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Background: Acute myelogenous leukemia (AML) is a heterogeneous disease with

recurrent gene mutations and variations in disease-associated gene expression, which

may be useful for prognostic prediction.

Methods: RNA matrix and clinical data of AML were downloaded from GEO, TCGA,

and TARGET databases. Prognostic metabolic genes were identified by LASSO analysis

to establish a metabolic model. Prognostic accuracy of the model was quantified by

time-dependent receiver operating characteristic curves and the area under the curve

(AUC). Survival analysis was performed by log-rank tests. Enriched pathways in different

metabolic risk statuses were evaluated by gene set enrichment analyses (GSEA).

Results: We identified nine genes to construct a prognostic model of shorter survival in

the high-risk vs. low-risk group. The prognostic model showed good predictive efficacy,

with AUCs for 5-year overall survival of 0.78 (0.73–0.83), 0.76 (0.62–0.89), and 0.66

(0.57–0.75) in the training, adult external, and pediatric external cohorts, respectively.

Multivariable analysis demonstrated that the metabolic signature had independent

prognostic value with hazard ratios of 2.75 (2.06–3.66), 1.89 (1.09–3.29), and 1.96

(1.00–3.84) in the training, adult external, and pediatric external cohorts, respectively.

Combining metabolic signatures and classic prognostic factors improved 5-year

overall survival prediction compared to the prediction by classic prognostic factors

(p < 0.05). GSEA revealed that most pathways were metabolism-related, indicating

potential mechanisms.

Conclusion: We identified dysregulated metabolic features in AML and constructed a

prognostic model to predict the survival of patients with AML.

Keywords: acute myelogenous leukemia, clinical prognostic model, metabolism, nomogram, gene set enrichment

analysis
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INTRODUCTION

Acute myelogenous leukemia (AML) is one of the most
common types of adult acute leukemia (1) and shows striking
heterogeneity, with recurrent gene mutations and variations
in disease-associated gene expression (2). Although intensive
chemotherapy and haematopoietic stem cell transplantation are
the most common treatments, AML is fatal in approximately
half of younger patients and ∼80% of older patients because of
primary refractoriness, treatment-related death, or palindromia
(3). Risk stratification of leukemia is indispensable to ensure
accurate treatment. Recent studies have emphasized the vital role
of cytogenetics and molecular genetic analyses in hematological
malignancies as a new layer of leukemia pathogenesis. Guidelines
from the European leukemia network (ELN) in 2017 indicated
that molecular abnormalities in genes such as NPM1, FLT3-ITD,
CEBPA, RUNX1, TP53, and ASXL1 combined with karyotype
abnormalities can be used as an effective and comprehensive
stratification system for the diagnosis and treatment of AML (4).
However, even patients in the same layer of ELN categories show
different prognoses. For example, ∼50% of the AML patients
with t (5, 6) (q22; q22) RUNX1-RUNX1T1 have a favorable
prognosis according to ELN risk stratification but show poor
prognosis after intensive chemotherapy (7). Thus, additional
factors for risk stratification should be identified and combined
with analyses of cytogenetic and molecular abnormalities for
more accurate AML prognostic stratification.

Metabolic reprogramming has recently been recognized as
a vital and distinguishing feature of tumor cells (8, 9). The
pathogenesis, chemoresistance, and palindromia of leukemia
are also closely related to abnormal glucose metabolism,
amino acid metabolism, and lipid metabolism. It has been
reported that leukemia-initiating cells preferentially perform
glycolysis (5) and take up amino acids, the catabolism of
which is elevated in leukemia stem cells (10). A regulator of
lipid metabolism, TPD52, was reported to be overexpressed
and related to poor prognosis in patients with AML (11). By
disrupting the tricarboxylic acid cycle and eradicating leukemia
stem cells, the combination of B cell lymphoma 2 inhibitor
(venetoclax) and demethylated drugs (azacytidine) was found
to induce more durable remission than demethylated drugs
alone in older patients with AML (12–14). The first drug
targeting tumor energy metabolism approved by the US Food
and Drug Administration, the isocitrate dehydrogenase 2
(IDH2) enzyme inhibitor enasidenib, also showed encouraging
efficacy for treating IDH2-mutated relapsed or refractory
AML (15). Metabolic processes have been shown to play
important roles in the pathogenesis and progression of leukemia.
However, a metabolic signature panel has not been explored
to accurately stratify patients with AML to predict prognosis
and for treatment management. In this study, we constructed a
metabolic prognostic model from a Gene Expression Omnibus
(GEO) dataset, which was further validated in two independent
adult (The Cancer Genome Atlas Acute Myeloid Leukemia,
TCGA-LAML) and pediatric (Therapeutically Available
Research to Generate Effective and Treatments Acute Myeloid
Leukemia, TARGET-AML) databases to explore an efficient

metabolic signature for the more accurate stratification
management of AML.

