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Abstract

Motivation: Kinetics is key to understand many phenomena involving RNAs, such as co-

transcriptional folding and riboswitches. Exact out-of-equilibrium studies induce extreme computa-

tional demands, leading state-of-the-art methods to rely on approximated kinetics landscapes, ob-

tained using sampling strategies that strive to generate the key landmarks of the landscape top-

ology. However, such methods are impeded by a large level of redundancy within sampled sets.

Such a redundancy is uninformative, and obfuscates important intermediate states, leading to an

incomplete vision of RNA dynamics.

Results: We introduce RNANR, a new set of algorithms for the exploration of RNA kinetics land-

scapes at the secondary structure level. RNANR considers locally optimal structures, a reduced set

of RNA conformations, in order to focus its sampling on basins in the kinetic landscape. Along with

an exhaustive enumeration, RNANR implements a novel non-redundant stochastic sampling, and

offers a rich array of structural parameters. Our tests on both real and random RNAs reveal that

RNANR allows to generate more unique structures in a given time than its competitors, and allows

a deeper exploration of kinetics landscapes.

Availability and implementation: RNANR is freely available at https://project.inria.fr/rnalands/

rnanr.

Contact: yann.ponty@lix.polytechnique.fr

1 Introduction

RiboNucleic Acids (RNAs) are fascinating biopolymers. Beyond

their coding capacities, they can serve as a medium for the transmis-

sion of genetic information, as in the case of highly structured RNA

viruses such as Ebola or HIV (Wilkinson et al., 2008). They can also

perform a large diversity of catalytic and regulatory functions, as

demonstrated by the 2474 functional families found in the current

release of the RFAM database (Nawrocki et al., 2015). This versatil-

ity is such that RNA is currently considered by a whole scientific

community as the most parsimonious explanation for the molecular

basis of the origin of life (Cech, 2015). This versatility, coupled with

the combinatorial specificity of its interactions with other nucleic

acids, makes RNA a tool of choice for designing nanoarchitectures

through programmable self-assembly (Li et al., 2011), or in the

blooming field of synthetic biology (Kushwaha et al., 2016).

A substantial proportion of the functions performed by RNAs

critically relies on the adoption of a stable 3D structure through a

pairing of its nucleotides, mediated by hydrogen bonds. A precise

structural modeling of RNA structure, possibly in interaction with

other molecules, is thus required to identify binding and catalytic

sites, and more generally formulate functional hypotheses Cruz and

Westhof (2011). Despite recent progress, such as SHAPE chemistry

(Smola et al., 2015), experimental techniques for RNA structure

resolution are still lagging behind high-throughput sequencing tech-

niques, leading to a striking asymmetry between the amount of

available structure and sequence data. It is a current challenge of

RNA bioinformatics, and the object of ongoing efforts for a whole

community, to accurately predict the structure of RNA from its se-

quence by integrating data of various origins (Miao et al., 2015).

RNA folding is inherently stochastic, and governed by the laws

of statistical physics (McCaskill, 1990). It is generally believed to be

hierarchical (Tinoco and Bustamante, 1999) which, in conjunction

with intrinsic computational limitations (Akutsu, 2000; Sheikh

et al., 2012), has led to an initial dismissal of complex topological

motifs such as pseudoknots within computational methods

(Isambert, 2009). The seminal work of McCaskill (1990) has
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demonstrated the computability in polynomial-time of the partition

function and the subsequent derivation of base-pairing probabilities

which provide realistic notion of supports for predicted base pairs

(Mathews, 2004).

However the assumption of a thermodynamic equilibrium fails

to account for the observed behavior of certain RNAs, which

strongly suggests the prevalence of kinetics effects in their folding

process. Perhaps the most prominent example can be found in ribos-

witches (Baumstark et al., 1997; Schultes and Bartel, 2000), RNAs

that have been found to adopt different conformations depending

on the presence/absence of a ligand, despite a significant difference

in free energies between the two conformers. This is hardly compat-

ible with the assumption of a thermodynamic equilibrium, which

would dictate the main adoption of the Minimal Free Energy (MFE)

structure regardless of the presence of the ligand. This is however

consistent with a kinetics-inspired model, where the ligand modu-

lates an energy barrier separating the two conformers in the folding

landscape, modifying the convergence speed towards the thermo-

dynamic equilibrium (Badelt et al., 2015). The prevalence of kinetics

effects can also be suspected in instances of co-transcriptional fold-

ing (Watters et al., 2016), or when transcripts undergo a fast degrad-

ation and the half-life of some transcript are much shorter than the

time taken to converge towards the thermodynamic equilibrium

(Sharova et al., 2009).

Computational methods for the study of RNA kinetics essen-

tially fall into two categories. A first category of methods, dubbed

simulation methods, perform a stochastic simulation of the folding

process at the base-pair (Flamm et al., 2000, Kinfold) or helix

(Danilova et al., 2006, RNAKinetics) step resolution, possibly

allowing for the presence of pseudoknots (Xayaphoummine et al.,

2007, kinefold). Sets of generated folding trajectories are analyzed

and main conformers, along with the evolution of their concentra-

tions through time, is easily obtained.

