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Abstract: Single-cell RNA (scRNA) profiling or scRNA-sequencing (scRNA-seq) makes it possible to
parallelly investigate diverse molecular features of multiple types of cells in a given plant tissue and
discover cell developmental processes. In this study, we evaluated the effects of sample size (i.e., cell
number) on the outcome of single-cell transcriptome analysis by sampling different numbers of cells
from a pool of ~57,000 Arabidopsis thaliana root cells integrated from five published studies. Our results
indicated that the most significant principal components could be achieved when 20,000–30,000 cells
were sampled, a relatively high reliability of cell clustering could be achieved by using ~20,000 cells
with little further improvement by using more cells, 96% of the differentially expressed genes could
be successfully identified with no more than 20,000 cells, and a relatively stable pseudotime could be
estimated in the subsample with 5000 cells. Finally, our results provide a general guide for optimizing
sample size to be used in plant scRNA-seq studies.
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1. Introduction

Cells in biological tissues usually exhibit heterogeneity in morphology, signaling
status, and genotype [1]. Traditional RNA-sequencing methods use samples with multiple
types of cells and estimate the expression of bulked cells in a tissue as an average value,
ignoring the diversities of different cell types. Single-cell RNA-sequencing (scRNA-seq)—a
rapidly developing technology—makes it possible to perform molecular studies in parallel
on multiple types of cells in a given tissue and promotes elucidation of cellular hetero-
geneity and discovery of developmental processes underpinning cell differentiation [2].
Single-cell transcriptomic analysis providing direct indicators of cell status has been widely
used in multiple animal models to dissect cell heterogeneity. For example, the intratu-
moral heterogeneity in many types of cancer has been thoroughly studied by single-cell
RNA profiling [3–6].

The first deep-sequencing analysis of single-cell transcriptome was reported in 2009 [7].
In the past decade, a variety of scRNA-seq methods have been developed to effectively
amplify and enrich transcripts from single cells, including Smart-seq2 [8], STRT-seq [9],
CEL-seq2 [10], and Drop-seq [11]. Smart-seq2 is a full-length transcript sequencing solution
that enables investigation of long noncoding RNAs with poly(A) tail and alternative
splicing events [8]. One of the most used scRNA-seq methods, 10× Genomics, combines
microfluidic cell capture and Droplet barcoding, which allows sequencing thousands of
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single cells simultaneously and provides a high-throughput solution. As large amounts of
input single cells can provide comprehensive biological information, 10× Genomics has
been widely applied in human and animal scRNA-seq studies. It has been successfully
applied to sequence transcripts in half a million nerve cells to create a detailed census of
cell types in the mouse nervous system [12]. The cell types of each lobe of adult mouse
cerebellum have been defined at the molecular level based on scRNA-seq data generated
from more than 600,000 cells [13]. scRNA-seq data generated from large number of single
cells enabled construction of cell type map of the tissue. Large number of cells have also
been used in the investigation of transcription changes in tumors. For instance, in a study
aiming for identification of cellular identities and compositions of human kidney tumors,
transcriptomes of 72,501 cells collected from normal and diseased kidneys were sequenced
using the scRNA-seq approach [14]. The more cells used in sequencing, the more biological
information that could be generated; however, considering the cost involved in sequencing
a huge number of cells, at the same time, processing a large number of single-cell data
still is a very challenging task. Thus, it is necessary to take appropriate cell numbers into
account according to the purpose of the studies.

Similar to tissues of humans and animals, plant tissues and cells are highly specialized
not only morphologically but also biochemically and physiologically [15]. Plant cells
usually have a hard outer structure, or cell wall, that complicates the separation of single
cells [16]. Study at the single-cell level in plants is still in its early stages. Plant scRNA-seq
is currently mainly focusing on certain tissues, from which protoplasts can be relatively
easily isolated. The first plant scRNA-seq study was reported in 2015; it used 31 quiescent
center (QC) and center column cells from Arabidopsis roots [17]. Later, scRNA-seq was
scaled up to hundreds of cells in Arabidopsis [18] and maize [19] to investigate the cell types
involved in root regeneration and differentiation of germinal cells, respectively. These
studies achieved the outcomes that could not be fulfilled by using traditional transcriptome
sequencing. With application of 10× Genomics technology in plants, the histological and
cellular heterogeneity of Arabidopsis, rice [20], and maize [21–23] have been studied in detail.
Especially, in 2019, five scRNA-seq studies on Arabidopsis thaliana root were published, each
using ~3000 to ~12,000 cells [24–28]. Interestingly, although the number of cell clusters
and their annotations varied amongst these studies, the common cell types (e.g., root
hair cells, cortex, and endodermis) of Arabidopsis roots were all successfully identified
by the five studies. While a large number of cells is required to resolve the structure of
heterogeneous samples with many subpopulations, especially for the samples containing
rare cell types [29], the relationship between the input cell numbers and the accuracy and
sensitivity for uncovering certain subpopulations and/or rare cell types using scRNA-seq
is still unclear.

Two bioinformatics tools, Howmanycell (https://satijalab.org/howmanycells ac-
cessed on 29 August 2021) and SCOPIT [30] (www.navinlab.com/SCOPIT accessed on
29 August 2021), have been developed to estimate the appropriate number of cells to be se-
quenced in a specific single-cell study. The main input parameters of these prediction tools
are the number of cell types, the proportion of rare cell types, and the expected minimum
numbers of the targeted cell type to be identified. Both tools make a statistical estimation
for the number of cells to be sequenced based on prior knowledge on the composition of
the samples, but do not provide information on how sample size affects the performance
of the tools and scRNA-seq results.