MATERIALS AND METHODS

Datasets and Data Collection
The gene expression profiles of three AML cohorts were
retrieved and downloaded from the corresponding datasets. Raw
microarray data of GSE37642 (16) datasets were downloaded
from the GEO database (http://www.ncbi.nlm.nih.gov/geo/)
and normalized between different arrays. RNA-seq data from
the TCGA-LAML dataset and TARGET-AML datasets were
obtained from the UCSX Xena website (https://xenabrowser.
net/datapages/). Transcripts per million normalized values
were employed for further analysis. Detailed clinicopathological
data including patient age, sex, leukocyte count, percentage
of blast cells, French-American-British classification, genetic
risk category, and survival information were download
from the relevant item page on the UCSX Xena or GEO
dataset website. The metabolic pathway-related gene sets of
“c2.cp.kegg.v7.0.symbols” in gene set enrichment analysis
(GSEA) were utilized as candidate metabolic gene lists.
Genes were selected for further AML-related metabolic
signature identification only when they were listed in all
included cohorts.

Metabolic Signature Construction and
Validation
The GSE37642 dataset was used as the training cohort to
construct the metabolic risk model. Least absolute shrinkage
and selection operator (LASSO) Cox regression analysis was
adopted to identify the optimal weighting coefficient of the
prognostic metabolic genes. The metabolic model was built
according to the penalized maximum likelihood estimator with
1,000-fold cross-validation. The 1-SE criteria were employed to
determine the optimal values of the penalty parameter λ. TCGA-
LAML and TARGET-AML datasets served as the adult and
pediatric AML validation cohorts, respectively. The metabolic
risk score was generated for each patient according to the
unified formula determined in the training cohort. Patients were
further grouped into high- and low-risk groups according to the
optimal cut-off of the metabolic risk score determined by the
survminer package.

GSEA
GSEA v4.0.2 software (http://software.broadinstitute.org/gsea/
login.jsp) was used to identify potential biological pathways
comparing the high- and low metabolic-risk groups using the
c2.cp.kegg.v7.0.symbols gene sets. A metabolic signature was
generated for the GSE37642 dataset using metabolic pathway-
related gene sets from c2.cp.kegg.v7.0.symbols. Only validation
cohorts were included for enriched pathway analysis. A nominal
p < 0.05 was considered statistically significant. Gene cloud
biotechnology information (GCBI) and cytoscape 3.7.2 was used
to explore the interactions between model-related metabolic
proteins and other known related proteins.
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Statistical Analysis
Time-dependent receiver operating characteristic (ROC) curves
were drawn to assess the predictive performance of the metabolic
signature in the three cohorts. The area under the ROC curve
(AUC) was calculated using the survival ROC package. The
confidence interval was measured by the bootstrap method.
Overall survival (OS) was defined as the primary outcome and
calculated as the date of diagnosis or study entry to death from
any cause. Kaplan–Meier curves were draw using the “survival”
package and compared using the log-rank test. Clinical and
genetic information were explored for prognostic performance
via univariable- and multivariable Cox analyses. The χ

2-test
or the Fisher’s exact test was performed to compare category
variables. A nomogram was used to visualize and integrate the
metabolic signature and classic independent risk factors, age, and
genetic risk score for OS, the consistency of which was assessed
by calibration. The AUC was used to evaluate and compare the
prognostic value of the candidate factors. All statistical analyses
were performed using R software (version 3.6.0) and SPSS
version 24.0 software (SPSS, Inc., Chicago, IL, USA). A two-sided
p < 0·05 was considered statistically significant.

RESULTS

Patient Selection and Characteristics
Three AML cohorts including a total of 879 patients with
available survival data were included in the analysis. Seven
hundred and fifty-five candidate metabolic genes were retrieved
from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
metabolic pathway-related gene sets. GSE37642 was utilized as
a training cohort to estimate the prognostic metabolic model,
and patients in the TCGA-LAML cohort and the TARGET-
AML cohort served as external cohorts for metabolic model
validation. The workflow of data collection has been shown
in (Supplemental Figure 1). Patients from the GSE37642
and the TCGA-LAML cohorts were adults with AML with
a median age of 57 (range: 18–85) years and 59 (range: 18–
88) years, respectively, whereas those in the TARGET-AML
datasets were pediatric patients with AML with a median
age of 10 (range: 0–23) years. (Supplemental Table 1)
shows the detailed patient characteristics of the three
included cohorts.

