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Accurate pancreas segmentation from 3D CT volumes is important for pancreas diseases therapy. It is challenging to accurately
delineate the pancreas due to the poor intensity contrast and intrinsic large variations in volume, shape, and location. In this
paper, we propose a semiautomated deformable U-Net, i.e., DUNet for the pancreas segmentation. ,e key innovation of our
proposed method is a deformable convolution module, which adaptively adds learned offsets to each sampling position of 2D
convolutional kernel to enhance feature representation. Combining deformable convolution module with U-Net enables our
DUNet to flexibly capture pancreatic features and improve the geometric modeling capability of U-Net. Moreover, a nonlinear
Dice-based loss function is designed to tackle the class-imbalanced problem in the pancreas segmentation. Experimental results
show that our proposed method outperforms all comparison methods on the same NIH dataset.

1. Introduction

Pancreatic diseases are relatively hidden and difficult to
detect and cure, especially for pancreatic cancers, which have
high mortality rate worldwide [1]. Accurate pancreas seg-
mentation from 3D CT scans can provide assistance to
doctors in the diagnosis of pancreas diseases, such as vol-
umetric measurement and analysis for diabetic patients, as
well as surgical guidance for clinicians [2]. However, it is
challenging to segment the pancreas due to the large ana-
tomical variability in pancreas position, size, and shape
across patients (as shown in Figure 1). Moreover, the am-
biguous boundaries around the pancreas with its adjacent
structures further increase the difficulty of pancreas
delineation.

Traditional methods on abdominal pancreas segmen-
tation mainly have statistical shape models [3, 4] or multi-
atlas techniques [5, 6]. Wolz et al. proposed a fully auto-
mated method based on a hierarchical atlas registration and
weighting scheme for abdominal multiorgan segmentation
[6].,is method was evaluated on a database of 150 CTscans
and achieved Dice score of 70% for the pancreas. Karasawa

et al. exploited the vasculature around the pancreas to better
select atlases for pancreas segmentation [7]. ,is method
was evaluated on 150 abdominal CT scans and obtained an
average Dice score of 78.5%. However, the performance of
atlas-based methods highly relies on the selection of atlases
and the accuracy of the image registration algorithm. Above
all, it is difficult to select atlases that are general enough to
cover all variabilities in the pancreas across different
patients.

Convolutional networks [8, 9] have achieved great
success in medical image segmentation, which also boost the
performance of pancreas segmentation. U-Net [10], a se-
mantic segmentation architecture, attracted great attentions
from researchers by exploiting multilevel feature fusion. ,e
skip connections in U-Net are used to incorporate high-
resolution low-level feature maps from the encoding branch
into the decoding branch of U-Net to alleviate the important
information loss caused by successive downsampling and
then refine and recover target details. Namely, using skip
connections to fuse multilevel feature tensors can effectively
localize and segment target organs [11]. Many works [12–14]
have demonstrated that U-Net is a good framework for
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semantic segmentation tasks, especially for small datasets.
Since the pancreas is a small, soft organ in the abdomen,
most pancreas segmentation algorithms based on con-
volutional neural network (CNN) provide iterative algo-
rithms [15] in a coarse-to-fine manner to relieve the
interference of complex background. Roth et al. first pro-
posed a probabilistic bottom-up, coarse-to-fine approach for
pancreas segmentation [16] where a multilevel deep Con-
vNet model is utilized to learn robust pancreas features. Two
subsequent holistically nested segmentation networks
[17, 18] advanced this previous work [16]. Zhou et al.
presented a two-stage, fixed-point approach for the pancreas
segmentation, which utilized the predicted segmentations
from coarse model to localize and obtain smaller pancreas
regions, which were further refined by another model [14].
Yu et al. presented the recurrent saliency transformation
network to tackle the challenge of small organ segmentation
where a saliency transformation module is utilized to
connect coarse and fine stage to realize joint optimization
[19]. Cai et al. designed a convolutional neural network
equipped with convolutional LSTM to impose spatial con-
textual consistency constraints on successive image slices
[20]. Cai et al. [21] further improved the pancreas initial
segmentation in [20] by aggregating the multiscale, low-level
features and strengthened the pancreatic shape continuity by
bidirection recurrent neural network (BiRNN). Liu et al. [22]
used superpixel-based approach to obtain coarse pancreas
segmentations, which were then used to train five same-
architecture fully convolutional networks (FCNs) with
different loss functions to achieve accurate pancreas seg-
mentations. ,is method is evaluated on 82 public CT
volumes and achieved a Dice coefficient of 84.10 ± 4.91%.
Man et al. [23] proposed a two-stage method composed of
deep Q network (DQN) and deformable U-Net for the
pancreas segmentation, in which DQN is used to obtain
context-adaptive, coarse pancreas segmentations, which
were then input to deformable U-Net for refinement. Zhu
et al. [24] proposed a 3D coarse-to-fine network to segment
the pancreas. ,is 3D method outperformed the 2D