In order to have an overview of the effect of sample size on plant scRNA-seq outcomes,
in this study, we simulated and systematically compared the effects of sample coverage
on downstream scRNA-seq analysis by sampling a different size of cells from a pool of
~57,000 Arabidopsis thaliana root cells that were investigated in the five studies mentioned.

https://satijalab.org/howmanycells
www.navinlab.com/SCOPIT
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2. Materials and Methods
2.1. Data Overview

Data of five—including four processed and one unprocessed—scRNA-seq experiments
were used in this study. The four processed scRNA-seq datasets of Arabidopsis roots
were retrieved from Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/
gds accessed on 29 August 2021) under the accession numbers GSE121619, GSE122687,
GSE123013, and GSE123818. GSE121619 contains scRNA-seq data of about 30,000 cells
isolated from Arabidopsis roots, including roots from heat-treated seedlings. GSE122687
contains scRNA-seq data generated using the drop-seq method from 10 libraries of root cells
(~12,000) isolated from Arabidopsis plants cultured with (3 libraries) or without (7 libraries)
sucrose. The scRNA-seq data of GSE123013 and GSE123818 were generated from not
only wild-type Arabidopsis plants but also root mutants. The number of cells is 11,030
and 5862 for GSE123013 and GSE123818, respectively. The raw data of the fifth scRNA-
seq experiment (PRJNA517021) were downloaded from the NCBI SRA database. The
Cellranger software was used to obtain cell expression data by mapping scRNA-seq reads
to the TAIR10 genome (https://www.arabidopsis.org/ accessed on 29 August 2021). The
expression matrix of 8000 cells was finally obtained.

2.2. Data Integration and Sampling

After obtaining the expression matrix of the samples, we performed a preliminary
filter on the data using a low stringency, i.e., a gene was considered as expressed if it
was detected in at least 3 cells and a cell was retained in the analysis if it had at least
200 expressed genes. The integration (CCA and anchors) method in Seurat V3 was used to
integrate the data. Considering the large number of datasets, we adopted the ‘Reference-
based’ integration method. A sample with a cell number greater than 5000 was used as
a reference, with the remainder designated ‘query’ datasets. After integrating, a total of
56,903 cells were used for downstream analysis. In order to investigate the influence of
cell numbers on the analysis of single-cell data, we randomly sampled the integrated data
(set.seed = 1234) with 8 different sizes of cell numbers: 500, 1000, 3000, 5000, 10,000, 20,000,
30,000, or 40,000. Each was considered as a subsample. These 8 subsamples plus the
originally integrated data from 56,093 cells were compared.

2.3. Determination of Significant PC Number

In order to determine the number of significant PCs of the subsamples with different
cell numbers, we focused on the first 100 PCs of each subsample (130 PCs for the integrated
data) and used the JackStraw function in Seurat V3 to identify ‘significant’ PCs as those that
have a strong enrichment of low p-value features. When the p-values of the first occurrence
of PCs were greater than 0.05, the subsequent PCs with p-values lower than 0.05 were
no longer considered. The Elbow method that plots a ranking of principle components
based on the percentage of variance explained by 100 PCs was performed to determine an
inflection point. The top 30 PCs of each of the 8 randomly generated subsamples were also
used for correlation analysis with the top 30 PCs of the sample containing all 56,903 cells.

2.4. Cell Clustering and Assignment of Clusters to Known Cell Types

A total of 2000 genes were used for the clustering analysis. Clusters were identified
using the Seurat ‘FindClusters’ function with ‘resolution = 1.0′. The data structures and cell
trajectories were separately visualized and explored by PCA, t-SNE, and UMAP methods
(both dims = 30). We mainly used the reported marker genes of Arabidopsis root cells to
accurately assign the cell cluster to a cell type (Supplementary Materials Table S1) and used
the Spearman’s correlation coefficient analysis with bulk transcriptome data for verification.
In addition, the Index of Cell Identity (ICI) scores were also used for cell type determination
and confirmation. ICI score evaluates the expression of hundreds of genes to calculate
the likelihood that a single cell belongs to a specific Arabidopsis root cell type. In the ICI
algorithm, the bootstrap replacement method (1000 iterations) was used to estimate the

https://www.ncbi.nlm.nih.gov/gds
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probability associated with cell type assignment, and the Benjamini–Hochberg method
was used to adjust the score. In addition, we further analyzed cluster similarity based on
the agreement indices calculated using the clues R-package.

2.5. Identifying High-Specificity Genes

Based on the results of cluster annotation, we identified the differentially expressed
genes using the FindAllMarker (only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
function in Seurat V3 for the identified cell types. For ROC analysis of DEGs, we also
applied the FindAllMarker function by setting the parameter test.use = “roc”.

2.6. Pseudotime Analysis

The subsamples with different cell numbers were randomly generated from the
integrated dataset that had been analyzed using Seurat V3 by standardization and nor-
malization; so, when performing pseudotime analysis using monocle2, we skipped the
process of data standardization. In order to explore the cell differentiation path from the
root meristem cell to other cell types, we used monocle (2.14.0) to construct the trajectory
using two types of cells (meristem and root hair cell) with different sizes (i.e., cell numbers)
of randomly sampled cells. We extracted the subset of the integrated data with cell type
information from Seurat object. We set the distribution of expression matrix as “uninormal”
when creating CellDataSet object to skip standardization, then ran ‘reduceDimension’
(set norm_method = “none”, pseudo_expr = 0, reduction_method = “DDRTree”) using
variance genes coming from the results of Seurat ‘FindVariableFeatures’ to reduce data
into low dimensions without further normalization. Based on the expression data in the
lower dimension space, we used ‘orderCells’ to identify cell states and constructed cell
differential trajectory in pseudotime.

