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Abstract: Innate and adaptive immune responses have a well-known link and represent the distinc-
tive origins of several diseases, many of which may be the consequence of the loss of balance between
these two responses. Indeed, autoinflammation and autoimmunity represent the two extremes of
a continuous spectrum of pathologic conditions with numerous overlaps in different pathologies.
A common characteristic of these dysregulations is represented by hyperinflammation, which is an
exaggerated response of the immune system, especially involving white blood cells, macrophages,
and inflammasome activation with the hyperproduction of cytokines in response to various triggering
stimuli. Moreover, hyperinflammation is of great interest, as it is one of the main manifestations
of COVID-19 infection, and the cytokine storm and its most important components are the targets
of the pharmacological treatments used to combat COVID-19 damage. In this context, the purpose
of our review is to provide a focus on the pathogenesis of autoinflammation and, in particular, of
hyperinflammation in order to generate insights for the identification of new therapeutic targets
and strategies.
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1. Introduction

Autoinflammation, as an autoimmune response, is due to the excessive activation of
the immune system and shows a clinical phenotype characterized by alternating periods of
exacerbation and remission [1]. It is known that innate and adaptive immune responses
are closely associated, and related pathologies are the direct consequence of an incorrect
balance between these two responses [2].

The main differences in the deregulation of these two compartments of the immune
system are the components and the relative cells involved. As widely known, the pathogen-
esis of autoimmunity is characterized by a defect in adaptive immunity and the consequent
production of autoantibodies with the participation of T and B lymphocytes, while, con-
versely, autoinflammation involves innate immunity [3–6] and presents inflammatory
episodes in the absence of both autoreactive T cells and high autoantibody titer [7].

In particular, the cells of the innate immune system (epithelial and dendritic cells,
polymorphonuclear leukocytes, and macrophages) play a double role in the environment
of autoimmune diseases: they act not only as an immediate barrier to the inflammatory
process but also as effectors in the evolution of the inflammatory response.

The condition of hyperactivity of innate immunity usually manifests itself on a mono-
genic basis, and it is caused by the mutations of genes that codify for different proteins
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involved in the regulatory mechanisms of the inflammatory response: these are named
“monogenic” or “hereditary” autoinflammatory diseases [8,9]. This mechanism could
also be applied to pathological conditions identified as “multifactorial autoinflammatory
syndromes” [10]. This double effect is possible because innate immunity cells recognize
molecular patterns associated with both pathogens and tissue damage. The different muta-
tions of pathogenic pathways, in fact, induce real molecular and receptor recruitment in
order to determine a condition of hyperactivity of innate immunity.

In 2007, McGonagle et al. established that immunological disorders should be con-
ceived as a “continuum” between monogenic autoinflammatory forms and monogenic
autoimmune forms. To date, there is clear evidence that autoinflammatory diseases can
have both an adaptive and an autoimmune component. At the base of the monogenic forms,
there would be an activation of the adaptive immunity system: an example is represented
by the differentiation of CD4+ cells in Th17 in cryopyrin-associated autoinflammatory
syndromes (CAPS), which decreases in response to IL-1 blockage [11,12].

The pleiotropic role of T cell effectors (Th1 and Th17) in the mechanism of autoinflam-
mation is also evident in the pathogenesis of atherosclerosis [13]: the T-mediated immune
response in atherosclerosis presents an altered balance between effector T cells and Treg
cells, and the effects of these cells lead to vulnerable plaques that can break and cause
thrombotic events [14,15]. Both cell types play a central role in inflammation associated
with atherosclerotic lesions. The alteration of the balance between Treg and Th cells could
reflect on their phenotypic plasticity, determining a differentiation between regulatory and
inflammatory phenotypes [16,17]. In addition to the plasticity of Treg, in the autoinflam-
matory mechanism, it should not be underestimated that T effectors in many pathological
conditions can differentiate toward more pathogenic phenotypes during the progression
of disease. For example, under the influence of innate inflammatory cytokines, protective
Th17 cells lose the ability to produce IL-10 and become capable of producing IL-22 and
IFNγ by acquiring a pathogenic phenotype [18,19]. This transformation of Th17 cells into
pathogenic effector cells is promoted by cytokines expressed in the atherosclerotic plate
(IL-1β, IL-6, and IL-23) and, thus, promotes hyperinflammation [20,21].

