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Glassy dynamics of nanoparticles 
in semiflexible ring polymer 
nanocomposite melts
Xiaolin Zhou, Yangwei Jiang, Zhenyu Deng & Linxi Zhang

By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring 
polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer 
melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts 
(Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer 
melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the 
NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition 
occurs well above the classical glass transition temperature at which microscopic mobility is lost, and 
the topological interactions of semiflexible ring polymers play an important role in this non-classical 
glass transition. This investigation can help us understand the nature of the glass transition in polymer 
systems.

Polymer nanocomposites, which involve nanoparticles (NPs) dispersed in polymer melts, have received a lot 
of attention recently because of their potential in fabricating materials with novel mechanical, flame resistance, 
thermal, electrical, and photonic properties1. In order to fully realize their practical potential, it is important 
to develop a detailed microscopic understanding of dynamical properties of polymer nanocomposites2,3. As a 
consequence there have been many investigations to study the dynamics of NPs in polymer melts to optimize 
properties and to facilitate their processing4–10. Owing to the fact that there are several length scales involved 
such as the radius of gyration of the polymer chain, the radius of the nanoparticle, and the correlation length of 
the polymer, it is rather complicated to investigate the dynamical phenomenon of NPs in polymer melts. The NP 
diffusion coefficient in the large limit follows the Stokes-Einstein (SE) relation, and the corresponding behavior 
of small NPs is also described by the SE relationship but with a length-scale-dependent viscosity that is smaller 
than the macroscopic value11,12. However, the motion of the intermediate sized NPs is faster than SE behavior 
owing to hoplike motions through the polymer’s entanglement mesh13, and faster diffusion for the intermediate 
sized NPs is also predicted by a microscopic force-level theory14. Meanwhile, the dynamical behaviors of NPs 
in polymer melts are also studied experimentally. Mukhopadhyay et al. studied the diffusion coefficient of gold 
NPs in poly(butyl methacrylate) melts by tracking their motion within a diffraction-limited focus of a laser and 
found that the gold NPs diffuse 250 times faster than predicted by the SE relation for longer chains9. Archer et al. 
reported interesting dynamical behaviors of NPs grafted with PEG in PMMA melts and found that NPs exhibit a 
transition from diffusive to hyperdiffusive when Mw becomes greater than the entanglement molecular weight15. 
Rubinstein et al. proposed a NP hopping mechanism for NP diffusion, in which NPs must overcome a hopping 
free energy barrier to move and the entanglement strands slip around the NPs resulting in localization of the NP 
in a neighbouring cage16. In a word, the dynamical behaviors of NPs in polymer melts appears to be complicated 
by hopping effects, length-scale-dependent entanglement forces, polymer-NP interactions, NP shape as well as 
polymer topological constraints.

Ring polymers are formed by the simple operation of joining together the free ends of a polymer chain, and 
topological properties manifest themselves on a variety of properties of ring polymers because topological con-
straints of ring polymer chains decrease the conformational degrees of freedom17–27. For example, ring polymer 
melts exhibit self-similar dynamics, yielding a power-law stress relaxation, instead of the entanglement plateau 
followed by exponential decay observed in entangled linear chains22. The rings relax stress much faster than 
linear polymers and the zero-shear viscosity is found to vary as η​0~N1.4 which is much weaker than the N3.4 
behavior of linear chains23. Moreover, topological interactions of threading can lead to a novel glass transition 
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for the concentrated melts of long flexible ring polymers24. The effective interactions exerted on semiflexible ring 
polymers may lead to interpenetration with increasing concentration25, whereas flexible ring polymers adopt 
crumpled globular conformations in the melt state26. Moreover, a novel stack formation with a tube-like structure 
of quasi-parallel ring is found in semiflexible ring polymer melts27. Therefore, polymer chain topological con-
straints of ring polymers affects the statistical and dynamical properties of polymers seriously, and in this article, 
we investigate the dynamical behavior of NPs in semiflexible ring polymer nanocomposite melts. Our aim is to 
study the effects of polymer topological property and polymer stiffness on the dynamical properties of NPs in pol-
ymer nanocomposite melts. Fortunately, a novel glassy dynamics of NPs is revealed in the presence of semiflexible 
non-concatenated, unknotted ring polymer melts.