2.7. Statistical Analyses for Estimation of Cluster Similarity
2.7.1. Rand Index

The similarity of two clusters in the same dataset can be evaluated by Rand Index (RI)
based on the number of pairs in each cluster. If the two clusters are identical, RI equals to 1.
If the two clusters are completely different, or if one cluster contains a single element, RI
equals to 0.

2.7.2. Morey and Agresti’s Adjusted Rand Index (MA)

The purpose of MA is to overcome the inflation problem caused by RI’s inherent
opportunity allocation. Although the value of RI is between 0 and 1, the value of MA
ranges from−1 to 1, where negative values indicate independent labels and positive values
indicate similar clusters.

2.7.3. Hubert and Arabie’s Adjusted Rand Index (HA)

HA is used to detect and modify the problem in the expected Rand index value of MA.

2.7.4. Fowlkes and Mallows Index (FM)

FM is the geometric mean of precision and recall, and ranges from 0 to 1. A higher FM
value indicates a higher similarity between clusters.

2.7.5. Jaccard Index (JI)

JI is another measurement of cluster similarity. The index value ranges from 0 to 1,
where a higher JI value reflects a higher cluster similarity.

3. Results
3.1. Overview of 1244 Reported Single-Cell Transcriptome Studies

A comprehensive comparison of the cell numbers used in published scRNA-seq
studies and their outcomes will help us understand current scRNA-seq status and de-
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sign future scRNA-seq experiments. To this end, we collected and analyzed 1244 pub-
lished scRNA-seq studies that were collected in the single-cell studies database [31]
(http://www.nxn.se/single-cell-studies/ accessed on 29 August 2021) or published arti-
cles on scRNA-seq that are not included in the database, including 518 human-related
studies, 525 mice/rat-related studies, 30 studies on plants, and 173 studies on other species
(Supplementary Materials Table S2; Figure 1). Apparently, most scRNA-seq studies were
carried out in humans and model animals. The cell numbers and the scRNA-seq method
used in each study were plotted against the year of the study published (Figure 1). It is
clear that the majority of the studies published before 2018 used hundreds to thousands of
cells and the Smart-seq2 technology. Since releasing the Chromium platform in 2016, 10×
Genomics dominated scRNA-seq studies with about 252 papers published after 2018, each
using more than 10,000 cells. Notably, some of the studies that used millions of cells were
mainly on data mining or database construction.
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Figure 1. Distribution of sample sizes (i.e., cell numbers) in the recent 1244 studies on single-cell
RNA profiling. Technique means the methodology applied in profiling single-cell gene expression.
The numbers in the round boxes mean cell number in plant single-cell researches. Distribution of the
1244 studies in different species are also shown in Supplementary Materials Table S2.

Due to the difficulties involved in the preparation of single cells in plants, scRNA-seq
study in plants is far behind those in human and animals with respect to both the number
of studies and the cell numbers used in each study (Supplementary Materials Table S3). The
two early plant scRNA-seq studies sequenced 31 and 215 single cells using CEL-seq and
Smart-seq2, respectively [17,18]. Application of the 10× Genomics technology in plants
increased the number of cells sequenced to thousands and even ten thousands [24–28]
(Supplementary Materials Table S3). The cell types identified in these studies significantly
increased compared with the scRNA-seq studies with hundreds or less cells. Among the
five scRNA-seq studies published in 2019 on Arabidopsis root cells, it seems that more
cell types were identified when more input cells were used. For example, Jean-Baptiste
et al. (2019) analyzed 3121 cells and identified 5 cell types, including endodermis, cortex,
nonhair cell, stele, and hair cell. Shulse et al. (2019) analyzed 12,000 cells and classified
them into 17 cell types; however, the study could not assign a distinct cell cluster to
quiescent center (QC) cells, probably due to their most central localization in roots and
naturally being the least among all cell types in roots. Surprisingly, Denyer et al. (2019)

http://www.nxn.se/single-cell-studies/
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successfully identified QC cells with only ~5000 cells. Comparing the parameters used in
cell clustering in these two studies [24,27], we noticed that only 35 principal components
(PCs) were used in the Shulse’s study, while 50 PCs were applied in the Denyer’s study.
As high-throughput single-cell sequencing data is high-dimensional due to differential
expression of numerous genes in a large number of different type of cells, reducing the
dimensionality of scRNA-seq data is required for effective data processing and analysis.
To achieve that, usually only a certain number of significant PCs are adopted to represent
the main difference in dataset. Therefore, the number of PCs selected is expected to be one
of the most important parameters affecting subsequent analyses, such as cell clustering,
biomarker identification, and trajectory analysis. All of these are main focuses of researches
using single-cell RNA profiling and the topics of this study. Next, we investigated the
effects of the input cell numbers on significant PC numbers, cell clustering, identification
of DEGs, and cell trajectory inference.

3.2. Effect of Cell Numbers on Significant PC Numbers

The single-cell transcriptomic data of A. thaliana root cells reported in the five studies,
which used thousands or more cells (Supplementary Materials Table S3; for more details,
see Materials and Methods), were used to study the effect of sample size on single-cell
RNA profiling. In order to obtain unbiased subsamples with different cell numbers and to
avoid the batch effect between the original samples, we filtered and integrated the original
five datasets into a single dataset containing 56,903 cells. Eight subsamples, with sample
sizes of 500, 1000, 3000, 5000, 10,000, 20,000, 30,000, or 40,000 cells, were extracted through
random sampling of the total 56,903 cells. The 8 subsamples together with the sample
containing all 56,903 cells were used in the following analyses.

