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Abstract

Background: It’s a very urgent task to identify cancer genes that enables us to understand the mechanisms of
biochemical processes at a biomolecular level and facilitates the development of bioinformatics. Although a large
number of methods have been proposed to identify cancer genes at recent times, the biological data utilized by
most of these methods is still quite less, which reflects an insufficient consideration of the relationship between
genes and diseases from a variety of factors.

Results: In this paper, we propose a two-rounds random walk algorithm to identify cancer genes based on
multiple biological data (TRWR-MB), including protein-protein interaction (PPI) network, pathway network, microRNA
similarity network, lncRNA similarity network, cancer similarity network and protein complexes. In the first-round
random walk, all cancer nodes, cancer-related genes, cancer-related microRNAs and cancer-related lncRNAs, being
associated with all the cancer, are used as seed nodes, and then a random walker walks on a quadruple layer
heterogeneous network constructed by multiple biological data. The first-round random walk aims to select the top
score k of potential cancer genes. Then in the second-round random walk, genes, microRNAs and lncRNAs, being
associated with a certain special cancer in corresponding cancer class, are regarded as seed nodes, and then the
walker walks on a new quadruple layer heterogeneous network constructed by lncRNAs, microRNAs, cancer and
selected potential cancer genes. After the above walks finish, we combine the results of two-rounds RWR as ranking
score for experimental analysis. As a result, a higher value of area under the receiver operating characteristic curve
(AUC) is obtained. Besides, cases studies for identifying new cancer genes are performed in corresponding section.

Conclusion: In summary, TRWR-MB integrates multiple biological data to identify cancer genes by analyzing the
relationship between genes and cancer from a variety of biological molecular perspective.

Keywords: Identify cancer genes, Quadruple layer heterogeneous network, Two-rounds random walk with restart,
Multiple biological data
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Background
A substantial amount of diseases is generally triggered
by single or multiple mutations and associated with one
or more genes [1]. The diseases associated with multiple
genes will be classified as polygenic disorders (complex
disorders), such as Alzheimer disease, cancer disease,
obesity disease and so on [2]. Compared to Mendelian
disorders, the prevalence of complex diseases is higher,
and for complex diseases, the genetic model is more
complicated because they violate Mendel’s laws of inher-
itance and involve in more pathogenic genes [3]. This
kind of diseases accounts for more than 80% of human
diseases and seriously threatens human health, but the
mechanism of emergence and development is still un-
clear [4–6]. Therefore, the identification of complex
disease genes has become an urgent and sophisticated
task in the field of bioinformatics.
In recent years, with the rapid development of gene

chip and high-throughput sequencing technology, mul-
tiple biological data, such as protein-protein interaction
data [7], protein complexes data [8], pathway data [9–11],
microRNA data [12] and lncRNA data [13], are growing
exponentially. It provides a new perspective to explore the
mechanism of emergence and development of complex
diseases. However, a large number of algorithms, such as
the logistic regression [14], the Bayesian method [15],
direct neighbours of biological network [16], have a com-
mon drawback: they rarely analyze associations between
diseases and genes out of multiple biological perspectives
to predict disease genes and uncover the mechanism of
complex diseases. In other words, these methods integrate
fewer biological data in the course of identification of
disease genes.
In order to make up for this defect, many new

methods have been proposed based on these multiple
biological data. Chen et al. [17] extracted corresponding
features based on multiple biological data to identify dis-
ease genes by a logistic regression algorithm. Yang et al.
[18] integrated four human weighted gene networks and
constructed a new much larger weighted biological net-
work to identify disease genes based on information
entropy.
Although these aforementioned methods could be well

used in analyzing associations between diseases and
genes from the perspective of various biological net-
works, they merely considered the direct neighbours of
the candidate genes in the corresponding networks, and
ignored the fact that two genes as non-neighbors in
some biological networks still have some biological rela-
tionships. Recently, some methods based on topological
similarity have been proposed to solve this problem.
Kohler S et al. [19] proposed a random walk with restart
(RWR) and diffusion kernel methods to capture global
topological relationship in an interactive network. In