The aim of this review is therefore to describe the main elements on which the patho-
genesis of autoinflammatory diseases is based in order to try to provide evidence demon-
strating that they may be useful in the diagnostic and therapeutic approach of pathological
conditions with the same clinical epiphenomenon. More specifically, the focus of this
manuscript is to describe how the inflammasome platform, hyperinflammation, and cy-
tokine secretion may be useful for identifying effective therapeutic targets for other diseases
with the same involvement.

2. Autoinflammatory Disease: Since the Beginning of ’90s a New Branch of Medicine

Autoinflammatory diseases are a branch of medicine that was officially born in 1997,
when the Mediterranean fever gene family was first identified (OMIM# 249100) [22].

Already in 1949, Siegal S. first described the symptoms of this disease concerning a
patient with a peritonitis attack associated with unusual symptoms [23], and, as such, the
historic term for familial Mediterranean fever was Siegal-Cattan-Mamou syndrome [24].
Hobart Reiman subsequently wrote a more complete description of this disease, using the
definition “periodic disease” for the first time [25].

At the end of 1990, besides Mediterranean familial fever, two other diseases with
recurrent or periodic fevers were added to the auto-inflammatory diseases: hyper-IgD
(hyperimmunoglobulin syndrome D, HIDS) and TRAPS (periodic syndrome associated
with tumor necrosis factor receptor 1) [26–28]. Over the past 20 years, an increasing number
of auto-inflammatory diseases, with great heterogeneity and generally an early onset, have
been discovered [29–32].

Autoinflammatory pathologies are characterized by a chronic course, and numerous
sufferers are burdened from damages in the long term. Some pharmacological treatments
for these pathologies have been available for a few years, and these drugs are able to
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control the main symptoms and allow subjects affected by these genetic diseases to have an
acceptable quality of life, although for the most severe symptoms, there are still no effective
treatments. In most cases, the pharmacological treatments used are new biological drugs
that act by blocking the molecules of inflammation produced in excess in the acute phase
of inflammatory epiphenomenon [33].

These diseases present a clinical picture that varies naturally according to the specific
causative genetic mutations, and they are characterized by the presence of continuous or
sub-continuous inflammation caused by the release of specific cytokines, with onset in the
first months/years of life presenting with fever, joint involvement, skin manifestations,
and serological markers [34]. In particular, the symptom that these autoinflammatory
pathologies have in common is precisely the fever that suddenly presents itself in full
health, with almost always a very high body temperature (39–40 ◦C).

The inflammation that characterizes these diseases represents a form of defense of
the organism from pathogens, and it is strongly associated with mutations of a protein
complex referred to as inflammasome. The recognition of foreign molecules determines the
transduction of the intracellular signal, which induces the expression of genes, including
interferon (IFN)-α, IFN-β, TNF (Tumor Necrosis Factor), gene sequences of interleukin 1
(IL-1), and other cytokines that represent disease markers whose identification is crucial,
and could represent specific therapeutic targets.

2.1. Role of the Inflammasome in the Pathogenesis of Autoinflammatory Diseases

In 2002, for the first time, Jürg Tschopp et al. identified the inflammasome as an intra-
cellular multiprotein complex that assembles in response to molecular patterns associated
with pathogens (PAMPs—pathogen-associated molecular patterns) and cellular or tissue
damage of various nature (DAMPs—danger-associated molecular patterns) that is able to
induce an inflammatory reaction [35].

To date, we know that the processes activated by inflammasomes are of great impor-
tance not only in an antimicrobial response but also in the regular metabolic pathways and
immune reactions [36]. Inflammasomes, in fact, are formed in the cytosolic compartment
of immune and inflammatory cells as an immune response to exogenous and endogenous
signals [37].

These complexes originate in the presence of a disorder condition caused by biological,
physical, chemical, and metabolic agents (e.g., deposition of uric acid crystals in gout,
cholesterol in arteriosclerosis, free fatty acids and lipids in obesity, and beta-amyloid
protein in Alzheimer’s disease) and high reactive oxygen species (ROS) levels; moreover,
they are involved in the reduction of the cytosolic concentration of potassium ions and
other factors. Inflammasomes are able to integrate a multitude of signals and converge
them into pro-inflammatory responses.