The PC values of each subsample with different cell numbers were analyzed firstly
using the Elbow method (Supplementary Materials Figure S1A). In the Elbow plot, the
elbow of the curve, or the inflection point, is used to determine the number of PCs that
can be used to describe the variation of the dataset. Based on this analysis, no significant
difference was observed among the 9 subsamples/integrated-sample (hereafter subsample
for simplicity) regarding the inflection point that seems to be between 25 and 30 in each
subsample. We then used JackStraw plot to visualize and to identify the number of
significant PCs that are defined based on P-value (Supplementary Materials Figure S1B).
Using a p-value < 0.05 as the criterion for a significant PC, we found that the number of
significant PCs increases along with the increase in cell number (Figure 2), despite the
increase slowing down when the cell numbers reach 30,000. It indicates that when the
cell number reaches a certain level, the power of detecting variations among different
cells plateaus. The significant PC number is 30 in the subsample with 500 cells based on
JackStraw plot, and 30 was also considered an appropriate PC number based on the Elbow
method. Based on this result and also for the reason of comparability of the subsequent
analyses, for each subsample, we selected the top 30 PCs in the following analyses. To
confirm whether 30 was high enough to characterize the integrated data with 56,903 cells,
we compared the cell clustering results with 30, 50, and 100 significant PCs and found
that, under the same resolution, the number of cell clusters did not change significantly.
When the PC number was 30, 50, and 100, the identified cell clusters was 35, 37, and 37,
respectively (Supplementary Figure S2A–C), suggesting that the top 50 significant PCs are
sufficient to represent most of the variations existing in the subsample with 56,903 cells.
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Figure 2. Significant principal component (PC) numbers in the nine subsamples with different
cell numbers.

3.3. Effect of Cell Numbers on Cell Clustering

We then performed clustering analysis on different subsamples using a PC number
of 30. Under the same resolution (res = 1), the tSNE (t-distributed Stochastic Neighbor
Embedding) graphs were generated to visualize cell clustering (Figure 3A). The number of
cell clusters, to some extent, represents the number of potential cell types in a tissue. When
the cell numbers increased from 500 to 40,000, the number of cell clusters increased from
10 to 35 (Figure 3A,B).

We further analyzed the effect of different cell numbers on identifying specific cell
types by assigning individual clusters to known root cell types based on marker genes
(Supplementary Materials Table S1). We examined the expression of about 200 marker
genes that were reported in the five Arabidopsis root scRNA-seq studies mentioned above.
In order to improve the annotation of marker genes, single-cell RNA profiles were also
compared to the reported bulked RNA profiles of different root cell types, which were
isolated by using green fluorescent protein (GFP) labeling technology. In addition, we also
calculated the index of cell identity (ICI) score for each cell to assign the appropriate cell
type. The number of cell types identified increased from 7 to 11 when the cell numbers
increased from 500 to 1000, but only 4 more cell types were identified when the cell numbers
increased from 1000 to 30,000, and no more new cell types were identified when the cell
number was further increased (Figure 3C). The 7 cell types identified in the subsample
with 500 cells are the most common cell types in Arabidopsis roots, including root cap,
pericycle, hair cell, nonhair cell, meristem, endodermis, and cortex. The 4 additional cell
types identified in the subsample with 1000 cells are xylem, stele cell, lateral root, and
companion cell. The proximal meristem and stem cell niche were identified when the
cell numbers were increased to 3000 and 5000, respectively. Phloem sieve element, which
forms sieve tube of phloem for transportation of nutrients and is located at the center
of Arabidopsis roots, was separated by using the subsample with 20,000 cells. However,
as a rare cell type in Arabidopsis roots, the photosynthetic cell was only detectable with
much larger cell numbers (>30,000) (Figure 3D). We also analyzed the correlation between
the top 30 PCs identified in each of the 8 subsamples with that of the integrated sample
with 56,903 cells. Between the subsample with 500 cells and the integrated-sample with
56,903 cells, only a few major PCs were highly correlated, consistent with the observation
that the common cell types in Arabidopsis roots could be distinguished by only a few top
significant PCs. Importantly, the PC correlation increased as the number of cells increased
(Supplementary Materials Figure S3).
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Figure 3. Effect of cell numbers on cell clustering. (A) tSNE maps of the nine subsamples with different cell numbers.
(B) Changes of the number of cell clusters with the increase in cell numbers. (C) Changes of the annotated cell types with
the increase in cell numbers. (D) Composition of cell types annotated in different subsamples. (E) The scores of the five
statistical measures for evaluating cluster similarity of different sample size. The five indices are Rand index (RI), Morey
and Agrest’s adjusted Rand index (MA), Hubert and Arabie’s adjusted Rand index (HA), Fowlkes and Mallows index (FM),
and Jaccard index (JI).

In addition, five statistical measurements—Rand index (RI), Morey and Agrest’s
adjusted Rand index (MA), Hubert and Arabie’s adjusted Rand index (HA), Fowlkes and
Mallows index (FM), and Jaccard index (JI)—were selected to assess the reliability of the
clustering (Figure 3E). The cluster information of each subsample was compared against
the information of the All data set. All five measurements were the lowest in the subsample
with 500 cells, and without a significant difference in the three subsamples with 20,000 to
40,000 cells, indicating that the reliability will have little improvement by using more than
20,000 cells. This shows that as the number of cells increases, the reliability of clustering
will also increase, but when the number of cells reaches a certain level, its increasing trend
will slow down or even pause.