identifying disease genes, RWR achieved an outstanding
performance compared to previous methods. Based on
RWR, Li et al. [20] proposed an extension of RWR,
which applied RWR to heterogeneous networks (RWRH).
What followed was that a lot of improved algorithms
were proposed based on RWR and RWRH. Luo et al.
[21] applied an improved RWR algorithm to reconstruct
PPI network, and ran RWRH on heterogeneous network
constructed by integrating the reconstructed PPI net-
work and disease similarity network, to identify disease
genes. Li et al. [22] proposed a random walk on multi-
graphs merging heterogeneous genomic and phenotype
data (RWRM), which can capture multiple edges be-
tween a pair of nodes to identify disease-associated
genes. Valdeolivas et al. [23] extended the random walk
with restart on multiplex and heterogeneous biological
networks, which is beneficial to explore different layers
of functional and physical interactions between genes
and proteins. However, these methods still have a short-
coming: the less seed nodes during the process of
walking. It will give occasion to weak ability to mine
potential disease genes.
In this study, we propose an extension of RWRH

algorithm to explore a quadruple layer heterogeneous
network, which is constructed by combining PPI net-
work, pathway network, microRNA similarity network,
lncRNA similarity network, cancer similarity network,
and protein complexes. There are three highlights of
TRWR-MB: (1) Constructing a quadruple layer heteroge-
neous network; (2) Two-round random walk with restart
on the quadruple layer heterogeneous network; (3)
Aggregate the results of two-round random walk with
restart into a final ranking score. In these three, the core
of our study is two-round random walk with restart. In
the first-round random walk with restart, we can select
highly suspicious candidate genes, which embrace highly
probability of being related to all cancer. In the second-
round random walk with restart, we can select highly
suspicious candidate cancer genes that are associated
with a special cancer from the results of the first-round
of random walk. Next, after the two rounds of random
walk finish, we combine two results to obtain the final
ranking score. Finally, we apply the TRWR-MB algo-
rithm to predict new candidate genes in breast cancer,
lung cancer, colon cancer, prostate cancer and leukemia.

Methods
In this section, we describe the TRWR-MB algorithm in
details. Firstly, we will introduce the motivation of
TRWR-MB. Next, we will introduce the corresponding
materials, the construction of a quadruple layer hetero-
geneous network, and two-round random walk with
restart, respectively. Finally, a flowchart of TRWR-MB
will be presented.
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Motivations
As described in the previous section, TRWR-MB has
three highlights. A quadruple layer heterogeneous net-
work is constructed by fusing PPI network, pathway
network, microRNA similarity network, lncRNA similar-
ity network, cancer similarity network and protein
complexes; TRWR-MB identifies cancer genes in the
quadruple layer heterogeneous network; A final ranking
score is calculated by combining the results of two-
round random walk with restart. Next, we will introduce
our motivations for the three highlights.
Recently, a lot of methods [19–23] have been proposed

based on network topological similarity. However, these
methods have two shortcomings. Firstly, seed nodes are
too less in the process of random walk with restart.
Secondly, these methods only use gene or protein inter-
active network. Besides, none of the aforementioned
methods has considered the effects of lncRNA and
microRNA on identifying disease genes. Therefore, we
construct a quadruple heterogeneous network by using
genes, proteins, microRNAs, lncRNAs and cancer.
Moreover, protein complexes are used as a positive feed-
back to enhance cancer-related interaction. The quad-
ruple heterogeneous network not only considers the
effects of lncRNAs and microRNAs on cancer, but also
can increase the number of seed nodes based on cancer-
related lncRNAs and microRNAs in the process of
random walk with restart.
Marc et al. [24] suggested that the similarity among

phenotypes are positively correlated with a number of
measures of gene function, including relatedness at the
level of protein sequence, protein motifs, functional an-
notation, and direct protein-protein interaction. There-
fore, we hypothesize that similar diseases have a great
probability of being linked to the same genes. Goh et al.
[1] manually classified multiple diseases into cancer class
based on the physiological system. Being inspired by [25,
26], we propose a two-round random walk with restart
to identify cancer genes. In the first-round of random
walk with restart, our purpose aims to select highly sus-
picious candidate genes related to cancer class (all can-
cer diseases) and remove majority of noise genes. In the
second-round of random walk with restart, our purpose
is to select cancer genes from the highly suspicious
genes selected in the first-round of random walk with
restart. In the end, a final ranking score is calculated by
balancing the results in cancer class and special cancer.

Materials
Biological network
The datasets of PPI network are downloaded from the
Human Protein Reference Database (HPRD) (Release 9)
[7]. The HPRD database contains protein interaction
data in the file of HPRD_Release9_041310.tar.gz, where

we can link two human genes if their corresponding
protein interacts with each other. We first map protein
into the Entrez gene code, and then delete repeating
protein-protein entries and each protein interacting with
itself. The final PPI network consists of 9519 nodes and
37,048 edges.
The pathway datasets are obtained from the database

of KEGG [10], Reactome [9], PharmGKB [11]. The path-
way network is constructed by R packages graphite
based on the aforementioned pathway database. The
final pathway network consists of 10,717 nodes and 302,
546 edges.
Because PPI network and pathway network embrace

their own bias and relevance, we merge them to con-
struct a gene network,which follows Li et al. [22]. Finally,
the gene network consists of 13,596 nodes and 331,127
edges (deleting repeat edges).