In the last 20 years, several inflammasomes have been identified [38]; however, the
currently most characterized one is the NLRP3 (NOD-like receptor protein 3) intracellular
inflammasome, which belongs to the NOD-like receptor (NLR) family. It is activated in
response to several signals and plays an important role in inflammatory diseases, au-
toimmune diseases, metabolic diseases (metabolic syndrome, obesity, diabetes, and gout),
cardiovascular diseases, neurodegenerative diseases (Parkinson’s and Alzheimer’s disease),
multiple sclerosis, and also in psychiatric diseases [39–42].

Recently, great attention has been given to the study of natural and synthetic com-
pounds that are able to modulate NLRP3 inflammasome in different inflammatory diseases.
Among these molecules, gallic and butyric acids, for example, demonstrated their potential
in modulating NLRP3 markers in intestinal inflammation [43], while the JAK (Janus kinase)
inhibitor tofacitinib ameliorates symptoms in rheumatoid arthritis by inhibiting NLRP3
inflammasome [44].

NLRP3 belongs to the pattern recognition receptor (PRR) family of innate immunity
that can detect signals from intracellular antigens and that are expressed in numerous
immune cells (tissue macrophages, dendritic cells, epithelial cells, neutrophils, and adaptive
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immunity cells) [45]. Toll-like receptors (TLRs) belong to the PRR group and are expressed
on the surface of the cell membrane and can be activated by molecules associated with
pathogens (PAMPs) and harmful signals in the presence of inflammatory non-bacterial
damages (DAMPs). Both types of molecules are able to overcome the cell membrane
and also directly stimulate the cytoplasmic cell receptors of the innate immune system.
These sensors include the NLRs that have a PYD domain (pyrin domain), a caspase
activator, and a CARD domain (caspase activation and recruitment domain). NLRP3, in
particular, is expressed in the cytosol of innate immunity cells (circulating monocytes,
tissue macrophages, dendritic cells, and neutrophils) and inflammatory cells.

This multiprotein complex induces the activation of inflammatory caspase-1 that, in
turn, activates interleukin-1β (IL-1β) and interleukin-18 (IL-18) cytokines, which give rise
to a systemic inflammatory response. In addition, the activation of caspase-1 can induce a
form of inflammatory cell death called pyroptosis.

Unlike most inflammatory cytokines that are regulated by selective transcription and
expressed as mature proteins, IL-1β and IL-18 are produced as pro-proteins and require
cleavage on inflammasome before their release and activity.

IL-1β is a multifunctional cytokine capable of acting on almost all types of cells and
organ systems in the human body. The secretion and concentration of circulating IL-1β and
IL-18 play a pleiotropic role in the immune response. First of all, they represent a response
to infection, but, at the same time, an excess of their concentration can lead to great toxicity,
manifesting itself as a systemic inflammatory response syndrome, and to an increase in
mortality [46,47].

The activation of inflammasome NLRP3 can be attributed to multiple causes, such
as the deregulation of mitochondrial activity resulting in the production of ROS, which
is also associated with a decrease in cytoplasmic potassium levels [48–50]. In addition,
the transcription factor NF-kB (Nuclear Factor kappa-light-chain-enhancer of activated
B cells) also has a regulatory role in the activation of inflammasomes and can contribute
to the initiation and development of inflammatory diseases, such as rheumatoid arthritis,
inflammatory bowel disease (IBD), and multiple sclerosis [51,52].

Finally, several studies suggested an important role of ubiquitylation in NLRP3 in-
flammasome regulation. Transcription/transduction inhibition is, indeed, not effective
in preventing inflammasome triggering and activation; otherwise, NLRP3 ubiquitina-
tion critically regulates its stability and function, and, as a consequence of a stimulus,
NLRP3 ubiquitination increases. It is however necessary to underline that these data
are in contrast with the evidence that NLRP3 undergoes de-ubiquitylation in response
to pro-inflammatory signals, inducing overall post-transcriptional changes that activate
NLRP3 [37].

2.2. Cytokines in the Auto-Inflammatory Diseases

Cytokines are a broad group of proteins and glycoproteins that are produced and
secreted by different cell types, especially by lymphocytes and macrophages, in response
to growth, differentiation, and cell death stimuli [53,54].

Cytokines include different growth factors involved in immune cell proliferation,
and, based on their functional activity, we can distinguish interferons and TNF family
members as regulators of innate and acquired immunity, chemokines involved in the
recruitment and chemotaxis of leukocytes during inflammation, and, lastly, interleukins
that act on leukocytes. Moreover, cytokines can be distinguished as primary and secondary
cytokines. Primary cytokines are synthesized immediately after the antigenic stimulus,
while secondary cytokines are produced following the stimulation of the primary ones [55].