However, as noted in Flamm and Hofacker (2008), the number

of trajectories required to obtain reproducible results quickly be-

comes prohibitively large as the size of RNAs increases. For this rea-

son, a second type of computational methods analyze RNA kinetics

as a continuous Markov process, adopting a general four-steps pro-

gram: Generation of a representative subset of conformations;

Embedding of representative conformations into adjacency struc-

ture, whose main alternatives are barrier trees used by barrier

(Flamm et al., 2002), and the basin hopping graphs of BHGBuilder

(Kucharik et al., 2014); Estimation of transition rates from (ap-

proximate) energy barriers. The exact computation of this quantity

requires solving an NP-hard problem (Ma�nuch et al., 2011), and

available methods rely on direct path heuristics (Morgan and Higgs,

1998), or on upper bounds based on 2D projections of folding land-

scapes (Lorenz et al., 2009; Senter et al., 2015); Analysis of the evo-

lution of concentrations through time, typically through numerical

integration as provided by treekin (Wolfinger et al., 2004).

The present work pertains to the generation step, arguably the

most critical aspect of kinetics analysis. A first category of

approaches, such that RNASLOpt (Li and Zhang, 2011) and

RNAsubopt (Wuchty et al., 1999), rely on an exhaustive enumer-

ation of suboptimal structures within some predefined energy dis-

tance of the MFE. Popular alternatives, such as RNALocmin

(Kucharik et al., 2014) and RNALocopt (Lorenz and Clote, 2011),

rely on some variation on Boltzmann-Gibbs sampling. Kucharik

et al. (2014) have noted the difficulties of existing approaches rely-

ing on sampling to generate unique conformations, leading to the

adoption by RNALocmin of an adaptive heuristics similar to

simulated-annealing called n-scheduling to increase the sample

diversity as the Bolzmann ensemble of low-energy becomes satu-

rated. Despite such specific efforts, as shown in Figure 1, the number

of distinct structures decreases as the number of sample increases,

making it hard to reach alternative structures beyond a few kcal.mol�1

of the MFE structure.

2 Approach

We introduce the concept of non-redundant sampling to study RNA

kinetics, using locally optimal secondary structures as representative

structures. Working with a reduced conformation space allows to

mitigate the limitations of existing (redundant) sampling

approaches. The problem of constructing all locally optimal second-

ary structures was addressed in Saffarian et al. (2012). Here, we de-

scribe an alternative generation algorithm which is efficient, and

allows the specification of comprehensive structural restrictions

(Section 2.2). We then define the first non-redundant sampling algo-

rithm for locally optimal RNA structures (Section 2.3), allowing for

the exploration of RNA folding landscape. The two algorithms are

implemented within the standalone software RNANR.

2.1 Definitions
An RNA sequence w is a nucleotide sequence of length n over the al-

phabet fA;C;G;Ug. The symbol at position i is denoted by w½i�. A

secondary structure S is set of pairs of positions in w, called base

pairs, that are pairwise juxtaposed or nested. Specifically, if two

base pairs (i, j) and ðk; ‘Þ are such that i � k, then either i < j < k

< ‘ or i < k < ‘ < j. This definition implies that a secondary

structure is non-crossing, or pseudoknot-free, and each position is

involved in at most one base pair. As a consequence, it can be

encoded by a dot-parenthesis expression, where each base pair is a

pair of matching brackets and unpaired positions are reprented by a

dot. We also require that each pair (i, j) in S is valid, i.e. fw½i�;w½j�g
is in ffA;Ug; fC;Gg; fU;Ggg. Given a base pair (x, y), we denote hp

ðx; yÞ the helix of length p stemming from (x, y): this is the set of

base pairs fðx; yÞ; . . . ; ðxþ p� 1; y� pþ 1Þg.

2.1.1 Structural restrictions

The set of secondary structures on a given sequence can be further

restricted by enforcing additional constraints, giving rise to more

realistic structures. Those restrictions include: a) the minimum helix

Fig. 1. Comparison of local minima production speed for the SV11 RNA

switch L07337_1 (115 nt). Experiment reproduced from Kucharik et al. (2014)
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length a. In particular, isolated base pairs are forbidden for any

value a > 1; b) the maximum number of consecutive unpaired bases

in the structure b; c) the maximum number of branches within a

multiloop c � 1, which defines the maximum allowed number of

outermost base pairs within another base pair; d) the minimum

length of a hairpin loop h. These parameters are illustrated on

Figure 2. The special case a¼1, b ¼ n; c ¼ n and h¼1 corresponds

to the whole set of secondary structures.

Subsequently, we will use S as a shorthand for this search space,

i.e. the restriction of secondary structures that respect those param-

eters. Within this search space, we define the neighborhood of a sec-

ondary structure S as the subset of secondary structures on w that

can be obtained by adding or removing a single base pair in S.

2.1.2 Energy models

For a given secondary structure S on w, we associate a free energy

ES, computed with respect to a specific energy model. In this work,

we consider two energy models. The first model is a simple base-

pairing model where the energy is the number of base pairs. We call

it the Nussinov model in the spirit of (Nussinov and Jacobson,

1980), even if structural restrictions introduced in the preceding

paragraph significantly reduce the set of secondary structures. The

second model is the 2004 version of the Turner thermodynamic

model (Turner et al., 1988; Turner and Mathews, 2010). For a given

free energy model, we say that a secondary structure is locally opti-

mal if, and only if, it has minimal free energy within its neighbor-

hood. We respectively denote by ‘N and ‘T the sets of locally

optimal secondary structures (LOSSes) with respect to the Nussinov

and Turner energy models, and will respectively refer to them as

Nussinov LOSSes and Turner LOSSes in the following.