Model
In our simulation, a standard bead-spring model is used to model ring polymer chains28, and each ring polymer 
chain consists of N =​ 30 monomers with a monomer diameter of σ and a mass of m. To prevent overlap between 
monomers, a shifted and cut-off Lennard-Jones potential is used for all polymer monomers,
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where r is the distance between two monomecrs, and ε =​ kBT.
All neighbouring monomers are connected by the well-known finitely extensible nonlinear elastic (FENE) 

potential29:

= −







−

















<U r Kr r

r
r r( )

2
ln 1 ,

(2)
FENE

0
2

0

2

0

where r is the distance between two neighbouring monomers. The parameters K and r0 are chosen as K =​ 30kBT/σ​2  
and r0 =​ 1.5σ​29.

Angle bending potential between adjacent bonds is used to describe the stiffness of ring polymer chains,

θ= +U K (1 cos ), (3)bbending

where θ is the angle between two neighbouring bonds and the stiffness of ring polymer chains is controlled by 
varying Kb.

The NP/NP and NP/polymer are represented by truncated and shifted Lennard-Jones (LJ) potentials of the 
form30–33
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NPs are modeled as spheres of diameter d =​ 5σ​, which is widely used in studying the statistical and dynamical 
properties of polymer nanocomposite melts30,34–37, and the density of NPs is same as the ring polymers. The purely 
repulsive interactions of Weeks-Chandler-Anderson (WCA)32 are given by ε =​ 1.0kBT and rc =​  σ+r 2EV

1/6  with 
rEV =​ 4σ​ for NP/NP interactions and rEV =​ 2σ​ for NP/polymer interactions. In order to avoid the competition 
between the NP/polymer interactions and the topological interactions of semiflexible ring polymers, the purely 
repulsive interactions for NP/polymer interactions are adopted here. Meanwhile, we only focus on the purely 
repulsive interactions for NP/polymer interactions here because our aim is to investigate the effects of polymer 
chain topological constraints of ring polymers on the dynamical properties of NPs in melts. In fact, the purely 
repulsive interactions for NP/polymer interactions are widely adopted in investigating the statistical properties of 
polymer nanocomposite melts30–34,37,38.

In our simulation, the total number of NPs and polymer monomers are fixed to be NN =​ 6 and NP =​ 28800. 
The NPs and ring polymers are placed randomly in a very large box, and the NPT ensemble was used to compress 
the system of very low density to the desired equilibrium density. The systems were simulated in the NPT ensem-
ble for long time yielding the desired equilibrium density for different bending energies of polymer chains30,31,38.
Then the systems were equilibrated in the NVT ensemble for very long time. Reduced units (ε =​ 1,σ =​ 1, m =​ 1,  
ρ​−3 =​ 1, and τ σ ε= m /0

2  =​ 1 are chosen to be the units of energy, length, mass, monomer density, and time, 
respectively) are used and the time step is τ =​ 0.001τ0. The reduced temperature is T* =​ 1.0 in units of ε​/kB by 
using a Nose-Hoover thermostat. Periodic boundary conditions were applied during the whole process, and NP 
coordinates were recorded to calculate some related parameters. All simulations were performed by the open 
source LAMMPS molecular dynamics package39.