counterpart due to the full usage of the rich spatial infor-
mation along the long axial dimension. Some common
techniques such as dense connection [25], residual block,
and sparse convolution [26, 27] are also widely utilized to
segment the pancreas.

Google DeepMind proposed a spatial transformer [28],
which is the first work to allow neural networks learn the
transformation matrix from data and transform feature
maps spatially. Specifically, spatial transformer network
(STN) can globally deform feature maps through learned
transformations, such as scaling, cropping, rotation as well
as nonrigid deformation. Recently, Dai et al. proposed a
deformable convolution to get over the limitation of fixed
receptive field in standard convolution [29]. In detail,
convolutional kernel with explicit offsets learned from the
previous feature maps can adaptively change predefined
receptive field in order to extract more target features. ,e
specific deformable convolution is shown in Figure 2, in
which some standard convolution layers are first utilized to
learn and regress the deformation displacements for each
sampling point in the image, and then the learned dis-
placements are added to original sampling positions of the
2D convolution to enable network extract relevant and rich
features far from original fixed neighborhood [30]. Different
from STN [28], deformable convolution adopts a local and
dense, instead of global manner to warp feature maps.
Moreover, deformable convolution focuses on learning
explicit offset for each neuron instead of kernel weights.
Since the pancreas has various scales and shapes across
patients and traditional convolutional kernel cannot address
well on organs with high deformation due to the fixed re-
ceptive field, we believe deformable convolution is more
suitable for the task of pancreas segmentation [31].

In this paper, we propose a semiautomated deformable
U-Net model utilizing the power of U-Net and Deformable-
ConvNets. ,e proposed architecture for pancreas seg-
mentation has two merits. First, deep segmentation net-
works such as FCN [9], U-Net [10], and DeepLab [32] easily
suffer from confusion by the large, irrelevant background

(a) (b) (c)

Figure 1: Examples of 2D CT slices with pancreas annotations (red regions), showing the highly variable shape and size of pancreas. ,e
largest area of pancreas is less than 0.8% of entire slice while the smallest area is less than 0.1% (best viewed in color).
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information due to the small size of the pancreas in the entire
abdominal CT volume. Motivated by [14], we take a similar
strategy, i.e., first manually shrink the size of input image
and then refine the extracted pancreas regions by the pro-
posed deformable U-Net. ,e proposed method has the
capability to extract the geometry-aware features of the
pancreas with the help of deformable convolution. Second,
we propose a novel loss function, focal generalized Dice loss
(FGDL) function, to balance the size of foreground and
background and enhance the ability of network for small
organ segmentation. A conference version of this work was
published in ISICDM 2019 [33]. In this extended version, we
provide a more comprehensive description of literature
review and detailed analysis of the proposed method and
experimental investigation. ,e main modifications include
presenting and analyzing the difference between standard
convolution block and deformable convolution block (as
shown in Figure 3), adding and analyzing the visualization
results of the proposed DUNet (as shown in Figures 4 and 5),
as well as the comparison results between the proposed
DUNet and two baseline methods on the NIH dataset [34]
(as shown in Figure 6 and Table 1), adding more evaluation
metrics for testing the performance of the proposed DUNet
(as shown in (9)–(11)), conducting new experiment to
demonstrate the effectiveness of the proposed loss function
for pancreas segmentation (as shown in Table 2), discussing
advantages and limitations of the proposed DUNet, and
adding more references.