2.1.3 Thermodynamic concepts

From a free-energy model, one computes the Boltzmann factor Bs of

a secondary structure as Zs ¼ e
�Es
kT where Es is the free energy of s, k

is the Boltzmann constant and T is the temperature in Kelvin. The

partition function Z is obtained by summing the Boltzmann factors

of all the conformations in a set S:

Z ¼
X
s2S
Bs (1)

The Boltzmann probability of a given structure s in S is then simply

defined as PðsÞ ¼ Bs

Z . Finally, given a set of structures T � S, we de-

fine the coverage cðT Þ as the accumulated Boltzmann probability in

the set, also expressed as

cðT Þ ¼
P

t2T Bt

Z (2)

2.2 Building LOSSes in the restrained Nussinov model
In Saffarian et al. (2012), it is shown that locally optimal secondary

structures without structural restrictions can be built from substruc-

tures that are maximal by juxtaposition, called here flat structures in

short. We elaborate on this idea in order to account for the expres-

sive set of structural restrictions introduced in Section 2.1.

2.2.1 Flat structures

For any interval ½i; j� in w, a flat structure f is a sequence of juxta-

posed (non-nested) helices which is maximal, meaning that it cannot

be completed by a valid base pair between the positions left access-

ible by the helices. In other words, let x1; y1; . . . ;x‘; y‘ be positions

in w, such that i � x1 < y1 < . . . < x‘ < y‘ � j and such that ha

ðxk; ykÞ is a valid helix for each k, 1 � k � ‘. This sequence of heli-

ces is a flat structure f on ½i; j� if, and only if: for each secondary

structure S on ½i; j� containing f, if (x, y) is in S and not in f, then (x,

y) is nested in (xk, yk) for some 1 � k � ‘. We further assume that

‘ � c; yk � xk � 2a � h and xkþ1 � yk � b to meet the require-

ments on b, d and h. We denote by �‘
k¼1haðxk; ykÞ such a flat struc-

ture, assuming that x1 < . . . < x‘. We denote by F i;j the complete

set of flat structures associated with the region ½i; j� in w, as illus-

trated by Figure 3. When an interval ½i; j� is not associated with any

flat structure, we have F i;j ¼ feg (e is the empty flat structure) when-

ever j� iþ 1 � h, and F i;j ¼1 (empty set) otherwise. F i;j can be

computed using a dynamic programming scheme adapted from

Section 3.1.2, Theorem 2 in Saffarian et al. (2012).

2.2.2 A grammar for ‘N
Now comes the crucial observation that any locally optimal second-

ary structure of ‘N can be built up from a set of flat structures, com-

pleted with helix extensions as illustrated by Figure 4. Given a helix

hpðx; yÞ of length p, an extension is the addition of the valid base

pair ðxþ p; y� pÞ to form hpþ1ðx; yÞ. The dot-parenthesis notations

for the set of all structures of ‘N associated with an RNA w can be

modeled as a context-free language generated by the grammar

Gw ¼ ðN;T;R;YÞ, where

• N :¼ fAj
i;H

j
j ; 1 � i < j � ng is the set of non-terminal sym-

bols. Aj
i represents all locally optimal substructures within the

Fig. 2. Graphical representation of the structural restrictions supported by

RNANR. a is the lower bound on the size of helices. h is the minimum length

of a hairpin. c limits the maximum number of branches within multiloops.

Finally, b is the maximum number of nucleotides in unpaired regions

Fig. 3. Examples of flat structures. For the structural parameters a¼2, d¼ 3,

h¼1 and c¼ 3, the set F 1;18 of flat structures associated with the interval

½1; 18� consists of the five flat structures f1 � � � f5. Note that h2ð1; 7Þ�h2ð8; 14Þ
does not meet the condition on c, as positions 15 and 18 are left unpaired,

and thus is not a valid flat structure
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interval ½i; j�, and Hj
i represents the choice between a helix exten-

sion with the base pair (i, j) or starting a new substructure on the

same interval;
• T :¼ fð; Þ; :g is the set of terminal symbols;
• R is the set of production rules:

Hj
i ! ðH

j�1
iþ1 Þ if ði; jÞ valid for w and j� iþ 1 � h (P1)

Hj
i ! Aj

i (P2)

Aj
i ! :x1�i

Y
1�k� ‘

ða Hyk�a
xkþa Þa :xkþ1�yk�1

for each �‘
k¼1haðxk; ykÞ 2 F i;j such that

ðx1 ¼ iÞ _ ðy1 ¼ jÞ whenever ði; jÞ ¼ ð1; nÞ;

and where x‘þ1 ¼ jþ 1

(P3)

Using classic language notations,
Y

is the concatenation operator

and li denotes i � 0 copies of the letter l. Aj
i represents all locally op-

timal substructures within the interval ½i; j� (P3), and Hj
i represents

the choice between a helix extension with the base pair (i, j) (P1), or

starting a new substructure on the same interval (P2);

• Y :¼ An
1 is the start symbol.

This grammar has Hðn2Þ non-terminal symbols and Hðn2 þ
P

i;j

jF i;jjÞ productions. The proof of its completeness with respect to ‘N
can be adapted from the proof of Theorem 1 in Saffarian et al. (2012).

The condition ðx1 ¼ iÞ _ ðy1 ¼ jÞ in P3 ensures that Gw is unam-

biguous, and can be used as a conceptual template to derive other al-

gorithms, e.g. to compute the partition function (Waldispühl and

Clote, 2007) or base-pairing probabilities. Here, we use it on two

related applications: exhaustive enumeration of structures and non-

redundant statistical sampling of structures. While the former can be

obtained in a straightforward fashion, being the language of the

grammar, the latter is more involved and is the object of the next

section.