Cancer-Cancer similarity network
Firstly, we extract cancer class, which contains a lot of
cancer phenotypes, from Goh et al. [1], and then get
cancer phenotype OMIM id [27]. Next, we extract
Entrez terms of genes, which are associated with the cor-
responding cancer phenotypes, from the morbidmap.txt
of OMIM database (being downloaded in Dec-2017).
Finally, cancer class embraces 76 cancer phenotypes, 160
cancer genes that belong to the nodes of gene network,
and 251 gene-cancer associations.
For cancer-cancer similarity network, many previous

methods have been proposed [20–23]. We calculate cancer
similarity by employing Valdeolivas et al. [23] methods,
which use the relevance of the shared phenotypes to calcu-
late disease similarity based on Phenotype Ontology Project
(HPO) database [28]. The cancer-cancer similarity network
is constructed by linking every cancer to its three nearest
cancers according to cancer similarity. The number of
interactions is 155 in cancer-cancer similarity network.

MicroRNA-cancer association and microRNA functional
similarity network
In this paper, human microRNA-disease associations are
downloaded from HMDD v3.0 database [12]. We delete
some microRNA-disease entries, in which the disease
doesn’t have corresponding OMIM id. Besides, the dupli-
cated associations between the same microRNAs and dis-
eases are also deleted. Finally, the dataset of microRNA-
disease, which is used to construct microRNA similarity
network, contains 310 diseases (having corresponding
OMIM id), 940 microRNAs and 9454 microRNA-disease
associations. The dataset of microRNA-cancer, which is
constructed by deleting some microRNA-disease associa-
tions in the dataset of microRNA-disease in which dis-
eases do not belong to cancer category, contains 38 cancer
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diseases, 810 microRNAs and 4297 microRNA-cancer
associations.
In the process of constructing microRNA functional

similarity network, we firstly calculate the similarity
among 310 diseases, which is same with the computa-
tion of cancer similarity. Next, we estimate the func-
tional similarity between two microRNAs as mentioned
[28, 29], which can be computed as follows:

DSim d;Dð Þ ¼ max
1≤ i≤ k

DSim d; dið Þð Þ ð1Þ

MiSim MiRNA1;MiRNA2ð Þ ¼X
1≤ i≤m

DSim d1i;D2ð Þ þ
X

1≤ j≤n

DSim d2 j;D1
� �

mþ n
ð2Þ

where DSim(d,di) represents the similarity between a
special disease d and a disease di, which is the same as
the method of calculating the similarity among cancers.
DSim(d,D) is the greatest similarity score between a dis-
ease d and a disease group D. Besides, dnk represents the
disease k associated with MiRNAn. Similarly, Dn repre-
sents the disease group n, in which all diseases are asso-
ciated with MiRNAn. MiSim(MiRNA1, MiRNA2) is the
similarity score between MiRNA1 and MiRNA2.
Finally, we calculate all similarities among microRNAs

to construct microRNA similarity matrix, and then we
construct microRNA function similarity network by
linking each microRNA to its 10 nearest neighbors ac-
cording to microRNA similarity matrix. The microRNA
function similarity network consists of 940 microRNAs
and 8385 edges.

LncRNA-cancer association and lncRNA similarity network
We first download the known lncRNA-disease associa-
tions from the data_v2017.xls of LncRNADisease database
[13]. However, the disease names are not standard,
because we only find disease names but can’t find a stand-
ard index (e.g. OMIM id, DOID etc.) in the LncRNADdi-
sease database. Therefore, we list all disease names first
and then manually match them with the DOID based on
Disease Ontology (DO) [30]. Besides, those diseases,
which cannot be matched to the DOID, will be deleted,
and each corresponding DOID of them has been listed in
Additional file 1. Next, the lncRNA-disease associations
consist of 188 diseases, 700 lncRNAs and 1344 lncRNA-
disease associations.
Next, the functional similarity between two lncRNAs

is measured, which can be computed as follows:

DSim d;Dð Þ ¼ max
1≤ i≤ k

DSim d; dið Þð Þ ð3Þ

LncSim LncRNA1; LncRNA2ð Þ ¼X
1≤ i≤m

DSim d1i;D2ð Þ þ
X

1≤ j≤n

DSim d2 j;D1
� �

mþ n
ð4Þ

where DSim(d,di) represents the similarity between a
special disease d and a disease di. It is calculated by the
DOSE package of R based on DOID. The definition of
DSim(d,D), dnk, Dn and LncSim(LncRNA1, LncRNA2) is
similar to the corresponding definition in the last sub-
section. Similarly, we also construct lncRNA similarity
matrix by LncSim(LncRNA1, LncRNA2), and link each
lncRNAs to its ten nearest neighbours according to the
lncRNA similarity matrix to construct lncRNA similarity
network, which consists of 700 lncRNAs and 5349
edges.
Besides, because the disease names are not standard,

we also manually match them with the OMIM id of
cancer based on OMIM database. The lncRNA-cancer
associations consist of 347 lncRNAs, 40 cancers and 839
lncRNA-cancer associations.

MicroRNA-gene interaction
MicroRNA-gene interaction data is downloaded in the
database of miRTarBase [31]. Here, we just download
the supported interactions for reliability. Finally, we
extract 736 microRNAs and 2566 target genes, which
are contained in the gene network and microRNA func-
tional similarity network. The number of microRNA-
gene interactions is 8046.

MicroRNA-lncRNA interaction
The microRNA-lncRNA associations can be downloaded
in the database of starBase v2.0 [32]. In order to get a
reliable interactive network, we only download the
microRNA-lncRNA associations consisting of 5217
microRNA-lncRNA interactions about 274 microRNAs
and 554 lncRNAs when the number of supporting
experiments is greater than 1 or equal to 1. Besides, we
delete some microRNA-lncRNA interactions, in which
microRNAs and lncRNAs are not in the microRNA
similarity network and lncRNA similarity network, re-
spectively. Finally, the dataset consists of 45 microRNAs,
31 lncRNAs and 146 microRNA-lncRNA interactions.

LncRNA-gene interaction
LncRNA-gene interactions are downloaded in the data-
base of NPInter [33], which collect 491,416 interactions
of ncRNA with other biomolecules from 22 organisms.
We only collect the interactions between the lncRNAs
from lncRNA similarity network and the genes from the
gene network. Finally, the data consists of 207 lncRNAs,
114 genes and 1122 lncRNA-gene interactions.
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Protein complexes
Human protein complexes are downloaded from the
database of CORUM [8]. After deleting protein com-
plexes with a single protein, there are 3169 proteins and
2298 protein complexes.

Statistics of materials
The details of the data are shown in Table 1.

Constructing a quadruple layer heterogeneous network
In order to increase the seed nodes of the random walk
and consider the lncRNAs and microRNAs’ effects on
cancer, we construct a quadruple layer heterogeneous

network based on genes (or proteins), microRNAs,
lncRNAs, cancer and the interactions among them.
In this paper, we suppose Gn×n, Mm×m, Ll×l, Cc×c,

GMn×m, GLn×l, GCn×c, MLm×l, MCm×c and LCl×c are adja-
cency matrixes of gene network, microRNA similarity net-
work, lncRNA similarity network, cancer-cancer similarity
network, gene-microRNA interactions, gene-lncRNA in-
teractions, gene-cancer associations, microRNA-lncRNA
functional similarity network, microRNA-cancer associa-
tions and lncRNA-cancer associations, respectively. And
n, m, l and c represent the number of genes, microRNAs,
lncRNAs and cancer, respectively. The adjacency matrix
of the quadruple layer heterogeneous network can be
represented as follows:

H ¼
Gn�n GMn�m GLn�l GCn�c

GMT
n�m Mm�m MLm�l MCm�c

GLTn�l MLTm�l Ll�l LCl�c

GCT
n�c MCT

m�c LCT
l�c Cc�c

2
664

3
775 ð5Þ

where GMT
n�m, GL

T
n�l , MLTm�l , GC

T
n�c, MCT

m�c and LCT
l�c

are the transposes of GMn ×m, GLn × l, GCn × c, MLm × l,
MCm × c and LCl × c, respectively.