In the contest of autoinflammatory diseases, cytokines play a crucial role because
they are responsible for the onset of systemic inflammation in the absence of infectious
triggers [56].

The hyperreactivity of innate immunity, which characterizes these pathologies, is
in most cases secondary to the mutations of genes encoding for proteins crucial in the
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regulation of inflammatory responses supported by inflammasome activation [57]. The
cytokine that characterizes the typical inflammation of these autoinflammatory pathologies
is IL-1β, a primary pro-inflammatory cytokine, which plays a fundamental role both
in innate immunity and inflammatory responses [58,59]. This cytokine is secreted by
different cell types, among which we can mention monocytes/macrophages, dendritic
cells, fibroblasts, and endothelial cells. Its synthesis as an inactive precursor (pro-IL1β) is
caused by bacterial infections, by the presence of TNF, or by the interaction of cells that
secrete it with CD4+ T cells [60]. The active form of IL-1β is obtained with proteolytic
cleavage by caspase-1. This protease is in turn activated by the stimulation of NLR proteins
and the consequent assembly of the inflammasome. Moreover, recent studies have shown
that the release of IL-1β is mediated by the receptor for extracellular ATP, P2X7, capable of
controlling potassium efflux from cells [61–63]. Other studies also suggest that the P2X7
receptor is implicated in the process of maturation from pro-IL1β to IL-1β through the
activation of caspase-1 [64].

The important role of this cytokine comes from the fact that it is involved in several
biological processes as a regulator of immunity and inflammatory responses, inducing
the expression of cyclooxygenase-2 (COX-2) and acute phase proteins, such as C-reactive
protein (PCR), serum amyloid-A (SAA), fibrinogen, and several protease inhibitors.

Another cytokine structurally homologous to IL-1 is IL-18, whose receptor belongs
to the superfamily of the IL-1R toll-like receptors but it is functionally very different from
IL-1 [65]. IL-18 has multiple biological effects: it induces the production of IFN-γ in NK
cells (antitumor activity), B cells, CD8, and macrophages, and it is a powerful inductor
of NO, showing marked antimicrobial activity toward intracellular pathogens [66]. Since
IL-18 can induce the production of chemokines of CC and CXC types and of IL-1β and
TNF-α, it plays a particularly effective role in inflammation.

Similar to IL-1β, it is synthesized as an inactive precursor and then activated by
caspase-1 or similar caspase-1 enzymes (activated by Fas/Fas-l) induced by inflammasome.
IL-18, in synergy with IL-12, induces the synthesis of IFN-γ in NK cells as a response
against infections by intracellular microorganisms, but, at the same time, hyperproduction
of IL-12 and IL-18 can induce severe phlogistic alterations, and, as such, IL-18 can be
considered a proinflammatory cytokine [67]. This cytokine seems to play a key role in
many inflammatory conditions: there are a lot of data in the literature that support a
strategic role of IL-18 in various autoimmune diseases, such as diabetes mellitus and
rheumatoid arthritis [68].

TNF is another important cytokine involved in the activation of local and systemic
inflammation, and this transmembrane protein is synthesized by monocytes, macrophages
and other cell types, such as lymphocytes and polymorphonuclear leukocytes. TNF is
involved in different cellular processes, such as apoptosis, cellular proliferation, and
inflammation. TNF induces the synthesis of different inflammatory cytokines, for ex-
ample, IL-8, and other chemotactic cytokines, such as monocyte chemoattractant protein-1
(MCP-1), which is involved in the increment of monocytes at the site of inflammation.

TNF and IL-1 are involved in the acute phase of inflammation in combination with
IL-6, an important marker of immune system activation, playing a role in thermoregulation,
bone homeostasis, and nervous system functionality.

IL-6, secreted from leukocytes activated by an antigenic stimulus, induces B lym-
phocyte differentiation and specifically modulates growth/arrest mechanisms of different
cellular types. The main role of IL-6 is pro-inflammatory but, being a multifunctional
cytokine, it could also have anti-inflammatory effects.