2.3 Non-redundant sampling algorithm
The large redundancy of stochastic sampling methods has been iden-

tified by previous studies as one of the major shortcomings of exist-

ing methods. Ah hoc heuristics, such as the n-scheduling technique

inspired by simulated annealing, have been introduced to circum-

vent such limitations, sometimes at the cost of a control over the

sampled distribution (Kucharik et al., 2014). Here, we propose an-

other approach based on an explicit avoidance of redundancy within

the sampling, adapting principles introduced by Lorenz and Ponty

(2013).

For the sake of simplicity, we illustrate those ideas by describing

a uniform sampling algorithm for structures of ‘N that are compat-

ible with a given RNA sequence. Starting from the precomputed sets

F i;j of flat structures, the algorithm computes the number of locally

optimal structures for each interval ½i; j� using DP equations. Those

equations are isomorphic to the productions of grammar Gw.

hði; jÞ ¼
P(

hðiþ 1; j� 1Þ if ði; jÞ is valid;

aði; jÞ

aði; jÞ ¼
Q

haðxk ;ykÞ2f hðxk þ a; yk � aÞ;

for all f 2 F i;j and when j� iþ 1 � h:

A stochastic backtrack, a concept independently introduced in enu-

merative combinatorics (Denise et al., 2010; Flajolet et al., 1994)

and RNA bioinformatics (Ding and Lawrence, 2003), can then be

used to generate elements of ‘N uniformly. Such a procedure choo-

ses at every step one of the possible productions of the grammar,

with probability proportional to its contribution to the overall num-

ber/weights of words. It considers a triplet (i, j, m), where ½i; j� is the

current interval and m is the current matrix, initially starting from

ð1;n; aÞ. At each step, it proceeds as follows, depending on the value

of m:

• m ¼ h: Choose aði; jÞ with probability aði; jÞ=hði; jÞ and backtrack

over the triplet ði; j; aÞ, otherwise append the base-pair (i, j) to the

output, and backtrack over ðiþ 1; j� 1; hÞ;
• m ¼ a: Choose a flat structure f ¼ ðhaðxk; ykÞÞ‘k¼1 2 F i;j with

probability

pf ¼
Q

haðxk ;ykÞ2f hðxk þ a; yk � aÞ
aði; jÞ ;

append all the helices in the chosen f to the output, and back-

track over the triplets ðxk þ a; yk � a; hÞ (if any).

Note that the sets F i;j are explicitly computed, and so are the proba-

bilities pf of choosing any flat structure f during the backtrack. It is

thus possible to order the flat structures in F i;j by decreasing prob-

ability, leading to a substantial speed-up during the backtrack.

2.3.1 Non-redundant sampling

The stochastic backtrack becomes much more involved in the pres-

ence of a predefined set of forbidden structures, e.g. singled out to

avoid redundancy, as the probabilities of the backtrack on disjoint

intervals can no longer be considered independent.

As a minimal illustration, consider two intervals I1 and I2 where

local sets of substructures fS1; S
0
1g and fS2; S

0
2; S
0 0
2g can be respect-

ively chosen, leading to the generation of 6 different structures.

Clearly, in the absence of forbidden sets, one simply needs to choose

uniformly within each set to draw each structure with probability

1/6, i.e. in the uniform distribution. However, if a given combin-

ation of structures has to be avoided, say S01S2, then the choice over

I1 now influences the valid combinations, and thus the probabilities,

of choosing a structure over I2. Namely, choosing S01 for I1 only

allows access to 2 viable alternatives for I2, while choosing S1 for I1

enables 3 alternatives over I2. In order to be uniform, a stochastic

backtrack must therefore choose S1 with probability 3/5, and S01
with probability 2/5. Once chosen, the remaining choice is uniform

over fS2; S
0
2; S
0 0
2g if S1 is chosen (prob.¼ 2=5� 1=2 ¼ 1=5), or over

fS02; S0 02g (prob.¼ 3=5� 1=3 ¼ 1=5) if S01 is chosen.

More generally, in order to pick local alternatives in a way that is

consistent with a predetermined distribution, one needs to access (or

compute) the overall mass of forbidden structures that can be gener-

ated before and after the choice. The idea of Lorenz and Ponty (2013)

consists in maintaining a dedicated data structure l, which enables

Fig. 4. All locally optimal secondary structures of ‘N generated by the gram-

mar Gw for the sequence, and using structural restrictions, described in

Figure 3
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efficient access to the overall count/weight lðTÞ of accessible forbid-

den structures from the current state f the backtracking stack T.

The modified non-redundant backtrack is similar in structure to

the classic one, but uses different derivation probabilities, starting

from a stack T ¼ fð1; n; aÞg. Let NðTÞ :¼
Q
ði;j;mÞ2T mði; jÞ denote

the overall number/weight of structures accessible from a given

state. At each iteration, it extracts a triplet (i, j, m) from T:

• If m ¼ h, choose aði; jÞ with probability

aði; jÞ �NðT0Þ � lðT 0 [ fði; j; aÞgÞ
NðTÞ � lðTÞ

where T 0 :¼ T � fði; j;mÞgg and backtrack over T 0 [ fði; j; aÞg,
or otherwise backtrack over T0 [ fðiþ 1; j� 1;hÞg, after adding

(i, j) to the output;
• If m ¼ a, choose a flat structure f ¼ ðhaðxk; ykÞÞ‘k¼1 2 F ai; j with

probability

pf ¼

Yjkj
k¼1

hðxk þ a; yk � aÞ �NðT 0Þ

�lðT 0 [ fðxl þ a; yl � a;hÞglÞ
NðTÞ � lðTÞ

where T0 :¼ T � fði; j;mÞgg, and backtrack over the stack

T 0 [ fðxk þ a; yk � a;hÞgk after adding the chosen f to the output.