Calculating transition matrix
Subsequently, W, the transition matrix, need to be
constructed for random walks based on the adjacency
matrix of H as follows:

W ¼

1−δð ÞWG
δ
3
WGM

δ
3
WGL

δ
3
WGC

δ
3
WGMT 1−δð ÞWM

δ
3
WML

δ
3
WMC

δ
3
WGLT

δ
3
WMLT 1−δð ÞWL

δ
3
WLC

δ
3
WGCT

δ
3
WMCT

δ
3
WLCT 1−δð ÞWC

2
666666664

3
777777775

ð6Þ

where WM, WL, WC, WGM, WGL, WGC, WML, WMC and
WLC are the row-normalizing matrixes of Mm×m, Ll × l,
Cc × c, GMn ×m, GLn × l, GCn × c, MLm× l, MCm × c and
LCl × c. What’s more, WGMT , WGLT , WMLT , WGCT ,
WMCT and WLCT have similar definitions. Besides,
δ ∈ [0, 1] controls the probability of staying in the same
layer network or jumping to different layer network for
random walkers.
The single biological network usually contains a lot of

noises. Therefore, adding some other biological data,
such as protein complexes, is helpful for identifying
disease-related genes [17]. Because of this, we combine
PPI network and pathway network to construct a transi-
tion matrix of multigraphs merging biological network,
which is inspired by [22]. Besides, protein complexes are
used to analyze cancer genes from a functional perspec-
tive of proteins.

Table 1 Detail information of the data

Description Value

Number of nodes in PPI network 9519

Number of interactions in PPI network 37,048

Number of nodes in pathway network 10,717

Number of interactions in pathway network 302,546

Number of nodes in gene network 13,596

Number of interactions in gene network 331,127

Number of protein complexes 2298

Number of proteins in protein complexes 3169

Number of nodes in cancer-cancer similarity network 76

Number of interactions in cancer-cancer similarity network 155

Number of genes associated with cancer 160

Number of gene-cancer associations 251

Number of nodes in microRNA functional similarity network 940

Number of edges in microRNA functional similarity network 8385

Number of microRNA in microRNA-gene interactions 736

Number of genes in microRNA-gene interactions 2566

Number of microRNA-gene interactions 8046

Number of microRNA in microRNA-cancer associations 810

Number of cancers in microRNA-cancer associations 38

Number of microRNA-cancer associations 4297

Number of nodes in lncRNA functional similarity network 700

Number of edges in lncRNA functional similarity network 5349

Number of lncRNA in lncRNA-gene interactions 207

Number of genes in lncRNA-gene interactions 114

Number of lncRNA-gene interactions 1122

Number of lncRNA in lncRNA-cancer associations 347

Number of cancers in lncRNA-cancer associations 40

Number of lncRNA-cancer associations 839

Number of lncRNA in microRNA-lncRNA interactions 31

Number of microRNA in microRNA-lncRNA interactions 45

Number of microRNA-lncRNA interactions 146
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Firstly, we construct a gene network by combining PPI
and pathway network. The transition matrix of PPI can
be defined as follows:

WP i; jð Þ ¼ P i; jð Þ=dP ið Þ
0

;
;

�
if P i; jð Þ≠0&dP ið Þ≠0

otherwise

ð7Þ

where P is the adjacency matrix of PPI network. dP(i) is
the sum of i-th row for P. The definition of transition
matrix of pathway network WPath is similar to WP ‘s.
Then, we determine whether the node is a discrete point
in the corresponding network as follows:

Np ið Þ ¼ 1
0

�
;
;

if dp ið Þ > 0
otherwise

ð8Þ

NPath ið Þ ¼ 1
0

�
;
;

if dPath ið Þ > 0
otherwise

ð9Þ

N ¼ NP þ Npath ð10Þ

obviously, the value of N can only take 1 or 2. If the
value is equal to 1, it represents that the corresponding
node only interacts with other nodes in one network. If
the value is equal to 2, it represents that the correspond-
ing node has interactions with other nodes in PPI
network and pathway network.
In order to add a positive feedback to enhance cancer-

related interaction, we consider protein complexes when
the transition matrix of gene network is constructed, as
follows:

Wcom i; jð Þ ¼ Numcom dg=Numcom g

0

�
;
;

if G i; jð Þ > 0
otherewise

ð11Þ

where we suppose gene i is in a special protein complex.
Numcom _ dg and Numcom _ g represent the number of
cancer proteins (genes) and protein (genes) in the corre-
sponding special protein complexes, respectively. If gene
(protein) i is in multiple protein complexes, we select
the maximum value of Numcom _ dg/Numcom _ g as
Wcom(i, j). The definition of Initial_WG obeys the
follows rules:

Initial WG ¼ 1=N ⋯ 1=N½ �n�n�WPþ
1=N ⋯ 1=N½ �n�n�WPath þWcom

ð12Þ

where A ∗ B belongs to Hadamard (elementwise) prod-
uct. WG is equal to the row-normalizing matrix of
Initial _WG.