In the last 15–20 years, the role played by the different cytokines in the pathogenesis
of diseases has been identified, and this knowledge has acquired a strategic relevance for
the assessment of effective pharmacological treatments. Indeed, cytokine production and
their receptor antagonists represented the targets of a new category of biological drugs
that possessed a high specificity compared to previous pharmacological treatments. In
the past, for many of these autoinflammatory diseases, there was no specific etiological
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treatment; most of them were defined as orphan diseases, and the only effective therapy was
cortisone. This drug, with anti-inflammatory and immunosuppressive functions, also has
important collateral effects, especially in pediatric age since it blocks growth, delays bone
development, and causes weight gain and mood instability. Therefore, the identification
of cytokines as therapeutic targets has great relevance: examples of this are canakinumab
and anakinra, inhibitors of soluble IL-1β and its receptor, respectively; infliximab and
certolizumab, which bind TNF-α; tocilizumab, which blocks IL-6 (Table 1) [69–126].

Table 1. Therapeutic targets of biological drugs.

Cytokine
Target

Principal Cell
Source

Cytokine

Principal Cellular
Targets and Biologic

Effects
Biological Drug Structure Disease

TNF-α Macrophages,
T cells

Endothelial cells.
Neutrophils and

inflammation activation.
Induces apoptosis in

many cell types.

TNF
inhibitors [69]

ADALIMUMAB [70]
Human

Monoclonal
Antibody

- plaque psoriasis [71]
- psoriatic arthritis [72]

- rheumatoid arthritis [73]
- hidradenitis suppurativa [74]

- non-infectious uveitis [75]
- polyarticular juvenile idiopathic

arthritis [76]
- moderate-to-severe Crohn’s

disease and ulcerative colitis [77]

GOLIMUMAB [78]
Human

Monoclonal
Antibody

-moderate to severe ulcerative
colitis [79]

- rheumatoid arthritis, psoriatic
arthritis/spondyloarthritis [80]

ETANERCEPT [81] TNF- α
receptor-Fc fusion

- plaque psoriasis [82]
- psoriasis [83]

- juvenile idiopathic arthritis [84]
- psoriatic arthritis [85]

- rheumatoid arthritis [86]

INFLIXIMAB [87]
Chimeric

monoclonal
antibody

- idiopathic inflammatory
myopathies [88]

- moderate-to-severe Crohn’s
disease and ulcerative colitis [77]

- Behçet’s disease [89]
- rheumatoid arthritis [90]

- ankylosing spondylitis [91]
- psoriasis [92]

CERTOLIZUMAB-
pegol [93]

Mouse
Monoclonal

Antibody (Fab’
fragment)

- Crohn’s Disease [94]
- rheumatoid arthritis [95]

- psoriasis [96]

IL-1 β

Macrophages,
endothelial

cells, epithelial
cells

Endothelial cells,
hypothalamus, liver

IL-1 β
inhibitors [97]

ANAKINRA [98]
Interleukin-1

receptor
antagonist

- Still’s disease [99]
- rheumatoid arthritis [100]

- cryopyrin-associated periodic
syndrome [101]

- autoinflammatory
disorders [102,103]

CANAKINUMAB [104]
Human

Monoclonal
Antibody

-autoinflammatory disease [105]
- hyperimmunoglobulin D

syndrome [106]
- Familial Mediterranean

Fever [107]
- juvenile idiopathic

arthritis [108]

RILONACEPT [109]
Interleukin-1

receptor
antagonist

- chronic inflammatory disorders
[110]

- cryopyrin-associated periodic
syndromes [111]

- recurrent pericarditis [112]
- gout [113]

IL-6
Macrophages,

endothelial
cells, T cells

Liver, B cells IL-6
inhibitors [114]

TOCILIZUMAB [115]
IL-6 receptor
monoclonal
antibodies

- rheumatoid arthritis [116]
- giant cell arteritis [117]

- Still’s disease [118]
- juvenile idiopathic arthritis

[119]
- Macrophage activation

syndrome [120]

SARILUMAB [121]
IL-6 receptor
monoclonal
antibodies

- moderate-to-severe
Rheumatoid Arthritis [122]

SILTUXIMAB [123] IL-6 monoclonal
antibodies

- Castleman’s disease [124]
- non-Hodgkin lymphoma [125]

- autoimmune diseases [126]
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This therapeutic approach has promoted the research of specific cytokine markers
characteristic of the different autoinflammatory pathologies [127,128]: these studies have
also enabled the definition of the cross-talk between the different cytokines and the kinetics
of secretion during the activation of inflammation (Figure 1).
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3. Hyperinflammation and “Cytokine Storm”, Uncontrolled Immune Responses

Hyperinflammatory syndrome seems to have a twofold cause represented by an exces-
sive secretion of pro-inflammatory cytokines and, at the same time, also by a deregulation
of the immune response. Uncontrolled hyperinflammation can be caused by viral activa-
tion of immunity at the multiorgan level, which, in practice, triggers a real cytokine storm
that is not able to effectively allow the activation of the adaptive response, as it has been
well evident in SARS-CoV-2 infection [129,130]. In fact, although the spectrum of organs
affected by the viral action of COVID-19 is very broad, the negative effects are attributable
to the uncontrolled immune response rather than to direct tissue damage caused by the
viral infection.