Results and Discussion
Figure 1 shows different trajectories of one NP in the projective xy-plane with different bending energies. NPs are 
caged in the small region for Kb =​ 40, see Fig. 1(c). The monomer number density C is defined as C =​ (N * Np)/L3, 
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here L is the box size after the systems have equilibrated in the NVT ensemble for very long time24. However, NPs 
can diffuse quickly in flexible ring polymer melts (Kb =​ 0), see Fig. 1(a). Therefore, the bending energy of ring pol-
ymers can seriously affect the diffusion of NPs in ring polymer nanocomposite melts. In fact, the motion of NPs in 
ring polymer nanocomposite melts can be characterized by the mean-square displacement of the center-of-mass, 
g3(t), which is defined as

= < − >g t r t r( ) ( ( ) (0)) (5)3
2

where r(t) is the position of a NP at time t, r(0) is its initial position, and the brackets <​  >​ represent ensemble 
averaging over many conformations and all NPs. For the case of NPs in flexible ring melts (Kb =​ 0) with a mono-
mer density of C =​ 0.4, see Fig. 2(a), the motion at short times is ballistic, and g3(t) ~ t x where x is close to 2. At 
later times, the NPs move diffusively and the slope of g3(t) is close to 1. This shows that the NPs move randomly 
in flexible ring melts with C =​ 0.4. Meanwhile, the similar behavior is also observed for NPs in semiflexible ring 
melts with a low monomer density of C =​ 0.25, see Fig. 2(b). In fact, for NPs with various bending energies of ring 
polymer melts at C =​ 0.4 or with various densities of semiflexible ring melts at Kb =​ 20, the motion at early times 
is superdiffusive with x ≈​ 2. For NPs in ring melts with Kb ≤​ 20 the motion becomes diffusive at long times with 
g3(t) ~ t. However, for NPs in semiflexible ring melts with large bending energy such as Kb ≥​ 30, see Fig. 2(a), the 
NPs are trapped by their neighbouring semiflexible ring polymers, and a plateau emerges at intermediate times 
where the motion is subdiffusive with 0.147 <​x <​ 1. This plateau becomes obvious for Kb =​ 40 and represents the 
slowing down of NP motion due to the cage effect of semiflexible ring polymers. This behavior is reminiscent of 
transient caging motion of particles in a uniformly heated granular fluid40, or in a quasi-2D system of bidispersed 
particles fluidized by a uniform upflow41. A Similar dependence of g3(t) has been also observed in trapping 
motion of NPs in polymer naocomposites due to emerging entanglement constraints7. Meanwhile, trapping 
motion of NPs in nanocomposite melts is also observed for the higher monomer density of C =​ 0.55 with the 
lower bending energy of Kb =​ 20, see Fig. 2(b).

Diffusion coefficients are estimated from

= →∞D
g t

t
lim

( )
6 (6)t
3

Whose average is taken over all NPs and vanishes when all the NPs are caged by the topological interactions 
of semiflexible ring polymers24. Diffusion coefficients depend on the stiffness of ring polymers seriously, and 
Fig. 3 shows that the ratio of D(Kb)/D0 decreases dramatically with the increase of stiffness of ring polymers (Kb). 
Here D(Kb) is the diffusion coefficient of NPs in polymer nanocomposite melts with a stiffness of ring polymers 

Figure 1.  The trajectories of one NP in the projective xy-plane with different bending energies of Kb =​ 0(a), 20 
(b), and 40 (c) in the interval of 105τ. Here the monomer number density is C =​ 0.4, and the total number of 
trajectories is 200.

Figure 2.  g3(t) of NPs in ring polymer melts with different bending energies for C =​ 0.4 (a) and with different 
monomer densities of ring polymers for Kb =​ 20 (b).



www.nature.com/scientificreports/

4Scientific Reports | 7:44325 | DOI: 10.1038/srep44325

Kb. For all systems with high monomer density there exists a critical frozen stiffness (Kb
*), for which all NPs are 

permanently trapped by the semiflexible ring polymers, i.e., for semiflexible ring polymer chains with Kb >​ Kb
*. 

