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Abstract

We present a dynamical systems analysis of a decision-making mechanism inspired by collective choice in house-hunting
honeybee swarms, revealing the crucial role of cross-inhibitory ‘stop-signalling’ in improving the decision-making
capabilities. We show that strength of cross-inhibition is a decision-parameter influencing how decisions depend both on
the difference in value and on the mean value of the alternatives; this is in contrast to many previous mechanistic models of
decision-making, which are typically sensitive to decision accuracy rather than the value of the option chosen. The strength
of cross-inhibition determines when deadlock over similarly valued alternatives is maintained or broken, as a function of the
mean value; thus, changes in cross-inhibition strength allow adaptive time-dependent decision-making strategies. Cross-
inhibition also tunes the minimum difference between alternatives required for reliable discrimination, in a manner similar
to Weber’s law of just-noticeable difference. Finally, cross-inhibition tunes the speed-accuracy trade-off realised when
differences in the values of the alternatives are sufficiently large to matter. We propose that the model, and the significant
role of the values of the alternatives, may describe other decision-making systems, including intracellular regulatory circuits,
and simple neural circuits, and may provide guidance in the design of decision-making algorithms for artificial systems,
particularly those functioning without centralised control.
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Introduction

Animals constantly make decisions, yet decision-making mech-

anisms and their evolution are still poorly understood in many

cases. Recent years have seen a convergence of several research

fields aiming to improve our understanding of general decision-

making principles. Behavioural ecologists have argued for the need

to combine the traditional study of animal behaviour through the

lens of optimality arguments [1], with an increased understanding

of the mechanisms underlying behaviour and their evolution [2].

At the same time psychologists and neuroscientists, who focus on

understanding the mechanistic bases of behaviour, are increasingly

focussing attention on how these mechanisms can implement

optimal behaviour (e.g. [3-5]). Behavioural ecologists in the

burgeoning subfield of collective animal behaviour are also

interested in mechanisms, in terms of interaction rules and

patterns, that generate sophisticated group decisions [6].

Some researchers have noted the parallels between these

apparently disparate fields, by observing that the interaction

patterns of neurons in brain circuits and animals in groups appear

to be very similar [7-10], and also that tools and concepts from

psychology and neuroscience may usefully be imported into the

study of collective animal behaviour [11,12]. These ideas have

been made concrete in modelling studies where, for example,

optimality analyses from neuroscience [9] or decision-making tests

from psychology [8] have been applied to models of collective

decision-making by social insect colonies of ants and honeybees,

and in experimental studies where the parallels have successfully

guided the search for decision-making mechanisms in honeybees

[13,14].

In this paper we present a comprehensive analysis of our

previous empirically-motivated model of decision-making by

house-hunting honeybees swarms [13], and argue that its

decision-making properties may in turn guide the study of

decision-making systems at other levels of biological complexity,

up to individual brains, and down to intracellular decision-making

circuits, as well as inform the design of artificial, decentralized

decision-making systems. Our previous analysis showed that the

particular pattern of `stop-signalling’ observed in swarms allows

them to adaptively avoid deadlock by choosing randomly when

presented with two potential nest sites of equal quality, and to

converge on choosing the best of two potential nest sites when

there is a sufficiently large difference in their quality [13,14].

Here, we show further aspects of value-sensitive decision-

making that arise from cross-inhibitory stop-signalling. We analyse

a model whose decision-dynamics are characterised by fast

attraction to a one-dimensional decision manifold, followed by

slower time-evolution along this manifold. We leverage a time-

scale separation to reveal how the strength of cross-inhibition

critically determines the decision-system response to both the
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difference in value and the mean value of the two alternatives.

These analytic results considerably extend our previous initial

analysis of this model’s decision dynamics [13].

We show that stronger cross-inhibition yields a greater

minimum difference in value required for discrimination between

the alternatives. When the difference in value is below this

minimum, the alternatives are treated as equal or nearly equal,

and the cross-inhibition determines whether or not the alternatives

are of sufficiently high value to warrant breaking decision

deadlock. A stronger cross-inhibition increases the minimum

mean value of the alternatives above which a decision deadlock is

broken and the system randomly chooses one of the alternatives.

When the (nearly) equal alternatives have mean value below the

minimum mean value threshold, deadlock is maintained, allowing

for the arrival of information on other, possibly more valuable,

alternatives.