3.4. Effect of Cell Numbers on Identification of Differentially Expressed Genes

As a traditional transcriptome analysis, scRNA-seq-based identification of differen-
tially expressed genes (DEGs) can explore the unique expression patterns of different cell
types in the studied tissues. We used DEGs identified in five cell types (hair cell, nonhair
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cell, root cap, cortex, and endodermis) to compare the effect of sample size or cell numbers.
The number of DEGs (592–708) identified in each subsample was not highly correlated
with the number of cells used in each subsample, as the number of DEGs were similar in
the subsamples with 3000 to 56,903 cells (Supplementary Materials Figure S4A). In total,
784 nonredundant DEGs were identified in the 9 subsamples. Approximately two thirds
(521 or 67%) existed in all subsamples, 47 (6%) were found in 8 subsamples except the
subsample with 500 cells, and 30 (4%) were found in 7 subsamples except the subsamples
with 500 or 1000 cells. These results indicate that 77% of the DEGs could be successfully
identified with only 3000 cells and 96% with 20,000 cells (Supplementary Figure S4A). The
number of DEGs unique to each subsample declined as the cell numbers increased. In
order to explore the reliability of the DEGs, we performed ROC analysis for the DEGs
common in all subsamples and unique to each subsample. It was obvious that the median
AUC value of the common DEGs (>0.8) was much higher than that of unique DEGs (~0.65)
(Supplementary Materials Figure S4B).

Meanwhile, we compared the DEGs identified in the 5 cell types with the marker
genes of these cell types identified using the traditional bulk transcriptome analysis [32].
As we selected 2000 genes from the samples for data integration, we thus firstly checked
their overlapping in the 9 subsamples. The overlapping genes were then compared with
the DEGs identified in the 5 cell types to identify a new set of overlapping genes, which
we found depended on cell types and sample size. For example, few overlapping genes
were found in nonhair cells, which were almost constant in all subsamples, but in cortex
cells, the number of overlapping genes increased in the subsamples with 500 to 3000 cells
and remained almost the same in subsamples with 3000 to 56,903 cells (Supplementary
Materials Figure S4C).

3.5. Effect of Cell Numbers on Cell Trajectory Inference

In order to explore the effect of sample size on interpretation of cell growth and devel-
opment by scRNA-seq, we drew a map for each subsample by UMAP (Uniform Manifold
Approximation and Projection) [33] (Figure 4A), which showed that the meristem cell had
a clear trend towards multiple cell types. As the number of cells increases (such as to
20,000 cells), this trend became more obvious. We further selected two cell types (meristem
cell and hair cell) to investigate the impact of cell numbers on cell trajectory analysis.

Although the pseudotimes showing in the density map (Figure 4B) could not be
used for direct comparison, with the help of the distribution of meristem cells, we could
make a reasonable judgment on the pseudotime of root hair cells. For meristem cells, a
relatively accurate pseudotime could not be estimated with a sample size of 3000 cells or
less; however, the estimated pseudotime, which was concentrated in the 0–5 interval, did
not change in the subsamples with 5000 or more cells. Compared with the pseudotime of
meristem cells, the pseudotime of hair cells also could not be estimated in the subsample
with only 500 cells, as the root hair cells in this subsample were concentrated in the area
overlapping with the meristem cells, but a relatively distinct pseudotime could be estimated
in the subsamples with 1000 and 3000 cells. This analysis also revealed that development
of root hair cells lasted for a much longer time than that of meristem cells.

In addition, trajectory inference is crucial for discovering genes that are associated
with lineages in the trajectory to clarify potential biological processes. In the trajectory-
based differential expression analysis, the number of DEGs increased with the increase in
sample size. However, when the sample size reached a certain level (e.g., 20,000 cells), the
growth rate of DEGs was significantly reduced (Figure 4C).



Curr. Issues Mol. Biol. 2021, 43 1694

Figure 4. A
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Figure 4. Effect of cell numbers on cell trajectory inference. (A) The UMAP map of nine subsamples with different cell
numbers. (B) Density distribution map of meristem and hair cells on the pseudotime axis in the nine subsamples with
different cell numbers. (C) The number of differentially expressed genes that change as a function of pseudotime.

4. Discussion

scRNA-seq has been widely adopted to uncover the complex gene expression patterns
of different cell types in tissues. With the development of single-cell-related technologies—
for instance, droplet-based microfluidic systems—the number of cells used in single-cell
research has increased dramatically. However, it is still a challenge to isolate a large number
of single cells from some tissues, particularly plant tissues. In addition, given the cost
involved in scRNA-seq, it is important to find a good balance between the expense and the
outcome of an experiment. It is thus essential to know the effect of sample size on the results
of scRNA-seq. Our results presented here, together with previously published results,
indicate that sample size has a significant impact on the results of single-cell analysis. Suner
(2019) [34] found that the clustering performance of the currently available methods used
in scRNA-seq data analysis depends largely on the sample size and the complexity of the
biological materials. However, a better result cannot be achieved by simply increasing
the number of cells used in sequencing. For example, Bhaduri A et al. (2018) [35] found
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that most biologically interpretable cell types in the database with 1.3 million cells can be
distinguished by 50,000 randomly selected cells.