In practice, both the data structure l and the N(T) can be updated

on-the-fly during the backtrack, so that the non-redundancy retains

the same asymptotic complexity as the redundant one.

2.3.2 Turner energy model and expressive structural restrictions

The various contributions of the loops in the Turner energy model

can easily be identified in the grammar. Namely, stacking pairs are

generated by rule (P1), while rule (P2) generates terminal loops

(hairpins) when f ¼1, internal loops and bulges when jf j ¼ 1, or

multiple loops when jf j > 1. Finally, the exterior loop corresponds

to ði; jÞ :¼ ð1;nÞ.
This enables the incorporation of Boltzmann weights, based on the

Turner energy model as weights in each of the DP equations. The in-

corporation of such weights during the stochastic (non-redundant)

backtrack leads to an algorithm for Boltzmann sampling, whose details

and (sketch of) proof of correctness are provided in Supp. Mat. 1.

3 Materials and Methods

All experiments were run on a laptop with Intel Core i7 5600 CPU

equipped with a quad core at 2.6 GHz with 16 GB of RAM under

Ubuntu 16.04 LTS.

RNANR was implemented in C, and is freely available. It inter-

faces the RNALib, using the CþþAPI provided in the Vienna pack-

age (Lorenz et al., 2011), to access the individual contributions of

the 2004 version of the Turner energy model. The tests were done

on a version compiled with gcc using GNU99 standard.

Gradient walks were performed used the move_gradient function

of the ViennaRNA package (Lorenz et al., 2011), which performs a

gradient descent in the Turner energy landscape and return one of

the closest local minima.

3.1 Datasets
Three datasets were considered in our validation effort. The uniform

dataset consists in random, uniformly distributed, RNA sequences

of length from 10 to 140 nt increasing by 10 nt, with 50 samples per

length.

In order to assess the characteristics of real RNAs, we also gath-

ered the RNAStrand dataset, which consists of the 154 RNA se-

quences of length between 120 and 170 nt downloaded from

RNAStrand database (Andronescu et al., 2008), filtering out un-

defined symbols.

Finally, since currently available kinetics data is too scarce to

allow for a quantitative comparison of tools, we created a dataset of

250 bistable sequences of length 100 nt. A bistable RNA sequence

presents two stable conformations differing by a sufficient number of

base pairs. We generated random uniform sequences of length 100 nt,

and retained only those whose most stable LOSS (MFE) had free-

energy lower than -30 kcal.mol–1 according to RNAEval (Lorenz

et al., 2011). Remaining sequences were then subjected to non-

redundant sampling of 1000 LOSSes using RNANR. We finally kept

the sequences which, within the sampled set, featured an alternative

metastable LOSS, differing by �20 base-pairs from the MFE struc-

ture, and having free-energy � 5 kcal.mol–1 higher than the MFE.

3.2 Program parameters
Unless noted otherwise, the settings of the different programs used

in our comparisons are those described in this section.

For RNANR, the default mode is that of non-redundant sam-

pling, with 20 samples. The structural restrictions include a min-

imum helix length a¼3, a minimal base pair distance h¼3, a

maximal unpaired region length d¼7, and a maximal number of

helices in multiloop b¼4.

For RNALocopt the number of returned samples is the same and

the temperature was set to 310.15K.

For RNASLOpt, the suboptimality percentage was set to 100%,

meaning that all LOSSes with energy ranging between the MFE and

0 are returned. Since we are interested in LOSSes independently of

their stability, we set the barrier_cutoff to an arbitrarily large value

of 30 kcal.mol–1 to speed up the computations by avoiding the com-

putation of the energy barriers. Likewise, the number of top stable

LOSSes can be chosen arbitrarily, here its value is set to 3.

RNALocmin was run using the second version of the built-in

adaptative search script, referred to as asearch and coded in Python

(Kucharik et al., 2014). The parameters used are those by default,

i.e. 10 000, 10 and 0.1 respectively for the number of samples per it-

eration, number of iterations and convergence parameter.

3.3 Theoretical speed-up of non-redundant sampling
We propose a closed-form formula to quantify the speed-up factor

induced by non-redundant sampling, i.e. the average number of oc-

currence of each unique samples. Let us consider a fixed sequence of

i unique structures, and let Ri be the number of structures, generated

by a redundant Boltzmann sampling algorithm, before returning a

novel iþ1-th structure.

It is easy to show (du Boisberranger et al., 2012) that

EðRiÞ ¼ 1�
Xi

j¼1

e
�Ej
kT

Z

 ! !�1

(3)

where Ej is the energy of j-th secondary structure, k the Boltzmann

constant and T the temperature in Kelvin. Since, for a given samples

sequence, the Rj are independent, then the overall number of gener-

ations needed to obtain k distinct elements via redundant sampling

is given by TðkÞ :¼ kþ
Pk

i¼0 EðRiÞ and the speed-up factor is simply

TðkÞ=k:
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3.4 Time benchmarking RNANR against its competitors
We reproduced, and report in Figure 1, the benchmark of Kucharik

et al. (2014) which compares the rates at which different sampling

methods produce unique local minima. It focuses on the SV11

L07337_1 RNA switch, a challenging 115 nt RNA whose landscape

is particularly deep and steep. For RNANR, the total number of gen-

erated samples was 4000. RNALocmin was run using both first and

second versions of asearch for maximum of 30 iterations. For both

tools, the sampled structures are not necessary Turner LOSSes, so a

gradient walk is performed, and duplicates were removed. The time

spent by the gradient walk is added to the generation time in the

benchmark. Finally, the total number of samples generated by

RNALocopt was set to 6 000 000. Other parameters were the same

as those specified above.