NPs exhibit a transition from (at least partially) liquid, or diffusive, behavior to a glassy state in which the NPs are 
all irreversibly caged, although free to re-arrange their conformations to some extent. Therefore, it is natural to 
identify Kb

* as the value of Kb at which D(Kb) =​ 0. In practice, we define as “caged” states that display a D(Kb) one 
hundred times smaller than the diffusion coefficient of the flexible ring polymer case, D0. In fact, this method is 
also applied to investigate the glass transition of long flexible ring polymer melts24. From Fig. 3 one can notice that 
the decay of the D(Kb) becomes increasingly steeper as the density increases. Meanwhile, the dynamical proper-
ties of NPs in polymer nanocomposite melts also rely on the chain length of semiflexible ring polymer chains, and 
some detailed discussions are given in Supplementary Information. In fact, the ratio of the polymer size to the NP 
radius plays an important role in the dynamical process of NPs in polymer nanocomposite melts. Of course, the 
size of semiflexible ring chains depends on the bending energy Kb. For example, the root-mean-square radius of 
gyration Rg =​  < >Rg

2  is 2.29 for 30-monomer flexible ring chains (Kb =​ 0) and 4.52 for 30-monomer semiflexible 
ring chains (Kb =​ 40) with a monomer number density of C =​ 0.4. Therefore, the ratio of the polymer size to the 
NP radius η​ =​ Rg/(d/2) =​ 2Rg/d =​ (2 * 2.29)/5 =​ 0.92 for Kb =​ 0 and η​ =​ 1.81 for Kb =​ 40, which is consistent with 
the experimental result5. In the experimental study on dynamics of gold NPs in a polymer melt, the size of gold 
NP is about 5 nm, and the poly(n-butyl methacrylate) PBMA size is in the range of 2~18 nm, therefore, the ratio 
η​ ranges from 0.5 to 3.65, which is close to our simulation results.

Incoherent intermediate scattering function is used to study the dynamical process of the system, which is 
defined as39,42,43,

= < • − >F t i tq q r r( , ) exp[ ( ( ) (0))] (7)

where q is a wavenumber and the brackets <​>​ are averaged over many conformations and all NPs. In fact, F(q, t) 
is the space-Fourier transforms of the van Hove correlation function40, and is widely used in computer simulation 
of colloid science since it is readily available through light scattering experiments42–45. Figure 4 shows F(q, t) for 

Figure 3.  The ratio of D(Kb)/D0 as a function of Kb for NPs in ring polymer nanocomposite melts with five 
monomer densities of C = 0.25, 0.32, 0.35, 0.40 and 0.55. 

Figure 4.  Time dependence of the intermediate scattering function F(q, t) for different bending energy of 
ring polymers with a monomer density of C = 0.40. The solid lines are fits to Eqn (8) with different value of β​′​.
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different chain stiffness Kb with q =​ π/5. For flexible ring polymers, F(q, t) decays rapidly as NPs can move diffu-
sively, and NPs are in the liquid phase. For NPs in the glassy phase (Kb ≥ 30), F(q, t) decays slowly and it is little 
decorrelation since NPs are trapped by semiflexible ring polymers. In fact, Fig. 4 shows that F(q,t) includes a 
two-step relaxation in the intermediate value of Kb: the fast (early time) β​ relaxation which is the diffusion inside 
the “cage” and the α​ relaxation which corresponds to the time it takes for the NP to diffuse out of the “cage”. When 
Kb increases, there exists a plateau and the α​ relaxation occurs at increasing longer timescales. The α​ relaxation at 
late times can be described by a Kohlrausch-Williams-Watts (KWW) function45