Two-round random walk with restart
The first-round random walk with restart
As mentioned in motivation section, the boundary
among similar diseases caused by a set of functional
similar genes is blurred. Therefore, we set all cancer-
related genes, cancer-related microRNAs, cancer-related
lncRNAs and cancer as seed nodes in the first step ran-
dom walk with restart. Its purpose is to select a set of
functional similar genes for cancer disease. After the
first-round random walk with restart is done, the top k
of genes score is selected as the set of functional similar
genes, which are used to reconstruct a new quadruple
heterogeneous network for the second-round random
walk with restart. Here, we make k = σn, (σ ∈ [0, 1]),
where n represents the number of genes.
In the first-round RWR, the initial probability vector

can be denoted as:

P 0ð Þ ¼ η�
g0
m0

l0
c0

2
64

3
75 ð13Þ

where the vector parameter η ¼ η1 η2 η3 η4½ �; ðηi∈½
0; 1�Þ is used to measure the importance of every layer
network, and the sum of η is equal to 1. g0, m0, l0 and c0
denote the initial probability vector of gene network,
microRNA similarity network, lncRNA similarity net-
work and cancer-cancer similarity network, respectively.
Then the random walk with restart is performed accord-
ing to as follows:

P t þ 1ð Þ ¼ 1−γð ÞWP tð Þ þ γP 0ð Þ ð14Þ
where γ ∈ [0, 1] is the restart probability of walker in
every walking. After some iterations, the P(∞) will enter
a stable state when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPðt þ 1Þ−PðtÞÞ2

q
is less than 10− 6.

The second-round random walk with restart
We can get a set of functional similar genes after the
first-round step random walk with restart. Then, we re-
construct a new quadruple layer heterogeneous network,
and the second-round random walk with restart is
employed in the new layer heterogeneous network to
identify a special cancer gene.
The difference with the first random walk is that

the seeds are selected from the special cancer nodes,
cancer-related genes, cancer-related microRNAs and
cancer-related lncRNAs, which are associated with the
corresponding cancer. Other equations are similar
with the first-round random walk with restart.

Getting the final score by combining the results of two-
round random walks
As the theory mentioned above, the boundary among
similar diseases is very vague, and it is not comprehensive
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that only consider the results of the second-round random
walk. In our proposed method, the results of two-rounds
of random walk are combined, which follow the rules
below.

Score ¼ αP1 ∞ð Þ þ 1−αð ÞP2 ∞ð Þ ð15Þ

where P1(∞) and P2(∞) represent the final results of

first-round random walk with restart and second-round
random walk with restart, respectively. The range of α is
from 0 to 1, and α can adjust the importance of P1(∞)
and P2(∞) in the final score.

A general framework
In this subsection, an overall framework for TRWR-MB
is shown in Fig. 1.

Table 2 The AUC result for α ∈ [0, 1] with an increment of 0.1

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

γ AUC

0.1 0.8961 0.8996 0.9013 0.9024 0.9027 0.9037 0.9035 0.9036 0.9034 0.9028 0.9032

0.2 0.9004 0.9045 0.9060 0.9070 0.9082 0.9087 0.9088 0.9086 0.9086 0.9084 0.9078

0.3 0.9027 0.9068 0.9086 0.9094 0.9099 0.9104 0.9111 0.9115 0.9112 0.9105 0.9086

0.4 0.9039 0.9082 0.9098 0.9103 0.9110 0.9117 0.9121 0.9128 0.9126 0.9117 0.9083

0.5 0.9047 0.9088 0.9104 0.9111 0.9115 0.9120 0.9125 0.9124 0.9132 0.9127 0.9075

0.6 0.9061 0.91020 0.9118 0.9132 0.9136 0.9148 0.9152 0.9158 0.9170 0.9178 0.9138

0.7 0.9055 0.9098 0.9110 0.9119 0.9125 0.9130 0.9136 0.9140 0.9149 0.9160 0.9109

0.8 0.9054 0.9089 0.9100 0.9112 0.9114 0.9121 0.9126 0.9133 0.9139 0.9148 0.9090

0.9 0.9047 0.9082 0.9090 0.9097 0.9103 0.9110 0.9115 0.9116 0.9126 0.9134 0.9073

δ = 0.5, ηi = 0.25, σ = 0.6, 0.9178 is bold, which represent the best of auc value