The documented use of the term “cytokine storm” dates back to 1993, the year in
which Ferrara JL et al. described the response of a transplant against the host [131]. Starting
from that evidence, in the following years, this definition was consolidated in the field
of transplants [132–134], and, subsequently, it was extended to include an uncontrolled
inflammatory response in relation to other infectious diseases, with a prevalence in viral
infections H5N1 and SARS [135–137]. In fact, as for many other viruses, especially SARS,
MERS, and H5N1, a cytokine storm is used as a warning signal that indicates a progression
of the disease to the clinician. The absence of treatment for a cytokine storm caused
by COVID-19 produces immunopathogenic damage that can extend rapidly to organ
damage and lead to a fatal outcome [138]. Similarly to all viruses, COVID-19, in order
to exert its action, interferes with the innate immune system to promote pathogenicity
and alter the immune response of the host. Experimental evidence has shown that in the
case of COVID-19, its replication and virulence are related to viroporin proteins E and
Orf3a [139–141]. Clinical data associated viroporin protein activity with lung damage and
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an inflammatory state found in patients with SARS-CoV-2 and, in particular, with the
secretion of IL-1β. This clinical evidence is experimentally supported by a study conducted
on cell and animal models, where viroporin protein deletion was induced, resulting in the
reduced secretion of cytokine IL-1β [142].

It has been proven that this viporin protein, indeed, allows the passage through the
cell membrane of calcium ions that promote the activation of NLRP3 inflammasomes
re-sulting in the production of IL-1β [143–146]. Therefore, the ionic movements begin
the cytokine biosynthesis and potentially can support cytokine storms. In addition, other
experimental evidence has shown that the COVID-19 protein Orf3a triggers and activates
inflammasome through the efflux of potassium ions and the protein NEK7 or activates
NF-kB [147–150].

Other experimental data have shown that viroporin E can also activate NLRP3 inde-
pendently from the ion channels through ubiquitination [151].

Finally, as part of the NLRP3 activation in SARS-CoV-2 patients, recent studies support
the hypothesis that the P2X7R/NLRP3 component may be involved in immune dysfunction
caused by COVID-19 infection [152,153].

This evidence, collected to date on the inflammatory pathogenesis caused by viral
infection, shows how the immune system, normally essential to defend us from pathogenic
agents, can, however, be a powerful weapon that sometimes damages healthy cells.

During a cytokine storm, the immune system goes out of control, and the final effects
risk being more dangerous than the infection itself and may cause tissue damage, organ
failure, and eventually death [154].

A cytokine storm is an epiphenomenon associated with several diseases, including
malaria [155], lupus, and certain types of arthritis [156], and knowledge of the underlying
mechanisms of this state of hyperinflammation has been crucial to try to identify a potential
pharmacological strategy against the consequences of COVID-19 infection [157–159].

An example is tocilizumab, an antagonist of IL-6, which limits the effects of hyper-
inflammation and has been described by several studies [160–162], likewise anakinra, an
inhibitor of the IL-1β receptor [163–165].

Of note, the selective inhibition of specific cytokines, during viral infections or other
diseases characterized by hyperinflammation, is, however, always evaluated with great
caution, as it also inhibits physiological responses of the immune system. In fact, too strict
inhibition of several cytokines in some cases could produce the opposite effect, as it could
cause the organism not to respond to pathogens [166,167].

4. A New Immunity Component: Trained Immunity. What Is Its Role in
Autoinflammatory Diseases and Cytokine Storms?

Immune memory has always been closely associated with adaptive immunity, but, in
recent years, studies have shown that cells belonging to innate immunity, after an adequate
trigger, can effectively contribute to its formation. This immunity component is called
trained immunity [168–170].

This new part of the immunity system is defined as a reprogramming of the metabolism
of innate immunity cells as a response to both endogenous and exogenous stimuli. In par-
ticular the cells involved are monocytes and macrophages present in the tissues [171,172]
or hematopoietic stem cells at the bone marrow level [173].