τ∼ − ′ ′βt tqF( , ) exp( ( / ) ) (8)

where τ​′​ is the relaxation time and β​′​ is the stretching parameter. The relaxation time τ​′​ is defined as the time it 
takes for the values of F(q. t) to fall to a level of 1/e, i.e., F(q,τ​′​) =​ 1/e F(q.0)40. The exponential β​′​ and the fits of this 
stretched exponential form to the simulation data are shown as solid lines in Fig. 4. The exponential β​′​ decreases 
as the bending energy Kb increases. For flexible ring polymer melts, as the exponential β​′​ is close to 1, F(q. t) can 
be expressed approximately as exp(−​t/τ​′​), and this is the result for classical diffusion of NPs in liquid phase46,47, 
For semiflexible ring polymer melts, the relaxation time τ​′​ increases abruptly as Kb increases, and a significant 
slowing down of the dynamics is observed for large bending energy. Meanwhile, the relaxation time can also be 
described approximately by the Vogel-Fulcher law48,49, which is always widely used in studying the glass phase of 
particles,

τ′ −~ A K Kexp( /( )) (9)b
c

b

where A =​ 719 and Kb
c =​ 74.57 are the fitting parameters. Figure 5 shows that the relaxation times of NPs in nano-

composite melts depend mainly on the stiffness of ring polymers. As NPs go through the transition from the fluid 
phase to the glassy phase gradually, relaxation time shows no particle feature. However, we make sure that NPs are 
in the glassy phase for semiflexible ring polymers with large bending energy owing to the caging motion of NPs 
in semiflexible ring polymer melts

To study the non-Gaussian behavior of the NP diffusion, we compute the following non-Gaussian parameter50,

α =
−

−
−t

t
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r r

r r
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2 2

<​…​.>​ denotes an ensemble average over all NPs and initial time. This parameter quantifies the deviation from 
the Gaussian behavior of the probability density function for single-NP diffusion. For flexible ring polymers, the 
NPs are freely diffusing as the trapping cage isn’t formed by the surrounding ring polymer chains, and α​(t) is very 
small with a typical normal liquid for NPs, see Fig. 6. For semiflexible ring polymers, the motion of each NP is 
hampered by its ring polymers and becomes subdiffusive, hence, α​(t) is nonvanishing, indicating the dynamical 
heterogeneities. Additionally, we find that the peak height of α​(t) increases upon increasing the bending energy 
Kb. In fact, non-Gaussian dynamics due to cage-escape processes have also been observed in single-particle diffu-
sion in cluster crystals51,52, glasses53,54, and in a uniformly heat granular fluid40.

Extending an idea originally proposed for spin glasses55, one can construct a time-dependent ‘order parame-
ter’ that compares the liquid configuration at two different times56,57:

∫ ρ ρ≡ −Q t d d t wr r r r r r( ) ( , 0) ( , ) ( ) (11)1 2 1 2 1 2

Here, ri in the second equality refers to the position of NP i, and −w r r( )i j  is an “overlap” function which is 
unity for | − | ≤ ar ri j , where a is associated with the typical vibrational amplitude of the NPs, and we take 

Figure 5.  Relaxation time τ′ as a function of Kb for a monomer density of semiflexible ring polymers 
C = 0.4. 
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a =​ 2.5σ​56,57. In fact, Q(t) is the number of “overlaping” NPs when configurations of the system at t =​ 0 and at a 
later time t are compared, and Q(t) counts the number of NPs that either remain within a distance a of their orig-
inal position, or are replaced by another NP in an interval t. Figure 7 shows that for NPs in semiflexible ring pol-
ymer melts, Q(t) is characterized by a two-step relaxation, commonly observed in the intermediate scattering 
function F(q, t) in Fig. 4, as a result of the transient caging of NPs. At short times, NPs oscillate in a region smaller 
than the overlap radius a, i.e., <​ Q(t) >​ /M is close to 1, especially for large bending energy. Here M is the number 
of NPs. Meanwhile, there exists a short, initial relaxation of <​ Q(t) >​ and a longer, secondary relaxation. Therefore, 
we can conclude that the NPs in the semiflexible ring melts are caged and the liquid-glass phase transition occurs 
when the bending energy Kb increases. In general, the glass transition is associated with a reduction in the tem-
perature of liquids or by an increase in density of granular materials. Therefore, there exist a critical temperature 
(i.e.,Tg) or a critical density (C*) of granular material for the classical glass transition. However, in this work, we 
obverse another type of glass transition for NPs in semiflxible ring melts and the glass transition occurs only with 
increasing the bending energy of semiflxible ring polymers. Because that this glass transition takes place well 
above the classical glass transition temperature at which microscopic mobility is lost, we can choose the system 
temperature to be fixed at T* =​ 1.0. In fact, a topologically driven glass in long flexible ring polymers has been 
observed by Michieletto and Turner24, and they found that a concentrated solution of long ring polymers can be 
driven to a kinetically arrested state by randomly pinning a small fraction of ring polymers. In their model, the 
system temperature is also fixed, and the glass transition can’t be determined24, which is different from the classi-
cal glass transition.