We reasoned that a suitable cell number required for profiling certain tissues to
provide helpful information for follow-up investigations can be estimated by analyzing
the published real data from a sufficient number of cells. We therefore combined the
scRNA-seq data of Arabidopsis root cells from five independent studies and analyzed
the effect of sample size on cell clustering, identification of DEGs, and rare cell types.
We noticed that some rare cell types in Arabidopsis roots—for example, phloem sieve
element and photosynthetic cell—could be identified by using ~56,000 cells, but some,
such as QC cells, could not be found with the same number of cells. Increasing the
number of cells may increase the likelihood of finding QC cells; however, development
of a customized algorithm specifically for the identification of rare cell types may be a
better alternative [36–38]. On the other hand, as the outcomes of single-cell experiments
are affected by many experimental factors such as enzymatic hydrolysis efficiency and cell
capture efficiency, designing experiments specifically for the targeted rare cell types, such
as tagging the target cells with GFP marker, should be another cost-effective option.

5. Conclusions

This study implies that there is a saturated cell number for the power of plant scRNA
profiling. We propose that ~20,000 (or 10,000–30,000) cells are enough for profiling Ara-
bidopsis root cells, although whether its applicability to other Arabidopsis tissues and other
plant species is yet to be confirmed by future scRNA-seq studies on diverse plant species
and tissues. Nevertheless, our results provide a general guide for optimizing sample size
to be used in plant scRNA-seq studies.
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Figure S4: Effect of cell numbers on identification of differentially expressed genes, Table S1: Marker
genes, Table S2: Summary of the studies on single-cell RNA profiling analyzed in this study, Table S3:
Comparison of the cell numbers estimated by HowManyCell and SCOPIT.

Author Contributions: Conception and design: L.F. and L.G. Acquisition of data: H.C. Analysis
and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): H.C., X.Y.,
Y.L. Writing, review and/or revision of the manuscript: H.C., X.C., Y.L., Q.C., Q.-H.Z., L.F., L.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (81802350).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Ethics approval and consent to participate: Not applicable. Consent
for publication: Not applicable.

Data Availability Statement: The datasets described or used in this study are available in the NCBI
Sequence Read Archive under BioProject accession number GSE121619, GSE122687, GSE123013,
GSE123818, and PRJNA517021.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Hong, L.; Dumond, M.; Zhu, M.; Tsugawa, S.; Li, C.-B.; Boudaoud, A.; Hamant, O.; Roeder, A. Heterogeneity and robustness in

plant morphogenesis: From cells to organs. Annu. Rev. Plant Biol. 2018, 69, 469–495. [CrossRef] [PubMed]
2. Macaulay, I.C.; Ponting, C.P.; Voet, T. Single-cell multiomics: Multiple measurements from single cells. Trends Genet. 2017,

33, 155–168. [CrossRef]

https://www.mdpi.com/article/10.3390/cimb43030119/s1
https://www.mdpi.com/article/10.3390/cimb43030119/s1
http://doi.org/10.1146/annurev-arplant-042817-040517
http://www.ncbi.nlm.nih.gov/pubmed/29505739
http://doi.org/10.1016/j.tig.2016.12.003


Curr. Issues Mol. Biol. 2021, 43 1696

3. Lavin, Y.; Kobayashi, S.; Leader, A.; Amir, E.-A.D.; Elefant, N.; Bigenwald, C.; Remark, R.; Sweeney, R.; Becker, C.D.; Levine,
J.H.; et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017, 169, 750–765.e17.
[CrossRef] [PubMed]

4. Leung, M.L.; Davis, A.; Gao, R.; Casasent, A.; Wang, Y.; Sei, E.; Vilar, E.; Maru, D.; Kopetz, S.; Navin, N.E. Single-cell DNA
sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 2017, 27, 1287–1299. [CrossRef]
[PubMed]

5. Yang, Z.; Li, C.; Fan, Z.; Liu, H.; Zhang, X.; Cai, Z.; Xu, L.; Luo, J.; Huang, Y.; He, L.; et al. Single-cell sequencing reveals variants
in ARID1A, GPRC5A and MLL2 criving self-renewal of human bladder cancer stem cells. Eur. Urol. 2017, 71, 8–12. [CrossRef]

6. Casasent, A.; Schalck, A.; Gao, R.; Sei, E.; Long, A.; Pangburn, W.; Casasent, T.; Meric-Bernstam, F.; Edgerton, M.E.; Navin, N.E.
Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 2018, 172, 205–217. [CrossRef]

7. Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Touch, B.B.; Siddiqui, A.; et al. mRNA-Seq
whole-transcriptome analysis of a single cell. Nat. Methods 2009, 6, 377–382. [CrossRef]

8. Picelli, S.; Faridani, O.R.; Björklund, Å.K.; Winberg, G.; Sagasser, S.; Sandberg, R. Full-length RNA-seq from single cells using
Smart-seq2. Nat. Protoc. 2014, 9, 171–181. [CrossRef]

9. Islam, S.; Kjällquist, U.; Moliner, A.; Zajac, P.; Fan, J.B.; Lönnerberg, P.; Linnarsson, S. Characterization of the single-cell
tran-scriptional landscape by highly multiplex RNA-seq. Genome Res. 2011, 21, 1160–1167. [CrossRef]

10. Hashimshony, T.; Wagner, F.; Sher, N.; Yanai, I. CEL-Seq: Single-Cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012,
2, 666–673. [CrossRef]

11. Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.;
et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015, 161, 1202–1214.
[CrossRef]

12. Zeisel, A.; Hochgerner, H.; Lönnerberg, P.; Johnsson, A.; Memic, F.; van der Zwan, J.; Häring, M.; Braun, E.; Borm, L.E.; La Manno,
G.; et al. Molecular architecture of the mouse nervous system. Cell 2018, 174, 999–1014.e22. [CrossRef]

13. Yao, Z.; Liu, H.; Xie, F.; Fischer, S.; Booeshaghi, A.S.; Adkins, R.S.; Aldridge, A.I.; Ament, S.A.; Pinto-Duarte, A.; Bartlett, A.; et al.
An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types. BioRxiv 2020.