Metabolic Risk Score Construction
The prognostic metabolic signature was trained using GSE37642
by the LASSO Cox regression. A penalized maximum
likelihood estimator was performed with 1000 bootstrap
replicates (Figure 1A). The optimal weighting coefficients
were identified by the regularization parameter lambda via
the 1-SE criteria (Figures 1A,B). Nine metabolic genes were
selected for inclusion in the prognostic metabolic model. The
formula for the metabolic model was as follows: metabolic
risk score= 0·018× ALDH2 expression – 0·103 × CYP2E1
expression + 0·078 × DNMT3B expression + 0·032 ×

ENPP2 expression – 0·010 × HAAO expression – 0·039 ×

ITPKA expression – 0·007 × PAFAH1B2 expression + 0·040
× PHGDH expression + 0·015 × PSAT1 expression. The

prognostic value of the selected metabolic genes was further
assessed by the log-rank test after classification as high levels and
low levels based on the corresponding optimal cut-off value in
the training cohort (Supplemental Figure 2).

Evaluation of Metabolic Risk Score
The sensitivity and specificity of the metabolic risk model
were assessed through time-dependent ROC analysis. The
AUCs for 1-, 3-, and 5-year OS were 0.73 [95% confidence
interval (CI): 0.69–0.77], 0.78 [95% CI: 0.74–0.83], and 0.78
[95% CI: 0.73–0.83] in the training cohort, respectively
(Figure 2A). The metabolic risk score was also calculated
for each patient in the other two validation cohorts by the
unified formula identified in the training cohort previously
mentioned herein. The AUCs for 1-, 3-, and 5-year OS were
0.68 [95% CI: 0.60–0.77], 0.71 [95% CI: 0.61–0.81], and 0.76
[95% CI: 0.62–0.89] in the adult external cohort and 0.64
[95% CI: 0.51–0.77], 0.64 [95% CI: 0.52–0.73], and 0.66 [95%
CI: 0.57–0.75] in the pediatric external cohort, respectively
(Figures 2B,C).

We further analyzed the distribution of metabolic risk scores
in patients with different survival statuses using a waterfall
plot. Patients with lower metabolic risk scores generally had
better survival outcomes than those with high risk scores
(Figures 2D–F). Patients were then divided into high- and
low-metabolic risk groups with the optimal cut-off determined
in each cohort. Patients with a low metabolic risk had a
significantly longer OS survival than those with a high metabolic
risk level in the training cohort, adult external cohort, and
pediatric external cohort (Figures 2G–I). The 5-year OS rates
were 14.5% [95% CI: 10.8–18.22] vs. 55.2% [95% CI: 47.6–
62.8] for the high- and low-risk groups in the training cohort,
8.7% [0.0–17.5] vs. 47.4% [30.9–63.9] for the high- and low-
risk groups in the adult external cohort, and 70.7% [59.3–82.1]
vs. 37.7% [28.3–47.1] for the high- and low- risk groups in the
pediatric external cohort, respectively. Considering the potential
effect of age on the metabolic gene expression, a sensitivity
analysis was also performed in the younger patients (≤65 years)
in both the training cohort and adult external cohort. After
excluding the elder patients, those AML patients with a low
metabolic risk still obtain a significantly survival advantage than
those with a high metabolic risk in the population ≤65 years
(Supplemental Figure 3).

Univariate and Multivariate Analyses
In addition to the metabolic risk score, other prognostic values
included age, RUNX1-RUX1T1 fusion and RUNX1 mutation in
the training cohort (Figure 3A), age and cytogenetic risk category
in the adult external cohort (Figure 3C), FLT3-ITD, WT1
mutation and cytogenetic risk category in the pediatric external
cohort (Figure 3E). After multivariable adjustments based on
the other clinical factors, the metabolic signature remained as
an independent prognostic indicator with a hazard ratio of 2.75
[95% CI: 2.06–3.66] in the training cohort (Figure 3B), 1.89 [95%
CI: 1.09–3.29] in the adult external cohort (Figure 3D), and 1.96
[1.00–3.84] in the pediatric external cohort (Figure 3F).
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FIGURE 1 | Construction of the metabolic model. (A) 1,000-fold cross-validation for variable selection in the LASSO regression via 1-SE criteria. (B) LASSO

coefficients of metabolism-related genes. Each curve represents a metabolic gene.