2. Materials and Methods

In this section, a semiautomated deformable U-Net is
proposed to segment the pancreas. Our method is built upon
U-Net, which employed skip connections to aggregate
multiple feature maps with the same resolution from dif-
ferent levels to recover the grained details lost in decoder
branch and thus strengthen the representative capability of
network. Since the pancreas only occupies a small fraction of
the whole scan and the large and complex background
information tends to interfere or confuse semantic seg-
mentation framework, such as U-Net [10], we followed
cascade-based methods [5, 12, 14], i.e., first localize target
regions and then refine the extracted regions. Specifically, we
first estimate the maximum and minimum coordinates of

the pancreas to approximately locate its and then input the
extracted pancreas regions to the refinement segmentation
model to improve segmentation accuracy. Here, we designed
a deformable U-Net (abbreviated as DUNet), as the re-
finement model. ,e key component in DUNet is de-
formable convolution, which can adaptively augment the
sampling grid by learning 2D offsets from each image pixel
according to the preceding feature maps. Incorporating
deformable convolution into the baseline U-Net can im-
prove the geometry-aware capability of U-Net. ,e overall
structure of the proposed method is shown in Figure 7.

2.1. Network Architecture. Our approach is an encoder-
decoder structure, designed for pancreas segmentation. As
shown in Figures 7 and 3, the proposed architecture includes
the standard convolution block, deformable convolution
block, skip connection, downsampling, and upsampling.
Considering that the deformable convolution block requires
a little more computing resources and the aim of deformable
convolution block is to help the network capture low-level,
discriminative details at various shapes and scales, in order
to balance the efficiency and accuracy, we experimentally
apply the deformable convolution in the second and third
layers of U-Net. Specifically, we replaced the standard
convolution block of the second and third layers in the
encoder, as well as the counterpart layers in the decoder with
deformable convolution block. Figure 3(b) shows the
component of deformable convolution block. Concretely,
each deformable convolution block is composed of con-
volutional offset layer, followed by convolution layer, BN
[35], and ReLU layer, in which convolutional offset layer
plays an important role in telling U-Net how to deform and
sample feature maps [36]. ,e advantage of deformable
convolution block is to utilize changeable receptive fields to
effectively learn pancreas features with various shapes and
scales.

Here, we describe the standard convolution and de-
formable convolution in detail. On the one hand, the
standard 2D convolution can be seen as the weighed sum
over a regular 2D sampling grid with weight W. For the 3 × 3
sized kernel with the dilation value of 1 (as shown in
Figure 8(a)), the sampling grid G in standard convolution
defines the receptive field size and can be given by

Whole image

Input patch Offset field Offsets Offset kernel

Deformable convolution
Output feature map

Figure 2: Illustration of 3 × 3 deformable convolution. Offset field is generated from the preceding feature maps, and the number of output
channels is 2N.
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G � (−1, −1), (−1, 0), . . . , (0, 1), (1, 1){ }. (1)

,e value of each location p0 on the output feature map
Y can be calculated as

Y p0( 􏼁 � 􏽘
pn∈G

W pn( 􏼁 · X p0 + pn( 􏼁,
(2)

where pn enumerates all locations in 2D sampling gridG. On
the other hand, rather than using the predefined sampling
grid, deformable convolution automatically learns offset△pn

to augment the regular sampling grid and is calculated as

Y p0( 􏼁 � 􏽘
pn∈G

W pn( 􏼁 · X p0 + pn +△pn( 􏼁.
(3)

(a) (b) (c) (d)

Figure 4: Comparisons of 2D pancreas segmentations from the proposed DUNet with the manual segmentations. ,e first, second, and
third columns denote the CT slices with their segmentations and bounding boxes of pancreas (red), the manual segmentations, and the
network predictions, respectively. ,e last column denotes the overlapped maps between the network predictions and manual seg-
mentations, with overlapped regions marked by magenta. (a) Original. (b) Groundtruth. (c) Prediction. (d) Overlapped.
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Figure 3: ,e comparison between (a) standard convolution block and (b) deformable convolution block.
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(a) (b) (c)

Figure 5: Comparisons of 3D pancreas segmentations from the proposed DUNet with the manual segmentations. ,e first, second, and
third columns denote the manual segmentations, the network predictions, and the overlapped maps between the network predictions
and manual segmentations, respectively. ,e manual segmentations are shown in red, and the network predictions are shown in light
green. (a) Label. (b) Prediction. (c) Overlapped.

