrete white noise, which is denoted
by covariance Q:

Q = ΓqΓT (67)

where Γ is the known disturbance matrix:

Γ =



0 0 0 0
0 0 0 0
0 0 T T2

2
T 0 0 0
T2

2 T 0 0
0 0 0 T


(68)

and T is the sampling interval.
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3.2. Constraints

Three lateral (Table 3) and four longitudinal (Table 4) maneuvers are introduced in
this study. In the constraints of the lateral maneuvers (Table 5), upper and lower bounds
are applied to the lateral motions as follows:

Table 3. Constraints for lateral maneuvers.

Mode Position Constraint Velocity Constraint

Right lane y < l − 0.5 ẏ ε N (0, 1)
Left lane y > l + 0.5 ẏ ε N (0, 1)
Lane change l − 0.5 < y < l + 0.5 ẏ ε N (0, 1)

where l denotes the lane width. These maneuvers define even the observed vehicle moves in lane or performing
lane change. The constraint corresponding to the right lane consists of an upper limit, calculated by the width
of the lane line. The left lane has lower limits, and the lane change maneuver constraint consists of upper and
lower limits. The position constraints are introduced using hard inequality constraints and estimate projection.
In contrast, the velocity component is derived as a zero-mean Gaussian because applying limitation is not required.

Four distinctive longitudinal maneuvers are introduced in the study based on the
distance and velocity difference as follows:

Table 4. Longitudinal maneuvers.

Maneuver Velocity Constraint Distance Constraint

Losing distance ẋ <= −1 x > 10
Gaining distance ẋ >= 1 x ε R+

Distance keeping ẋ = 0 x ε R+

Collision warning ẋ <= −1 x <= 10

Table 5. Constraint type of lateral maneuvers.

Maneuver Type of Constraint Estimation Method

Right lane Hard inequality Estimate projection
Soft equality Measurement augmentation

Left lane Hard inequality Estimate projection
Soft equality Measurement augmentation

Lane change Hard inequality Estimate projection
Soft equality Measurement augmentation

Velocity and distance constraints are applied in various longitudinal maneuvers.
Losing distance occurs when the observer is faster with at least 1 m · s−1 and the distance
between the two actors is more than 10 m. Collision warning arises when the velocity
difference is minimum −1 m · s−1, and the distance is maximum 10 m. Distance keeping
is implemented as a measurement augmented soft constraint; thus, the estimation is not
required to be explicitly zero, only approximately. Gaining distance occurs when the
velocity difference is at least 1 m · s−1.

The longitudinal constraints are implemented as follows (Table 6):
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Table 6. Constraint type of longitudinal maneuvers.

Maneuver Type of Constraint Estimation Method

Losing distance Hard inequality Estimate projection
Soft equality Measurement augmentation

Gaining distance Hard inequality Estimate projection
Soft equality Measurement augmentation

Distance keeping Soft equality Measurement augmentation

Collision warning Hard inequality Estimate projection

4. Results

The initial velocity of the observed vehicle is 30 m · s−1 and speed up subsequently to
35 m · s−1. The observer vehicle has an initial velocity of 35 m · s−1, which firstly slows down
to 30 m · s−1, then accelerates back to 35 m · s−1. The motion models and the corresponding
filters are evaluated in two aspects. Generally, seven filters run parallel, separated into two
classes. Three filters agree to the lateral maneuvers and four to the longitudinals using
the same motion models, and each model is evaluated regarding maneuver classification
and compared. Moreover, each motion model is assessed by position and velocity error
likewise. The mode transition probabilities are designed as

πlat =

 0.7 0.2 0.1
0.15 0.15 0.7
0.1 0.2 0.7

 (69)

where πlat is the mode transition matrix corresponding to the lateral maneuvers. The first
row and column are associated with the progressing in the left lane, the second is the lane
changing maneuver, and the last is the right lane. The mode transition matrix regarding
the longitudinal maneuvers πlon is designed as follows:

πlon =


0.67 0.01 0.31 0.01
0.01 0.58 0.11 0.30
0.21 0.21 0.57 0.01
0.01 0.21 0.21 0.57

 (70)

Finding the correct parameters for the transition matrix always represents a significant
concern. Consequently, trial and error based heuristic searches are conducted to capture
the proper parameters for our research.