The behaviors of diffusion coefficient in Fig. 3 show an increasing steeper dependence on the monomer den-
sity of ring polymers as the chain stiffness of ring polymers Kb increases. This implies that systems made of 
semiflexible ring polymer nanocomposite with large bending energy become extremely sensitive to the mono-
mer density of ring polymers. Figure 8 shows that the phase diagram of NPs in semiflexible ring polymer melts 
depends on the bending energy (Kb) as well as the monomer density (C) of ring polymers. There exists a critical 
density of polymer chains in nanocomposite melts: which is located at Cmin ≈​ 0.33, and is estimated according to 
the ratio of D(Kb)/D0 in Fig. 3. For C =​ 0.35, the glass transition occurs at Kb =​ 40, while for C =​ 0.32, the ratio of 
D(Kb)/D0 is 0.0129 at Kb =​ 100, which is greater than 0.01 yet. Therefore, we estimate that the absolute minimum 

Figure 6.  Time-dependent non-Gaussian parameter α for a monomer density of ring polymers C = 0.4 
with different bending energies. 

Figure 7.  Average time-dependent overlap “order parameter” < Q(t) > /M for a monomer density of ring 
polymers C = 0.4 with different bending energies. 
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Cmin is approximately equal to 0.33, which is an extrapolation of the data from Kb =​ 40. This is the minimal mon-
omer density of ring polymer chains to form the glass phase for NPs in ring polymer nanocomposite melts. In the 
glass phase, the NPs are caged by the topological interactions of semiflexible ring polymers22 and this is a novel 
phase transition because this occurs well above the classical glass transition temperature at which microscopic 
mobility is lost24. In fact, the topological interactions of semiflexible ring polymers play an important role in this 
non-classical glass transition. The stack structures for semiflexible ring polymers in nanocomposite melts hinder 
the motion of NPs27, and this is the main reason to form “caging” motion for NPs in semiflexible ring polymer 
melts.

Concluding Remarks
Dynamical behaviors of NPs immersed in semiflexible ring polymer melts with various bending energies are 
investigated by using molecular dynamics simulations. A novel glass transition for NPs in semiflexible ring poly-
mer melts is observed as the bending energy (Kb) increases. For NPs in flexible ring polymers, the classical 
dynamics occurs and the motion of NPs is diffusive. However, for NPs in semiflexible ring polymer melts with 
larger bending energy, the NPs exhibit a transition from liquid behavior to a glassy state in which the NPs are all 
irreversibly caged. Moreover, the relaxation times of NPs in semiflexible ring polymer melts can be expressed 
approximately as τ′ −~ A K Kexp( /( ))b

c
b , which is similar with the Vogel-Fulcher law. Meanwhile, the glass 

transition for NPs in semiflexible ring nanocomposite melts also relies on the monomer density of semiflexible 
ring polymers in melts. There exists a critical monomer density Cmin with Cmin ≈​ 0.33, which is the minimal den-
sity of ring polymer chains to form the glass phase for NPs in ring polymer nanocomposite melts. As our glass 
transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, our 
glass transition is different from classical glass transition, and there doesn’t exist the glass transition temperature 
for our simulation system. This investigation can help understand the nature of the glass transition in polymeric 
systems.
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