(a) (b) (c) (d) (e)

Figure 6: Comparison of segmentation results between different models on the NIH dataset. (a) Original images with their segmentations and
bounding boxes of pancreas (red). (b) ,e ground truths. (c–e) ,e predictions generated by our DUNet, U-Net, and Deformable-ConvNet,
respectively.
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Table 1: Quantitative comparisons between the three different models on the NIH dataset. Bold denotes the best.

Model F-measure Recall Precision Mean DSC
Modified Deformable-ConvNet 0.8201 0.8084 0.8378 0.8203
U-Net 0.8738 0.9010 0.8499 0.8670
DUNet(Ours) 0.8878 0.8997 0.8898 0.8725

Table 2: Comparison of the DUNet with Dice loss (DL) and the proposed loss (DSC%). Bold denotes the best.

Method Min DSC Max DSC Mean DSC
DUNet +DL 68.65 93.18 86.29 ± 4.33
DUNet + FGDL(Ours) 77.03 93.29 87.25 ± 3.27

Input Output

Standard convolution block

deformable convolution block

Downsample

Upsample

Skip connection

Figure 7: An overview of the proposed DUNet. Input data are progressively convolved and downsampled or upsampled by factor of 2 at
each scale in both encoding and decoding branches. Schematic of the standard convolution block and deformable convolution block is
shown in Figure 3.

(a) (b) (c) (d)

Figure 8: Comparisons of the sampling points in 3 × 3 standard and deformable convolution. (a) Sampling points (marked as blue) of
standard convolution. (b) Deformed sampling points (marked as red) with learned displacements (pink arrows) in deformable convolution.
(c-d) Two cases of (b), illustrating that the learned displacements contain translation and rotation transformations.
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In particular, the 2D deformable convolution can be
mathematically formalized as follows:

W°X( 􏼁(i, j) � 􏽘

1

m�−1
􏽘

1

n�−1
W(i, j) × X i − m + δverticlei,j,m,n , j − n + δhorizontali,j,m,n􏼐 􏼑, ∀i � 1, . . . , H, ∀j � 1, . . . , N, (4)

where ° denotes the deformable convolution operation, W is
a 3× 3 kernel with pad 1 and stride 1, X is the image with
heightH and width N, and (i, j) denotes the location of pixel
in image. δverticlei,j,m,n and δhorizontali,j,m,n denote the vertical offset and
the horizontal offset, respectively, which are learned by ad-
ditional convolution on the preceding feature maps. Since the
learned offset is usually not an integer, we performed bilinear
interpolation on the output of the deformable convolutional
layers to enable gradient back-propagation available.

2.2. Loss Function. Since the pancreas occupies a small re-
gion relative to the large background and Dice loss is rel-
atively insensitive to class-imbalanced problem, most
pancreas segmentation works adopt soft, binary Dice loss to
optimize pancreas segmentation, and it is defined as follows:

L(P, G) � 1 −
􏽐

N
i�1 pigi + ε

􏽐
N
i�1 pi + gi + ε

−
􏽐

N
i�1 1 − pi( 􏼁 1 − gi( 􏼁 + ε
􏽐

N
i�1 2 − pi − gi( 􏼁 + ε

,

(5)

where gi ∈ 0, 1{ } and pi ∈ [0, 1] correspond to the probability
value of a voxel in the manual annotation G and the network
prediction P, respectively. N and ϵ denote the total number of
voxels in the image and numerical factor for stable training,
respectively. However, Dice loss does not consider the impact
of region size on Dice score. To balance the voxel frequency
between the foreground and background, Sudre et al. [37]
proposed the generalizedDice loss, which is defined as follows:

GDL � 1 − 2
􏽐

2
l�1 wl 􏽐

N
i pligli

􏽐
2
l�1 wl 􏽐

N
i pli + gli

, (6)

where coefficient wl � 1/(􏽐
N
i�1 gli) is a weight for balancing

the size of region.
Pancreas boundary plays an important role in dealineating

the shape of pancreas. However, the pixels around the
boundaries of the pancreas are hard samples, which are difficult
to delineate due to the ambiguous contrast with the sur-
rounding tissues and organs. Inspired by the focal loss [38, 39],
we propose a new loss function, the focal generalized Dice loss
(FGDL) function, to alleviate class-imbalanced problem in the
pancreas segmentation and allow network to concentrate the
learning on those hard samples, such as boundary pixels. ,e
focal generalized Dice loss function can be defined as follows:

FGDL � 􏽘
2

l�1
1 − 2

wl 􏽐
N
i pligli + ε

wl 􏽐
N
i pli + gli + ε

􏼠 􏼡

1/c

, (7)

where c varies in the range [1, 3]. We experimentally set
c � 4/3 during training.

3. Experiments

3.1. Dataset and Evaluation. We validated the performance
of our algorithm on 82 abdominal contrast-enhanced CT
images which come from the NIH pancreas segmentation
dataset [34]. ,e original size of each CT scan is 512 × 512
with the number of slices from 181 to 460, as well as the slice
thickness from 0.5mm to 1.0mm. ,e image intensity of
each scan is truncated to [−100, 240] HU to filter out the
irrelevant details and further normalized to [0, 1]. In this
study, we cropped each slice to [192, 256]. For fair com-
parisons, we trained and evaluated the proposed model with
4-fold cross validation.

Four metrics including the Dice Similarity Coefficient
(DSC), Precision, Recall, and F-measure (abbreviated as F1)
[40] are used to quantitatively evaluate the performance of
different methods.

(1) Dice Similarity Coefficient (DSC) measures the
volumetric overlap ratio between the ground truths
and network predictions. It is defined as follows [41]:

DSC �
2 Vgt ∩Vseg

�����

�����

Vgt

�����

����� + Vseg

�����

�����
. (8)

(2) Precision measures the proportion of truly positive
voxels in the predictions. It is defined as follows:

Precision �
Vgt ∩Vseg

�����

�����

Vseg

�����

�����
. (9)

(3) Recall measures the proportion of positives that are
correctly identified. It is defined as follows:

Recall �
Vgt ∩Vseg

�����

�����

Vseg

�����

�����
. (10)

(4) F-measure shows the similarity and diversity of
testing data. It is defined as follows:

F-measure � 2 ·
Precision · Recall
Precision + Recall

, (11)

where Vgt and Vseg represent the voxel sets of manual
annotations and network predictions, respectively. For DSC,
the experimental results are all reported as the mean with
standard deviation over all 82 samples. For Precision, Recall,
and F-measure metrics, we just reported the mean score over
all 82 samples.
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3.2. Implementation Details. ,e proposed method was
implemented on the Keras and TensorFlow platforms and
trained using Adam optimizers for 10 epochs on a NVIDIA
Tesla P40 with 24GB GPU. ,e learning rate and batch size
were set to 0.0001 and 6 for training, respectively. In total,
the trainable parameters in the proposed DUNet are 6.44 M,
and the average inference time of our DUNet per volume is
0.143 seconds.

3.3. Qualitative and Quantitative Segmentation Results.
To assess the effectiveness of deformable convolution in the
pancreas segmentation, we compared the three models:
Deformable-ConvNet, U-Net, and DUNet. To make the
output size of Deformable-ConvNet to be the same as input,
we make modification on Deformable-ConvNet [29] by
substituting the original fully connected layers with
upsampling layers. Figure 6 qualitatively shows the im-
provements brought by deformable convolution. It can be
observed that our DUNet focuses more on the details of the
pancreas, which demonstrates that deformable convolution
can extract more pancreas information and enhance the
geometric recognition capability of U-Net.