Losing distance corresponding to the first row and column corresponds to a gaining
distance maneuver associated with the second, following the distance keeping prerogative.
The last row and column are responsible for collision warnings. The probabilities of the
observed maneuvers using the CTRA motion model can be seen in Figure 4. The left side
of the figure shows the probabilities regarding the lateral maneuvers. The right side is
corresponding the longitudinals.
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Figure 4. Probabilities of the investigated maneuvers using CTRA model.
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The accuracy of the model prediction is computed as follows. The most probable
model for each motion model is considered the estimated maneuver at each timestep.
These values, which are weighted by the mode probability, are compared to the predefined
maneuvers—described in Tables 1 and 2, resulting a prediction accuracy for each motion
model. Table 7 describes the model accuracy of the diverse motion models comparing
these. The first row denotes the classification precision of the different models regarding the
longitudinal maneuver, while the second highlights laterals. The parameters are calculated
as the ratio of time when the algorithm correctly classifies the maneuver.

Table 7. Accuracy of the models.

CV CTRV CA CTRA

lon 93.09% 91.73% 94.06% 93.91%
lat 89.59% 89.58% 89.74% 91.28%

The position error of the unconstrained filters using a specific motion model is cal-
culated in the Euclidean space and presented in Figures 5–8. Comparing the CV and the
CTRV motion models, allowing yaw rate assures a better estimation, thus lower error.

The unconstrained estimators’ root mean square error (RMSE) is applied on both
position components and presented in Table 8.

Table 8. RMSE of the models.

CV CTRV CA CTRA

X 1.4684 0.6427 0.4297 0.3626
Y 1.8002 0.6139 1.1480 0.8427

The two curvilinear motion models overcome the nonlinear models. CTRA and
CTRV models present the best estimation with approximately 0.5 m error in the X and
Y direction. In contrast, the estimation of the CV model comprises 1.5 m error. Even though
the curvilinear motion models return with the best estimate, thus the lowest error, it is
perceivable in Table 8 that the difference is negligible considering maneuver classification.
As mentioned above in Section 3.2, constraints help reduce the uncertainty of a system,
which is observable in this study likewise. Comparing CA and CTRA motion models,
the above statement applies her too, although with lower contrast.
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Figure 5. Position error in direction X (left) and Y (right) using the CV model.
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Figure 6. Position error in direction X (left) and Y (right) using the CTRV model.
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Figure 7. Position error in direction X (left) and Y (right) using the CA model.
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Figure 8. Position error in direction X (left) and Y (right) using the CTRA model.

5. Conclusions

This paper presents a scenario-independent maneuver classification method, and its
main purpose is to evaluate four different motion models in the given framework. The mea-
surement and the state vectors must match, while the constraints must be defined separately.
The presented algorithm utilizes the post-fit residual that profoundly enhances the accuracy
of maneuver prediction. It is also combined with the IMM framework that enables the
evaluation and comparison of the different motion models in a parallel manner. The algo-
rithm uses constrained filters in the IMM structure and detects various maneuvers of an
observed vehicle. The results of the maneuver classification are examined and evaluated
based on four different motion models. It highlights the idea that from the aspect of the
RMSE it is crucial to use the suitable motion model as the curvilinear models provide a
significantly better position estimation than the linear. However, it is comprehensible that
there is a modest difference between the models when constraints are applied as they alone
reduce model uncertainty, as mentioned earlier.

A flexible solution is implemented; thus, the algorithm can be efficiently extended
with new maneuvers. The IMM can face problems when the dimension of the various state
spaces are not identical. In this study, a dimension extension method is introduced, where
the state vector is extended to the same dimension with zero value. An other solution is
mixing different dimension state vectors; thus, a more flexible system is implemented [36].
With nonlinear constraints more complex and refined maneuvers could be defined [33].
As the Kalman Filter has limited capabilities to handle nonlinearities, particle filter-based
methods could be used instead to perform the filtering task [37]. The Variable Structure
IMM (VSIMM) can handle variable model sets adaptively; thus, it can improve the system’s
performance [38]. Baxter et al. [39] applied an adaptive motion model to track a person
based on head-pose. Likewise, switching the motion model adaptively considering the
performing maneuver can increase the system’s performance.
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Abbreviations
The following abbreviations are used in this manuscript:

CV Constant Velocity
CA Constant Acceleration
KF Kalman Filter
CTRV Constant Turn Rate and Velocity
CTRA Constant Turn Rate and Acceleration
EKF Extended Kalman Filter
MM Multiple Model
IMM Interacting Multiple Model
PF Particle Filter
PDF Probability Density Function
PM Perfect Measurement
RMSE Root Mean Square Error
VSIMM Variable Structure Interacting Multiple Model
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