14. Young, M.D.; Mitchell, T.J.; Braga, F.A.V.; Tran, M.G.; Stewart, B.J.; Ferdinand, J.R.; Collord, G.; Botting, R.A.; Popescu, D.M.;
Loudon, K.W.; et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 2018,
361, 594–599. [CrossRef]

15. Rhee, S.Y.; Birnbaum, K.D.; Ehrhardt, D.W. Towards building a plant cell atlas. Trends Plant Sci. 2019, 24, 303–310. [CrossRef]
[PubMed]

16. Efroni, I.; Birnbaum, K.D. The potential of single-cell profiling in plants. Genome Biol. 2016, 17, 1–8. [CrossRef] [PubMed]
17. Efroni, I.; Ip, P.-L.; Nawy, T.; Mello, A.; Birnbaum, K.D. Quantification of cell identity from single-cell gene expression profiles.

Genome Biol. 2015, 16, 9. [CrossRef] [PubMed]
18. Efroni, I.; Mello, A.; Nawy, T.; Ip, P.-L.; Rahni, R.; DelRose, N.; Powers, A.; Satija, R.; Birnbaum, K.D. Root regeneration triggers an

embryo-like sequence guided by hormonal interactions. Cell 2016, 165, 1721–1733. [CrossRef] [PubMed]
19. Nelms, B.; Walbot, V. Defining the developmental program leading to meiosis in maize. Science 2019, 364, 52–56. [CrossRef]

[PubMed]
20. Liu, Q.; Liang, Z.; Feng, D.; Jiang, S.; Wang, Y.; Du, Z.; Li, R.; Hu, G.; Zhang, P.; Ma, Y.; et al. Transcriptional landscape of rice

roots at the single-cell resolution. Mol. Plant 2021, 14, 384–394. [CrossRef]
21. Satterlee, J.W.; Strable, J.; Scanlon, M.J. Plant stem-cell organization and differentiation at single-cell resolution. Proc. Natl. Acad.

Sci. USA 2020, 117, 33689–33699. [CrossRef]
22. Bezrutczyk, M.; Zöllner, N.R.; Kruse, C.P.S.; Hartwig, T.; Lautwein, T.; Köhrer, K.; Frommer, W.B.; Kim, J.-Y. Evidence for phloem

loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 2021, 33, 531–547. [CrossRef]
23. Xu, X.; Crow, M.; Rice, B.R.; Li, F.; Harris, B.; Liu, L.; Demesa-Arevalo, E.; Lu, Z.; Wang, L.; Fox, N.; et al. Single-cell RNA

sequenc-ing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev. Cell 2021, 56, 557–568.
[CrossRef]

24. Denyer, T.; Ma, X.; Klesen, S.; Scacchi, E.; Nieselt, K.; Timmermans, M.C. Spatiotemporal developmental trajectories in the
ara-bidopsis root revealed using high-throughput single-cell RNA sequencing. Dev. Cell 2019, 48, 840–852. [CrossRef]

25. Jean-Baptiste, K.; McFaline-Figueroa, J.L.; Alexandre, C.M.; Dorrity, M.W.; Saunders, L.; Bubb, K.L.; Trapnell, C.; Fields, S.;
Queitsch, C.; Cuperus, J.T. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 2019, 31, 993–1011.
[CrossRef]

26. Ryu, K.H.; Huang, L.; Kang, H.M.; Schiefelbein, J. Single-cell RNA sequencing resolves molecular relationships among individual
plant cells. Plant Physiol. 2019, 179, 1444–1456. [CrossRef] [PubMed]

27. Shulse, C.N.; Cole, B.J.; Ciobanu, D.; Lin, J.; Yoshinaga, Y.; Gouran, M.; Turco, G.M.; Zhu, Y.; O’Malley, R.C.; Brady, S.M.; et al.
High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 2019, 27, 2241–2247.e4. [CrossRef] [PubMed]

28. Zhang, T.-Q.; Xu, Z.-G.; Shang, G.; Wang, J.-W. A single-cell RNA sequencing profiles the developmental landscape of arabidopsis
root. Mol. Plant 2019, 12, 648–660. [CrossRef] [PubMed]