3.5 Comparison of folding landscape analysis efficiency
To compare the quality of sampled sets of structures, we considered

an artificial bistable dataset described in Section 3.1, and produced

representative sets of structures using the four programs mentioned

in Section 3.2. We analyzed sampled sets using a standard kinetic

analysis pipeline based on an estimation of energy barriers for each

pair of structures, followed by a numerical integration using treekin.

For each sequence in the bistable dataset, each program was

used to generate nsam¼50, 75 and 100 samples (output truncated if

necessary). Gradient walks were performed to each sample set, and

duplicated Turner LOSSes were removed. As a control, we also

included the results of RNAsubopt -e, adjusting DE to return at least

nsam LOSSes. Next, we estimated the energy barriers using the single

path heuristics implemented by the findpath tool (Flamm et al.,

2001). Due to the high computational cost of this operation, we re-

stricted it to pairs of states having base-pair distance at most bplim.

For each sequence, the value of bplim was set in such a way that

landscapes sampled by all tools were connected (with the possible

exception of RNAsubopt).

We then used Arrhenius rule to estimate the transition rate ki!j

from a structure i to a structure j as

ki!j ¼ e
�ðEBi!j

�Ei Þ

kT ;

where EBi!j
is the free energy of the barrier, Ei the free-energy of

state i, k the Boltzmann constant and T the absolute temperature.

The rate between unconnected LOSSes was set to be 0. These rates

were used to generate transition matrix. For each sampled set, we

identified a minimal free-energy (MFE) and a metastable LOSSes as

the most similar structures to the reference ones (see Section 3.1) for

the sequence.

Finally, we considered a scenario where the starting concentra-

tion of the metastable structure (or its closest neighbor in the

sampled set) is set to 1. We used treekin to determine the evolution

of the concentration of all LOSSes in the sampled set. Finally, we re-

port the switching time, i.e. the time at which the MFE structure

eventually achieves higher concentration becomes more frequent

than the metastable structure.

4 Discussion

4.1 Validating Nussinov LOSSes as key landmarks of

kinetic landscapes
4.1.1 Nussinov LOSSes are less numerous than Turner LOSSes

We compared the numbers of LOSSes returned by RNANR,

RNALocopt and RNASLOpt. For each sequence in the uniform

dataset, these sequences were subjected to runs of each software.

For RNANR, we performed three runs, each with different value of

c (no limit, 4 and 3 respectively). For RNALocopt and RNASLOpt

we performed one run for each with parameters as specified in 3.2.

The values of each run were then aggregated by the sequence length.

The results are shown on Figure 5.

Figure 5A shows the evolution of number of LOSSes for different

programs in function of sequence length. We observe that

RNASLOpt returns the smallest number of results. This is consistent

with the primary objective of Li and Zhang (2011) to reduce the

number of structures as a way to reduce the complexity. Besides ag-

gressive structural constraints, RNASLOpt returns only LOSSes that

have negative free energy, which is not the case for both RNANR

and RNALocopt. On the other hand, RNANR presents a lower

number of solutions than RNALocopt. This stems both from the re-

duction of search space by RNANR due to the structural restric-

tions, and to our focus on Turner LOSSes, while RNALocopt

arguably considers a larger neighborhood (Lorenz and Clote, 2011).

Our search space reduction, while not as aggressive as that of

RNASLOpt, leads to a substantial reduction of the complexity, both

theoretically and practically, as shown in Figure 5.

Of interesting note is the comparison between the numbers of

flat structures returned by RNANR for different values of c
(Fig. 5B). While the number of flat structures noticeably decreases

for lower values of c, the number of LOSSes does not seem to be par-

ticularly affected (Fig. 5A). This could be explained by the fact the

excluded flat structures participate in few of the complete LOSSes,

as substantiated by the fact that, for shorter sequences, the forma-

tion of multiloops with high number of branches is improbable.

This interpretation is consistent with an analysis of RNAStrand

structures (Fig. 6), which shows that very few (0.1%) RNAs of

length under 140 nt features multiloops of degree greater than 4

branches. For shorter sequences, it thus seems reasonable to limit c,

which results in lowered time complexity. Naturally, as shown by

Figure 6, this ceases to be the case for longer sequences. While for se-

quences shorter 300 nt the number of ignored structures for c¼4 is

A B

C

Fig. 5. Comparison of RNANR with RNALocopt and RNASLOpt. (A) Number

of structures returned by each program and in case of RNANR, for different

upper limits of c. (B) Number of flat structures returned by RNANR for differ-

ent values of c. (C) Benchmark for different programs, for the same cases as

(A)

i288 J.Mich�alik et al.

Deleted Text: a
Deleted Text: N
Deleted Text: n
Deleted Text: T


still low (1.92%), for sequences shorter than 400 nt the number of

multiloops with at least 5 branches accounts for 15.82% of all struc-

tures. Overall, we found that setting c to 5 constitutes a reasonable

tradeoff, reducing the computation time while keeping the number

of undetected LOSSes reasonable.