At present, the administration of beta glucan [174] and the Bacillus Calmette–Guérin
(BCG) vaccine, known as the tuberculosis vaccine, represent the main stimuli able to induce
the trained immunity. In particular, the BCG vaccine is considered to be crucial for defense
against secondary infections [175–177]. Clinical studies have suggested that the BCG is
able to induce immunological changes both at the level of innate and adaptive immunity:
in particular in innate immunity cells, it induces histone modifications and epigenetic
reprogramming at the level of the promoter sites of the genes coding for IL-1, IL-6, and
TNF-α [178]. The vaccines and mild infections, indeed, induce the reprogramming of
innate immune cells for a consequent strong overall immunologic response to pathogens.
The changes induced by the stimuli, in turn, activate monocytes and macrophages, which
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induce the production of cytokines and alter the cellular metabolic state from oxidative
phosphorylation to aerobic glycolysis. This condition represents an advantageous situa-
tion in dealing with serious infectious diseases, such as COVID-19, because it decreases
the rate of morbidity [179]. However, under certain conditions, trained immunity may
also have harmful effects. Hyperactivation of the innate immune system for a prolonged
period as well as an intense immune reaction to secondary stimuli can represent a high
risk of developing chronic inflammatory diseases, such as atherosclerosis. In addition, the
phenotype associated with trained immunity was observed in patients with hypercholes-
terolemia [180].

In some experimental studies on disease models in vivo, the chronicity of the inflam-
matory state, proper also of trained immunity, has been suggested to be associated with the
progression of neurodegenerative diseases [181]. Studies on Alzheimer’s disease models
have revealed that chronic systemic inflammation can induce functional and even epige-
netic changes in microglia comparable to the systemic condition. These changes are then
correlated with abnormal synthesis of beta-amyloid, resulting in damage to the neuronal
network associated with a cognitive decline [182].

Trained immunity also plays an ambivalent role compared to cell death in tumor
progression; in fact, the conspicuous activation of the immune system is one of the main
criteria for the activation of pathways associated with cell death, but, at the same time,
chronic inflammation has been associated with tumor pathogenesis in several experimental
studies [183].

Moreover, in the delicate balance of innate immunity in the progression of tumor
pathogenesis, pro-inflammatory cytokines, such as IL-6 [184] and TNF-α [185,186], play an
important role and are secreted by cells that support this part of immunity. These cytokines
are identified as markers of carcinogenicity and metastasis in different tumors, such as
lung cancer, breast cancer, and oral spinocellular carcinoma.

5. Conclusions

The incorrect activation of innate immunity gives rise to heterogeneous forms of
auto-inflammatory diseases presenting clinical manifestation due to genetic dysregulation
and responses to external stimuli or adaptation to them. Furthermore, recent studies have
demonstrated that external insults are able to modulate the innate response, generating a
state of hyperinflammation [187].

In fact, it has been noted that vaccines (such as the BCG vaccine) play an important
role in training innate immunity, and this evidence could partly help to understand the
reason why children, subject to vaccinations in the early years of life, are the category least
affected by coronavirus infection [188–190].

Moreover, the induction of trained immunity and its effects in the pathogenesis of
autoinflammatory diseases has been an important tool in the management of serious viral
infections, such as COVID-19 [191]. Based on this evidence, other researchers have also
evaluated the role of influenza vaccination as an indirect system useful to increase the
body’s defenses against COVID-19 [192,193].

Experimental and clinical evidence on autoinflammatory diseases, even those that
are rare, has proved to be extremely useful in addressing the health emergency of the
pandemic caused by COVID-19, even simply in preventing/limiting the cascade effects of
hyper inflammation and cytokine storms [194–198].

To support these conclusions, indeed, it is notable that AIFA (Italian Medicines
Agency) has recently authorized anakinra, an anti-IL-1β drug (already used for rheumatoid
arthritis) for the treatment of patients affected by COVID-19, and other studies confirmed
the efficacy of biologic drugs for the early comparison to COVID-19 clinical manifesta-
tion [199–201].

In conclusion, further studies are needed to continue to deepen and explore the
pathogenesis of pathologies that derive from innate immunity defects, as they are rich
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in relevant transversal diagnostic and therapeutic implications and are important for the
understanding of the mechanisms of inflammation induced by COVID-19.
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