29. Lafzi, A.; Moutinho, C.; Picelli, S.; Heyn, H. Tutorial: Guidelines for the experimental design of single-cell RNA sequencing
studies. Nat. Protoc. 2018, 13, 2742–2757. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cell.2017.04.014
http://www.ncbi.nlm.nih.gov/pubmed/28475900
http://doi.org/10.1101/gr.209973.116
http://www.ncbi.nlm.nih.gov/pubmed/28546418
http://doi.org/10.1016/j.eururo.2016.06.025
http://doi.org/10.1016/j.cell.2017.12.007
http://doi.org/10.1038/nmeth.1315
http://doi.org/10.1038/nprot.2014.006
http://doi.org/10.1101/gr.110882.110
http://doi.org/10.1016/j.celrep.2012.08.003
http://doi.org/10.1016/j.cell.2015.05.002
http://doi.org/10.1016/j.cell.2018.06.021
http://doi.org/10.1126/science.aat1699
http://doi.org/10.1016/j.tplants.2019.01.006
http://www.ncbi.nlm.nih.gov/pubmed/30777643
http://doi.org/10.1186/s13059-016-0931-2
http://www.ncbi.nlm.nih.gov/pubmed/27048384
http://doi.org/10.1186/s13059-015-0580-x
http://www.ncbi.nlm.nih.gov/pubmed/25608970
http://doi.org/10.1016/j.cell.2016.04.046
http://www.ncbi.nlm.nih.gov/pubmed/27212234
http://doi.org/10.1126/science.aav6428
http://www.ncbi.nlm.nih.gov/pubmed/30948545
http://doi.org/10.1016/j.molp.2020.12.014
http://doi.org/10.1073/pnas.2018788117
http://doi.org/10.1093/plcell/koaa055
http://doi.org/10.1016/j.devcel.2020.12.015
http://doi.org/10.1016/j.devcel.2019.02.022
http://doi.org/10.1105/tpc.18.00785
http://doi.org/10.1104/pp.18.01482
http://www.ncbi.nlm.nih.gov/pubmed/30718350
http://doi.org/10.1016/j.celrep.2019.04.054
http://www.ncbi.nlm.nih.gov/pubmed/31091459
http://doi.org/10.1016/j.molp.2019.04.004
http://www.ncbi.nlm.nih.gov/pubmed/31004836
http://doi.org/10.1038/s41596-018-0073-y
http://www.ncbi.nlm.nih.gov/pubmed/30446749


Curr. Issues Mol. Biol. 2021, 43 1697

30. Davis, A.; Gao, R.; Navin, N.E. SCOPIT: Sample size calculations for single-cell sequencing experiments. BMC Bioinform. 2019,
20, 1–6. [CrossRef] [PubMed]

31. Svensson, V.; Beltrame, E.D.V.; Pachter, L. A curated database reveals trends in single-cell transcriptomics. Database 2020,
2020, baaa073. [CrossRef]

32. Brady, S.M.; Orlando, D.A.; Lee, J.-Y.; Wang, J.Y.; Koch, J.; Dinneny, J.R.; Mace, D.; Ohler, U.; Benfey, P.N. A high-resolution root
spatiotemporal map reveals dominant expression patterns. Science 2007, 318, 801–806. [CrossRef]

33. Diaz-Papkovich, A.; Anderson-Trocmé, L.; Ben-Eghan, C.; Gravel, S. UMAP reveals cryptic population structure and phenotype
heterogeneity in large genomic cohorts. PLoS Genet. 2019, 15, e1008432. [CrossRef]

34. Suner, A. Clustering methods for single-cell RNA-sequencing expression data: Performance evaluation with varying sample
sizes and cell compositions. Stat. Appl. Genet. Mol. Biol. 2019, 18, 5. [CrossRef] [PubMed]

35. Bhaduri, A.; Nowakowski, T.J.; A Pollen, A.; Kriegstein, A.R. Identification of cell types in a mouse brain single-cell atlas using
low sampling coverage. BMC Biol. 2018, 16, 113. [CrossRef] [PubMed]

36. Dong, R.; Yuan, G.-C. GiniClust3: A fast and memory-efficient tool for rare cell type identification. BMC Bioinform. 2020, 21, 1–7.
[CrossRef]

37. Grün, D.; Lyubimova, A.; Kester, L.; Wiebrands, K.; Basak, O.; Sasaki, N.; Clevers, H.; van Oudenaarden, A. Single-cell messenger
RNA sequencing reveals rare intestinal cell types. Nat. Cell Biol. 2015, 525, 251–255. [CrossRef] [PubMed]

38. Jindal, A.; Gupta, P.; Jayadeva; Sengupta, D. Discovery of rare cells from voluminous single cell expression data. Nat. Commun.
2018, 9, 1–9. [CrossRef]

http://doi.org/10.1186/s12859-019-3167-9
http://www.ncbi.nlm.nih.gov/pubmed/31718533
http://doi.org/10.1093/database/baaa073
http://doi.org/10.1126/science.1146265
http://doi.org/10.1371/journal.pgen.1008432
http://doi.org/10.1515/sagmb-2019-0004
http://www.ncbi.nlm.nih.gov/pubmed/31646845
http://doi.org/10.1186/s12915-018-0580-x
http://www.ncbi.nlm.nih.gov/pubmed/30309354
http://doi.org/10.1186/s12859-020-3482-1
http://doi.org/10.1038/nature14966
http://www.ncbi.nlm.nih.gov/pubmed/26287467
http://doi.org/10.1038/s41467-018-07234-6

	Introduction 
	Materials and Methods 
	Data Overview 
	Data Integration and Sampling 
	Determination of Significant PC Number 
	Cell Clustering and Assignment of Clusters to Known Cell Types 
	Identifying High-Specificity Genes 
	Pseudotime Analysis 
	Statistical Analyses for Estimation of Cluster Similarity 
	Rand Index 
	Morey and Agresti’s Adjusted Rand Index (MA) 
	Hubert and Arabie’s Adjusted Rand Index (HA) 
	Fowlkes and Mallows Index (FM) 
	Jaccard Index (JI) 


	Results 
	Overview of 1244 Reported Single-Cell Transcriptome Studies 
	Effect of Cell Numbers on Significant PC Numbers 
	Effect of Cell Numbers on Cell Clustering 
	Effect of Cell Numbers on Identification of Differentially Expressed Genes 
	Effect of Cell Numbers on Cell Trajectory Inference 

	Discussion 
	Conclusions 
	References