4.1.2 Nussinov LOSSes are very close to turner LOSSes

We used gradient walks to determine how distant are Nussinov

LOSSes, output by RNANR, to their counterpart in the Turner en-

ergy model. For each sequence in the RNAStrand dataset, a non-

redundant sampling of 1000 distinct structures was performed by

RNANR. These structures were then subject to a gradient descent,

resulting in a Turner LOSS. We tracked the modifications, both in

term of energy and base pairs, induced by the walk. Our results are

summarized in Table 1.

Overall, 52.49% of the Nussinov LOSSes were already local min-

ima with respect to the Turner energy model. Moreover, our analysis

shows that, from a Nussinov LOSS, it is sufficient to add or remove an

average of 0.703 base pairs, contributing an average 0.547kcal.mol–1,

to reach a Turner LOSS. A further analysis reveals differing behaviors

of whether or not the Turner LOSS, obtained as the outcome of the

gradient descent, belongs to the restricted search space.

Finally, it is worth stressing that the structures obtained after the

gradient walk are overwhelmingly unique (99.1%), suggesting a

homogenous coverage of the Turner LOSSes by the Nussinov

LOSSes. We thus conclude that the structures generated by RNANR

can reliably used as representatives for Turner LOSSes within the

folding landscape.

4.2 Efficiency of sampling methods for LOSSes
A first time benchmark, whose results are given on Figure 5C was per-

formed on our uniform dataset. We observe that, without limiting c,
RNANR is fastest for sequences of length under 80 nt. Around this

length, it is briefly matched by RNASLOpt, whose execution time in-

creases spectacularly around 110 nt. RNALocopt is faster than

RNASLOpt or RNANR (no limitation on c) for longer sequences

(more than 120 nt) due to the polynomial nature of the underlying al-

gorithm. However, for values of c set to 3 or 4, the execution time of

RNANR becomes polynomial, and RNANR becomes considerably

faster in practice than its competitors. Of course, one needs to exercise

caution before setting restrictions that could lead to the omission of

important conformations, and it would probably not be wise to set

c¼3 for RNAs beyond 80 nt. However, setting c¼4 makes RNANR

faster than any other tested software, while only missing a negligible

proportion of existing conformations (cf Fig. 6, for multiloop branch

number equal to 6) for sequences beyond 300 nt.

A second basic time benchmark, described in Section 3.4 and in

Figure 1, measures the rate of production of distinct Turner LOSSes

generated using different software. We observe that RNANR returns

more unique LOSSes in a given time, even when including the time

for precomputations and gradient descents, than both versions of

RNALocmin and RNALocopt (note that RNASLOpt does not per-

form sampling). This is mainly due to the redundancy within the re-

turned samples, as indicated by the diminishing production speeds

for both methods. The second version of asearch uses an alternative

strategy for n-scheduling which increases its number of samples lin-

early between iterations, and seems to eventually perform better

than its initial version. However it starts slower, proving that the re-

dundancy is still an issue.

4.3 Non-redundant sampling allows a deeper

exploration of kinetic landscapes
The main new contribution of RNANR is its non-redundant sam-

pling algorithm, which allows to obtain a set of locally optimal

A B

Fig. 6. Rationale for our restricted search space. Effect of structural limitations

on structure counts obtained from RNAStrand database (Andronescu et al.,

2008). (A) Proportion of structures having maximal multi loop branches

below a given threshold. A branch number within multi loop is the number of

stems sorting from a multiloop and is equal to cþ1. (B) Proportion of helices

having at least given length

Table 1. Discrepancy between Nussinov and Turner LOSSes

Samples% DDG Base pair dist.

Avg (SD) Avg (SD) Avg (SD)

Within search space 59.57% (21.00) 0.071 (0.309) 0.129 (0.289)

Outside search space 40.42% (21.00) 1.248 (0.925) 1.550 (0.619)

Global average 100.00% (—) 0.547 (0.817) 0.703 (0.757)

For our RNAStrand dataset, 1000 Nussinov LOSSes were generated. For

each structure, one of the closest Turner LOSS was determined using a gradi-

ent descent. On average, a Nussinov LOSS is distant by �0:547 kcal.mol–1,

and by 0.7 base pairs, from its closest Turner LOSS.

A B

C D

Fig. 7. Comparison of classical and non-redundant sampling. (A) Theoretical

speed-up T(k)=k using non-redundant sampling when compared to redundant

sampling for a 5S ribosomal RNA of Thermoplasma acidophilum (123 nt). (B)

Same test for a telomerase RNA of Tetrahymena silvana (154 nt). Purple

points indicate the coverage of 1� e, for e ¼ 5%; 1% and 0.1% respectively. (C)

Number of unique LOSSes and coverage c from 1000 samples generated by

RNALocopt on our uniform artificial dataset. The number of unique LOSSes,

generated using RNANR in order to achieve a coverage c, is plotted in (D)
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secondary structures, each of whom appears at most once. This

method of sampling has its advantages which will be discussed in

this and next subsection. The more obvious one, discussed here, is

the fact it allows to obtain higher number of different samples faster.

Instead of sampling same structures with free energy close to the

minimal free-energy over and over, it consecutively picks up the

structures with higher energies which were not sampled previously.

To demonstrate this point, we first computed the value of speed-

up T(k)=k as defined in Section 3.3 on two sequences: a 123 nt 5S

ribosomal RNA of Thermoplasma acidophilum, and a 154 nt tel-

omerase RNA of Tetrahymena silvana. A non-redundant sampling

was performed, until a coverage of 0.99% was achieved, and the

evolution of the speed-up was calculated. The results are shown on

Figure 7A and B. The purple dots mark the points with c ¼ 1� e for

e ¼ 5%, 1% and 0.1% for the final coverage.