,e quantitative comparisons of different models in
terms of the Precision, Recall, F1, and mean DSC are re-
ported in Table 1. It can be observed that our DUNet
outperforms the modified Deformable-ConvNet and U-Net
with improvements of average DSC up to 5.22% and 0.55%.
Furthermore, it is worth noting that our proposed DUNet
reported the highest average F-measure with 88.78%, which
demonstrates that the proposed DUNet is a high-quality
segmentation model and more robust than other two ap-
proaches. Figures 4 and 5 visualize the 2D and 3D overlap of
segmentations from the proposed DUNet with respect to the
manual segmentations, respectively. Visual inspection of the
overlapping maps shows that the proposed DUNet can fit
the manual segmentations well, which further demonstrates
the effectiveness of our method.

3.4. Impact ofLossFunction. To assess the effectiveness of the
proposed loss function, we test standard Dice loss and the
proposed loss with DUNet, i.e., Dice loss and the proposed
focal generalized Dice loss (FGDL); the segmentation per-
formance of the DUNet with different loss function is re-
ported in Table 2. It can be noted that DUNet with the
proposed FGDL improves mean DSC by 0.96% and min
DSC by 8.38% compared with Dice loss.

3.5. Comparison with Other Methods. We compared the
segmentation performance of the proposed DUNet with
seven approaches [14, 16, 17, 21–24] on the NIH dataset [34].
Note that the experimental results of other seven methods
were obtained directly from their corresponding literatures.
As shown in Table 3, our method achieves the min DSC of
77.03%, max DSC of 93.29%, and mean DSC of
87.25 ± 3.27%, which outperforms all comparison
methods. Moreover, the proposed DUNet performed the
best in terms of both standard deviation and the worst case,
which further demonstrates the reliability of our method in
clinical applications.

4. Discussion

,e pancreas is a very important organ in the body, which
plays a crucial role in the decomposition and absorption of
blood sugar and many nutrients. To handle the challenges of
large shape variations and fuzzy boundaries in the pancreas
segmentation, we propose a semiautomated DUNet to
adaptively learn the intrinsic shape transformations of the
pancreas. In fact, DUNet is an extension of U-Net by
substituting the standard convolution block of the second
and third layers in the encoder and counterpart layers in the
decoder of U-Net with deformable convolution. ,e main
advantage of the proposed DUNet is that DUNet utilizes the
changeable receptive fields to automatically learn the in-
herent shape variations of the pancreas, then extract robust
features, and thus improve the accuracy of pancreas
segmentation.

,ere are several limitations in this work. First, during
data processing, we first need radiologists to approximately
annotate the minimum and maximum coordinates of the
pancreas in each slice in order to localize it and thus reduce
the interference brought by complex background. ,is work
may be laborious. Second, the trainable parameters are
relatively excessive. In future work, we will further improve
pancreas segmentation performance from two aspects. First,
we will explore and adopt attention mechanism to eliminate
localization module and construct a lightweight network.
Second, we will consider how to fuse prior knowledge (e.g.,
shape constraint) to the network.

5. Conclusions

In this paper, we proposed a semiautomated DUNet to
segment the pancreas, especially for the challenging cases
with large shape variation. Specifically, the deformable

Table 3: Comparison with other segmentation methods on the NIH dataset (DSC%). Bold denotes the best.

Method Min DSC Max DSC Mean DSC
Roth et al., MICCAI’2015 [16] 23.99 86.29 71.42 ± 10.11
Roth et al., MICCAI’2016 [17] 34.11 88.65 78.01 ± 8.20
Zhou et al., MICCAI’2017 [14] 62.43 90.85 82.37 ± 5.68
Cai et al., 2019 [21] 59.00 91.00 83.70 ± 5.10
Liu et al., IEEE access 2019 [22] N/A N/A 84.10 ± 4.91
Zhu et al., 3DV’2018 [24] 69.62 91.45 84.59 ± 4.86
Man et al., IEEE T MED IMAGING 2019 [23] 74.32 91.34 86.93 ± 4.92
DUNet(Ours) 77.03 93.29 87.25 ± 3.27
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convolution andU-Net structure are integrated to adaptively
capture meaningful and discriminative features. ,en, a
nonlinear Dice-based loss function is introduced to super-
vise the DUNet training and enhance the representative
capability of DUNet. Experimental results on the NIH
dataset show that the proposed DUNet outperforms all the
comparison methods.
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