Fig. 1 The framework of TRWR-MB: a showing data processing, which contains constructing merged network, microRNA network, cancer disease
network, and lncRNA network. b constructing a quadruple layer heterogeneous network based on (a), and calculating the transition matrix based
on the quadruple layer heterogeneous network and protein complexes. c identifying cancer-related gene by TRWR-MB
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Results
Evaluation criteria
After the two-round random walk, we obtain the Score
and use it directly in experimental analysis. Inspired by
[17], we employ the ranking score method to avoid the
Score in different distributions for different diseases. For
a gene i, the ranking score can be calculated as follows:

Rank score ið Þ ¼ count Score ið Þ > Score jð Þð Þ
n

; i≠ jð Þ
ð16Þ

where count(Score(i) > Score(j)) represents how many
times the ith gene’s Score(i) is greater than the jth gene’s
Score(j). Obviously, a larger probability for gene i indi-
cates that the gene i has a higher probability of being re-
lated to corresponding disease.
In this paper, we apply the leave-one-out across valid-

ation (LOOCV) to validate the performance of the algo-
rithm. For each cancer disease, each known gene is left
out in turn, and all the genes without relation to this
specific cancer disease are placed in the candidate genes
set. Our ultimate purpose is that the gene left out get a
higher-ranking score than other genes in candidate
genes set for a special cancer disease. Besides, the posi-
tive samples are known genes associated with cancer dis-
ease, and negative samples are genes without association
with all cancer diseases.

According to the result of LOOCV, the ROC curve is
presented by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings.
TPR and FPR are defined as follows:

TPR ¼ TP
TP þ FN

ð17Þ

FPR ¼ FP
TN þ FP

ð18Þ

where TP is the true positive, TN is the true negative,
FN is false negative, and FP is the false positive. The area
under the curve (AUC) value is computed based on
ROC curve.
In the process of LOOCV, the number of the genes

left out in the top k% of Rank_score is also a good eva-
luation criterion for the identification of cancer genes.

Table 3 The number of cancer genes in the top k% of
Rank_score

Algorithms TOP 5% TOP 7% TOP 10% TOP 15%

TRWR-MB 23 28 31 47

RWRMH 20 24 31 43

RWRM 21 23 28 42

RWRH 20 20 27 41

RWR 18 22 28 38

where k is equal to 5, 7, 10 and 15, respectively; The five position in bold
represent the best reseult

Fig. 2 The histogram of AUC for all results
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The effects of parameters
In our algorithm, there are five parameters. Among
them, we set δ = 0.5, ηi = 0.25 based on previous studies
[23]. However, the value of γ, σ and α is undefined.
Therefore, we make γ ∈ [0.1, 0.9], σ ∈ [0.2, 0.9] and
α ∈ [0, 1] with an increment of 0.1.
All detail results are put in Additional file 2. Besides,

in Table 2, we put δ = 0.5, ηi = 0.25, σ = 0.6 and
γ ∈ [0.1, 0.9], α ∈ [0, 1] with an increment of 0.1 and
shows that we get the best result when α = 0.9. Besides,

we plot the distribution of all AUC values showed in
Fig. 2. Obviously, it can be clearly seen from Fig. 2 that
the all AUC values obey the normal distribution, which
can prove the scientificity of our algorithm.

Comparison with other algorithms
At the same time, we compare TRWR-MB (δ = 0.5, ηi =
0.25, σ = 0.6, γ = 0.6 and α = 0.9) with other four methods
based on the topology of network, which are random
walk with restart (RWR) [19], random walk with restart

Table 4 The prediction result of new cancer genes

Rank Breast cancer (MIM:114480) Lung cancer (MIM:211980) Colon Cancer (MIM:114500) Prostate cancer (MIM:176807) Leukemia (MIM:601626)

Gene PMID Gene PMID Gene PMID Gene PMID Gene PMID

1 BRCA1 25,329,591 TP53 27,182,622 STK11 – TP53 27,375,016 PDGFRB 29,133,777

2 NF1 – EXT1 30,032,850 MLH1 28,224,663 RNASEL – BCR –

3 PTEN 28,844,858 BLM – FH – HSPA1A – NF1 –

4 AXIN2 26,514,524 PIK3R1 – NFKBIB – FGFR3 – PTPN11 27,859,216

5 PLAG1 – MAPK12 – MSH2 28,537,674 MAD2L1 – CBL 28,082,680

6 FOXO1 28,397,066 PIK3C2A – OAZ1 – CTNNB1 29,229,583 ARHGAP26 –

7 GPC3 – PIK3C2B – PIK3R1 – EGFR 27,793,843 IL12RB2 –

8 WT1 29,016,617 RAF1 28,884,046 HRAS – STK11 – MAPK12 –

9 CAV1 25,945,613 NF1 24,535,670 KRAS 27,338,794 MYC – TP53 27,959,731

10 DICER1 26,460,550 CNKSR1 – GSK3B – MAX 29,108,267 DOT1L 27,294,782

If the cancer-related genes aren’t verified by literature, the correspond PMIDs are marked as -