Clinicopathological Characteristics for
Different Metabolic Risk Levels
Patients with high metabolic risk signatures were associated with
an older age, lower percentage of RUNX1_RUNX1T1_fusion,
higher percentage of RUNX1 mutation, and higher platelet
counts in the adult cohorts (including training or adult
external cohort, Figures 4A,B and (Supplemental Table 1),
as well as higher leukocyte counts and higher percentages of
FIL3-ITD and blast cells in the bone marrow in the pediatric
external cohort (Figure 4C and Supplemental Table 1).
As expected, patients with higher metabolic risk levels
had higher cytogenetic risk levels in all three cohorts
(Figure 4 and Supplemental Table 1). Thirty-four paired
samples from TARGET dataset were further used to
analyse the metabolic risk difference between the disease
at diagnosis and relapse, and results showed that the
patients have a higher metabolic risk at the disease
relapse compared with the status at the initial diagnosis
(P = 0.022, Supplemental figure 4).

GSEA
GSEA was performed in the two external cohorts to validate
the metabolic-related pathway and explore other pathways
enriched in different metabolic signature categories. Significantly
enriched pathways were observed in the high metabolic risk
group, most of which were metabolism-related pathways
(Figures 5A–D). Among them, the biosynthesis of unsaturated
fatty acids, fatty acid metabolism, and glycine, serine, and
threonine metabolism were validated as enriched in the
high-risk groups in both the adult and the pediatric external
cohorts. Other metabolic signature-related pathways included
the JAK-STAT signaling pathway, PPAR signaling pathway,
mismatch repair regulation, regulation of autophagy, RNA
degradation, and DNA replication (Figures 5A–D). Forty-eight
proteins were explored from GCBI, which were interact with
the 8 metabolic proteins in the model (Figure 5E), except
for the ITPKA. In the protein-protein interaction (PPI)
network, we found that the CYP2E1 and ENPP2 is interact

with the proteins of phospholipase A2 family (PLA2G10,
PLA2G12A, PLA2G12B, PLA2G16, PLA2G1B, PLA2G2A,
PLA2G2C, PLA2G2D, PLA2G2E, PLA2G2F, PLA2G3,
PLA2G4A, PLA2G4B, PLA2G4C, PLA2G4D, PLA2G4E,
PLA2G4F, PLA2G5, and PLA2G6, Figure 5E). The interaction
of nine metabolic proteins were summarized alone by STRING
(Figure 5F).

Comparisons of Prognostic Factors and
Merged Risk Scores
The prognostic sensitivity and specificity of the metabolic
signature were compared to those of other potential prognostic
variables. The AUC for the 5-year OS showed a significantly
higher metabolic risk score (0.78 [95% CI: 0.73–0.83]) compared
to that with other variables such as age 0.66 [95% CI: 0.61–
0.71], RUNX1-RUX1T1 fusion (0.47 [95% CI: 0.43–0.49]), and
RUNX1 mutation (0.58 [95% CI: 0.56–0.61]) in the training
cohort (all p < 0·001, Figure 6A). Additionally, in the adult
external cohort, the metabolic risk model showed a numerically
but no statistically larger AUC for the 5-year OS than the
classic cytogenetic risk category (Figure 6B). In the pediatric
external cohort, the 5-year AUC of the metabolic risk score
was also equivalent to that of the cytogenetic risk category
(Figure 6C).

Further, to generate a more accurate evaluation system,
a nomogram was used to integrate the classic prognostic
factors, age, and cytogenetic risk category and the present
metabolic signature in the external cohorts (Figure 7A).
The calibration plots showed that the nomogram could
accurately predict the 1- and 3-year OS (Figure 7B). The
AUC for the 5-year OS in the merged score was 0.78
[95% CI: 0.72–0.84], which was found to be significantly
larger than that for the classic prognostic indicators
including age (0.65 [95% CI: 0.60–0.69]) and cytogenetic
risk category (0.69 [95% CI: 0.62–0.75]), indicating that
adding the metabolic signature can increase the net benefit to
predict OS compared to that with classic prognostic factors
(Figure 7C).
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FIGURE 2 | Time-dependent receiver operating characteristic (ROC) analysis, survival outcome analysis, and Kaplan–Meier analysis of the nine-gene signature in

acute myelogenous leukemia (AML). (A–C) Time-dependent ROC analysis for 1-, 3-, and 5-year overall survival (OS) of prognostic model in training cohort, adult

external cohort, and pediatric external cohort, respectively. (D–F) Distribution of risk metabolic score in survival outcome analysis for training cohort, adult external

cohort, and pediatric external cohort. (G–I) Kaplan–Meier curve of the prognostic model in the training cohort, adult external cohort, and pediatric external cohort.