The value of T(k)=k increases with k, which is expected since the

probability of generating a novel structure decreases with each iter-

ation. The speed-up thus becomes more important for higher values

of c (or lower values of �), where the probability of a new unique

structure almost vanishes. This means that the structures with higher

free energies are considerably easier to generate by non-redundant

sampling than by their redundant counterpart, since their initial

probability increases along with the sampling. Moreover, different

sequences exhibit different evolutions for c, as shown on Figure 7A

and B, depending on the concentration of the Boltzmann distribu-

tion around a few conformations. This means that higher values of c

will be more difficult to attain for some sequences than for others,

and for these cases the usage of non-redundant sampling might

prove more advantageous.

Our second test consisted in creating the samples using redun-

dant generation, and comparing these results with the non-

redundant sampler of RNANR. For this purpose, we used

RNALocopt to generate 1000 LOSSes for each sequence of our uni-

form dataset. For each set of structures, the number of unique sam-

ples and the coverage c were computed. RNANR was then used to

generate a set of structures achieving the same coverage c. The aver-

aged number of structures for each length was reported, leading to

the values shown in Figure 7C and D.

While the number of unique structures returned by RNALocopt

increases with the sequence length, the coverage value c diminishes.

This is caused by the increasing number of local minima for longer

sequences, which results in lower Boltzmann probabilities for indi-

vidual structures. This means that, to attain a given coverage c, a

sharply increasing number of LOSSes must be generated for longer

sequences, leading to a higher number of repeats. Figure 7D shows

that the number of samples necessary to achieve identical c by

RNANR as the one achieved by RNALocopt is considerably lower.

This partially stems from the fact that while RNALocopt encom-

passes the entirety of Turner LOSSes, RNANR explores a much

more drastically reduced search space, and thus requires less samples

to achieve a given coverage. On the other hand, this also means that

a target coverage is achieved faster while generating most of interest-

ing structures with the correct parameter settings, meaning that

RNANR can considerably speed up and simplify the analysis of the

folding landscape.

A B

Fig. 8. Efficiency of analysis performed by existing sampling software on bi-

stable structures. (A) Proportion of artificial bistable sequences for which

structures close to the reference states are generated. (B) Distribution of best-

performing software, as assessed by the lowest predicted switch time, for dif-

ferent values of nsam

A

B

C

D

E

Fig. 9. Illustration of bistable RNA analysis. Starting from an artificial 100 nt bistable RNA (A), metastable (B) and MFE (D) states are identified, along with key

landmarks of the kinetic landscapes, using the non-redundant sampling of RNANR (C, left) and RNASLOpt (C, right). Due to the stochastic nature of the landscape

reconstruction methods, the metastable structure identified by RNANR has 3 extra base pairs (B, colored in red). Numerical integration of the master equation

using Treekin (D) predicts a shorter switching time for RNANR kinetics landscape than its competitors, suggesting a better coverage of important kinetic inter-

mediate structures
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4.4 Non-redundant sampling of Turner LOSS enables a

faster, more accurate analysis of RNA kinetics
The main interest of non-redundant sampling is, besides its inherent

speed-up, its capacity to dig deeper within the space of suboptimal

structures when approximating the folding landscape of a given

RNA. In this final validation, we tested whether this increased diver-

sity translates into sampled sets of higher quality, leading to more

accurate kinetics analysis.

More specifically, we evaluated the capacity of a simple, real-

life, analysis pipeline to estimate the switching time of bistable artifi-

cial RNAs from samples of small size, generated using RNANR,

RNALocmin, RNASLOpt, RNALocopt and RNAsubopt. Details

are described in Section 3.5, and the results are summarized by

Figure 8, and illustrated by Figure 9.

First, we observe that RNANR detects structures that are similar

to both the MFE and metastable LOSSes more consistently than its

competitors. This is not overly surprising, since these two structures

were initially identified from an independent execution of RNANR

(albeit from a much larger sampled set, see Section 3.1). This however

means that RNANR generates sets of structures that, while not

strictly overlapping, represent the main dominant conformations even

for small sampled sets, and may be used for reproducible further ana-

lysis. RNALocmin and RNALocopt both suffered from redundancy,

and generally failed to identify the two dominant conformation for

about 	80% of the bistable RNAs. RNASLOpt exhibit the same

tend, probably due to an aggressive filtering of LOSSes.

Then we compared the switching time, defined in Section 3.5, as

predicted by our pipeline from the different sampled sets. We rea-

soned that, since both undersampled landscapes and single-path

heuristics lead to an overestimation of energy barriers, a good

sampled set, by populating important energy basins, would be asso-

ciated to a fast perceived kinetics, i.e. a fast switching time. On the

other hand, a set of scattered, or highly similar, structures would

practically disconnect the landscape, leading to slow predicted kin-

etics. Faster predicted switching times therefore indicate better ap-

proximate folding landscapes.

Our results, summarized in Figure 8, show that using RNANR

leads to the shortest switching time 	70% of the time, irrespec-

tively of the number of samples. RNASLOpt is a clear second, and

dominates other tools with respect to the switching time in about

20% of the sequences. While high computational demands, on

both the design and analysis tasks, disallowed us to repeat this on

larger bistable sequences, we expect this trend to carry for larger

sequences and sets.
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