Fig. 3 Comparison between TRWR-MB and other algorithms
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on heterogeneous network (RWRH) [20], random walk
with restart on multigraphs merging heterogeneous
(RWRM) [22], and random walk with restart on
multiplex and heterogeneous Biological Networks
(RWRMH) [23].
The comparison results are shown in Table 3 and

Fig. 3. We can observe from Table 3 that TRWR-MB get
the best performance in each situation with different top
k% of Rank_score. Figure 3 shows the ROC curve and
the AUC value of TRWR-MB and other algorithms.
Obviously, we can see that TRWR-MB performs best.

Case study
To further validate the effectiveness of TRWR-MB (δ =
0.5, ηi = 0.25, σ = 0.6, γ = 0.6 and α = 0.9) for prioritizing
new cancer disease genes, we list the top 10 candidate
genes for 5 multifactorial cancer diseases to perform
case studies here. The results are showed in Table 4.
The cancer-related genes, cancer-related microRNAs,
cancer-related lncRNAs, and corresponding cancer
disease are used as the seed nodes. We only select Breast
cancer (MIM: 114480) from these five to analyze for
TRWR-MB, and only give other cancer-related genes
PMID. The result shows that the effectiveness of
TRWR-MB for identifying candidate cancer-related
genes.
Breast cancer is a kind of cancer which develops from

breast tissue. Bilateral involvement and familial occur-
rence are important genetic factors. As shown in Table
4, the first prediction of breast cancer is BRCA1, which
is a tumor suppressor involved in basic cellular functions
necessary for cell replication and DNA synthesis, and
Romagnolo et al. [34] indicated the natural food compo-
nents that hold potential preventive effect against those

types of breast cancer in which BRCA1 expression is ei-
ther reduced or lacking. The second prediction of PTEN
was confirmed to be the target of miR-221/222 in breast
cancer cells [35]. Aristizabalpachon AF et al. [36] dem-
onstrated that disturbance of β-catenin destruction com-
plex expression and the defects of AXIN2 might be
found in breast cancer patients. For the prediction of
FOXO1, Liu et al. [37] provided an evidence that miR-9
can enhance the proliferation, migration, and invasion of
breast cancer cells through down-regulating FOXO1.
Xie et al. [38] revealed that breast cancer metastasis is
affected by miR-193a-WT1 interaction. Shi et al. [39]
suggested that human breast cancer cells and tissues can
be observed to enhanced autophagy level and down-
regulation of CAV1.
To explain the top 10 candidate genes for breast can-

cer, we analyze them from the perspective of network as
Fig. 4. Red nodes and other nodes represent breast can-
cer genes and 10 candidate genes, respectively in Fig. 4.
Besides, red edges and blue edges represent interactions
in PPI network and in pathway network, respectively.
Obviously, we can see that NF1, BRCA1, FOXO1, PTEN,
CAV1 and WT1 are linked with breast cancer genes in
PPI network or pathway network. Besides, AXIN2,
PLAG1, GPC3, DICER1 are not connected with any
breast cancer genes. However, I find AXIN2, PLAG1,
GPC3 are association with other cancer diseases. These
nodes are marked as green in Fig. 4.

Conclusion
Due to the lack of labelled genes (test genes), it is a tre-
mendous challenge to identify potential cancer-related
genes based on various biological data. In this paper, a
TRWR-MB random walk is presented based on multiple

Fig. 4 Network represent of breast cancer gene and new top 10 breast cancer gene
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types of biological networks. The highlights of our work
are to integrate multiple types of biological data and to
expand the seed nodes of random walk with restart on
quadruple layer heterogeneous network. Experimental
results illustrate that TRWR-MB has a satisfactory
performance.
Nevertheless, TRWR-MB still has some shortcomings

that need to be improved in the future. Firstly, different
datasets will have different parameter values. It is a chal-
lenge that how to select optimal parameter values. Se-
condly, compared to various biological data generated by
high-throughput biological experimental technique, our
integrated biological data is still relatively small. Thirdly,
different types of biological data probably contain some
noise, which result in a negative effect on constructing
quadruple layer heterogeneous network. In conclusion,
these shortcomings will encourage us to do continuous
researches in the future.

Supplementary information
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1186/s12859-019-3123-8.

Additional file 1. It contains manually extracted DOID corresponding to
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parameters.
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