DISCUSSION

Cancer cells rewire metabolic pathways to adapt to their
increased nutritional demands for energy, reducing equivalents,
and cellular biosynthesis (17). Leukemia cells vary the
body’s systemic physiology by impairing both insulin
secretion and insulin sensitivity in the host to provide
increased glucose to leukemia cells (18). Meanwhile,
metabolism plays an important role not only in the
development but also in the prognosis of leukemia (19, 20).
However, prognostic models based on metabolic genes
are lacking.

In the present study, a significant prognostic model
based on nine metabolic genes was established in a

training cohort and further verified in two independent
external validation sets. The group that showed a high-
risk score had poor prognosis, which was consistent
across the three cohorts. The metabolic model showed
a stably high prognostic value for AML, particularly for
the survival of adult patients with AML. Moreover, the
combination of classic prognostic factors including age and
cytogenetic factors with our metabolic model improved
the survival prediction compared to that with single classic
risk factors, supporting the contention that the prognostic
metabolic model can be utilized to supplement existing
prognostic models.

In the present study, nine metabolism-related genes were
identified and included in the prognostic model. The expression
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FIGURE 3 | Forest plot of the univariate (left) and multivariate (right) Cox regression analysis in the training cohort (A,B), adult external cohort (C,D), and pediatric

external cohort (E,F) for acute myelogenous leukemia (AML). BM, bone marrow; CNS, central nervous system.
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FIGURE 4 | Heatmap of the nine-gene signature and clinicopathological characteristics at different metabolic risk levels for training cohort (A), adult external cohort

(B), and pediatric external cohort (C). Each column showing gene expression or clinicopathological state represents a sample and each row represents one

characteristic or gene in the model. The expression levels of the nine genes are shown in different colors. Blue and yellow indicate low- and high-risk levels,

respectively. BM, bone marrow; FAB, French–American–British classification; NA, not available; CNS, central nervous system.
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FIGURE 5 | Significantly enriched KEGG pathways in adult external cohort and pediatric external cohort based on GSEA. (A) Top 20 representative KEGG pathways

in high-risk patients in adult external cohort (p < 0·05). (B) Top 20 representative KEGG pathways in high-risk patients in pediatric external cohort (p < 0·05). (C)

Representative metabolic pathways in high-risk patients in adult external cohort. (D) Representative metabolic pathways in high-risk patients in pediatric external

cohort. (E) The protein-protein interactions between the metabolic model related proteins and the other proteins. The model related proteins are shown in blue circles,

and the size of which is determined by the number of interacting proteins. ITPKA has no known interactions with other proteins. (F) The interactions of 9 metabolic

proteins.

of DNMT3B, ALDH2, ENPP2, PHGDH, and PSAT1 was
negatively correlated with favorable outcomes, whereas the
expression of CYP2E1, HAAO, ITPKA, and PAFAH1B2 was
positively correlated with favorable outcomes. Most of the nine
genes in our model have been reported to be involved in cancer.
DNMT3B has been shown to play a role in genic methylation
and is involved in cysteine and methionine metabolism. High

expression of DNMT3B is independently associated with adverse
outcomes in older patients with CN-AML (6, 21), which is
consistent with our results. Another study verified that the
ectopic expression of DNMT3B can promote the development
of gastrointestinal cancers via the de novo methylation and
transcriptional silencing of the tumor suppressor genes in mice
(22). The ITPKA gene also participates in inositol phosphate

Frontiers in Oncology | www.frontiersin.org 8 April 2020 | Volume 10 | Article 540

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Metabolic Risk Model for AML

FIGURE 6 | Time-dependent receiver operating characteristic (ROC) analysis of 5-year overall survival (OS) of metabolic risk model compared to other potential

prognostic factors. (A) Time-dependent ROC analysis for 5-year OS of metabolic risk model was compared to age, RUNX1-RUNX1T1, and RUNX1 mutation in the

training cohort. (B) Time-dependent ROC analysis for 5-year OS of metabolic risk model was compared to age, cytogenetics risk, blast cells in bone marrow,

hemoglobin, platelet, and leukocyte count in the adult external cohort. (C) Time-dependent ROC analysis for 5-year OS of metabolic risk model compared to age,

blast cells in the bone marrow, cytogenetics risk, RUNX1-RUNX1T1 fusion, FLT3-ITD status, MLL-rearrangement, NPM mutation, leukocyte count, and WT1 mutation

in the pediatric external cohort. BM, bone marrow.

metabolism, and was found to be hypermethylated in patients
with AML with a normal karyotype (23). ENPP2, which encodes
the enzyme autotaxin, was found to be over-expressed in
various cancers (24). A previous study reported that FLT3-
ITD mutations in AML are closely associated with the high
expression of ENPP2 and may influence disease prognosis via
the dysregulation of metabolism-related genes such as ENPP2
(25–27). As the metabolism-associated gene with the highest
weight in the model, CYP2E showed a positive association with
the prognosis of patients with AML in our study. This enzyme
plays a vital role in the production of reactive oxygen species
and is involved in drug metabolism. The PPI network in our
study also suggested the interaction between the phospholipase
family and CYP2E1 and ENPP2. Arachidonic acid metabolism
pathway and ether lipid metabolism pathway can be the potential
interaction of the phospholipase family and the two metabolic
genes (28, 29). Although the role of CYP2E1 expression in
the pathogenesis of AML remains unclear, polymorphisms in
these gene have been shown to be associated with the risk
of leukemia but not the risk of treatment-related leukemia
(30–32). Decreased ALDH enzyme activity may lead to DNA
damage due to the accumulation of aldehydes (33). In this
study, ALDH2 was an adverse prognostic factor in the model.
A decrease in the ALDH2-GA or ALDH2-AA genotype was
reported to accelerate the conversion of Fanconi anemia to
MDS/AML (34). PAFAH1B2, which is involved in ether lipid

metabolism, may also be broadly dysregulated in many types
of cancer (35) and its over-expression at the transcriptional
and at the protein levels in MYC-negative high-grade B-cell
lymphomas is associated with good prognosis. Interestingly,
we found different expression trends for PAFAH1B2 between
the childhood and adult leukemia metabolic profiles. This may
be because of variations in the age-related regulation of the
metabolism-related signature between adults and children. Other
selected variables including HAAO, PHGDH, and PSAT were
also found to predict the prognosis of AML. However, their
mechanism with respect to AML remains unclear and requires
further clarification.

As expected, the most significantly enriched pathways
were metabolism-related in the GSEA, confirming the
metabolic-related characteristics of the nine-gene signature.
The high enrichment of metabolism-related and DNA
repair-related pathways in the high-risk group in both
independent validation cohorts indicates the potential
benefit of targeting metabolism-related genes and PAPR
inhibitor therapy for this population. However, the predictive
value of the metabolic signature for these therapies
should be further validated based on a large cohort in
prospective trials.

We first focused on the role of metabolic genes in the
prognosis of AML and constructed a prenotice significant
model for AML stratification. However, several issues must
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FIGURE 7 | Building and validation of the nomogram to predict the overall survival of patients with acute myelogenous leukemia (AML) combining the adult external

cohort and pediatric external cohort. (A) Nomogram plot was built based on age, cytogenetics risk, metabolic risk score, and total points combining the adult external

cohort and pediatric external cohort. (B) Calibration plot of the nomogram. (C) Time-dependent receiver operating characteristic (ROC) curves of nomograms were

compared based on a 5-year OS of AML.

be resolved. First, some clinical information such as the
history of metabolic disorders and therapeutic information
are lacking because this information was not available in
public databases. Therefore, it is difficult to evaluate the
association between metabolism and therapy and to avoid the
inclusion of non-leukemia-related metabolic events. Moreover,
validating our model in the real world is indispensable for
extrapolating the established model to other AML populations,
particularly childhood AML patients. Functional experiments
are also needed to determine the mechanisms underlying the

effects of the prognostic metabolic genes in AML. Finally, the
diagnostic value of the metabolic risk score was not evaluated
in this analysis, and need to be further explored in the
perspective study.

CONCLUSION

We established a prognostic metabolic model based on the
metabolism-related genes in AML. The characteristic metabolic
genes may reflect the disordered microenvironment of the
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bone marrow and may be used as potential biomarkers for
AML prognosis. Validation of the model in the real world
and functional experiments of the predictive metabolic genes
are needed.
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