We show that cross-inhibition strength determines the mini-

mum detectable difference in the value of alternatives, as a

function of their mean value, in a manner similar to Weber’s law

as arising from psychological studies. We further show that for

decisions over alternatives that do differ sufficiently in quality, that

the stochastic decision dynamics exhibit a speed-accuracy trade-off

in decision-making that depends critically on the difference in

value and mean value of the alternatives, with dependence

controlled by the strength of the cross-inhibition. The speed-

accuracy trade-off is qualitatively similar to the statistically-optimal

trade-off of the drift-diffusion model of decision-making, although

we present evidence that decision-making does not achieve

optimality under the parameterisations we consider here.

Model

The decision-making model we study is an extension of our

previous empirically-motivated deterministic model [13] to include

stochastic fluctuations in the relevant recruitment and interaction

rates. Although we shall initially describe the model in terms of

house-hunting honeybees, the formulation is general and could

describe any decision-maker in which accumulators compete to

reach a decision threshold, are activated, decay, and inhibit each

other according to the values of the alternatives they represent. For

the simplest case of a decision over two alternatives, the time-

evolution of the general model is described entirely by a two-

dimensional system of coupled stochastic ordinary differential

equations as

dyA : ~ yU cA{yA(aA{yU rAzyBsB)ð Þdt

zk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

Uzy2
Azy2

U y2
A

q
dWA

dyB : ~ yU cB{yB(aB{yU rBzyAsA)ð Þdt

zk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

Uzy2
Bzy2

U y2
B

q
dWB

8>>>>>>><
>>>>>>>:

ð1Þ

where yA and yB are the proportion of scout bees recruiting to

potential nest sites A and B respectively, and yU~1{yA{yB is

the proportion of uncommitted scouts in the colony. Since yA and

yB represent accumulated commitment to the alternatives, in

general we refer to them as accumulators as is typical in theoretical

neuroscience, for example [15]. Greek letters are used to denote

parameters of the colony’s decision-making system, that could be

tuned by evolution. Latin letters are used to denote parameters of

the decision problem faced by the colony that are outside of its

control. Here, ci is the rate at which scouts independently discover

and begin recruiting to potential nest site i, ai is the rate at which

scouts spontaneously abandon their commitment to site i, ri is the

rate at which scouts committed to site i recruit uncommitted scouts

via the`waggle dance’ [16], and si is the rate at which scouts

committed to site i convert scouts recruiting for the competitor site

to a state of non-commitment, using the`stop-signal’ to disrupt

waggle-dancing bees [13,17]. Our previous experimental work has

shown that this signal is delivered in a targeted manner, in that

bees committed to a particular site deliver stop-signals primarily to

bees dancing for competitor sites [13].

A collective decision is reached when one of the scout

populations reaches a (variable) quorum threshold v. We assume

that all of the rates depend on the value vi of the relevant potential

nest site. As in previous work we set ci~ri~vi and ai~1=vi [13].

Moving beyond the model of [13], we further assume that these

crucial decision rates ci, ai and ri are subject to some stochastic

variability, due to the inherently noisy evaluations of nest site

quality vi undertaken by individual scout bees; since our earlier

work [13] showed that stop-signal strength should be independent

of nest-site value, and since we are interested primarily in how

sensory noise is processed by the decision-making system, no noise

is added to rate s~sA~sB. We assume independent white-noise

(Wiener) processes added to the value-dependent rates, with

identical variances k2. As described in Text S1 (section S.2)

independent Wiener processes can be combined into a single noise

term with larger variance. This is captured in the dWA and dWB

terms in Eq. 1 in which dWi is a normally-distributed increment of

the Wiener process i, with mean 0 and variance 1. Thus the

parameter k controls the noisiness, or difficulty, of the decision

problem, where higher k means noisier evaluations. This

approach to capturing sensory noise in an infinite-population

model is standard in theoretical neuroscience (e.g. [4]) and has

previously been used to model collective behaviour of social insects

(e.g. [9]). Note that noise captured in the Wiener processes of Eq. 1

is thus sensory noise, rather than intrinsic noise arising from finite

populations of scout honeybees; correct derivation of intrinsic

noise requires approaches based on the Master equation (e.g. [18])

and is beyond the scope of the present paper. For our dynamical

systems analyses, we will set k~0 in Eq. 1, recovering the noise-

free dynamics of [13], while for our stochastic decision dynamics

analyses, we will set kw0.

Results

General Decision Dynamics — Separation of Timescales
Here we present analytic results on the general decision

dynamics of the model. A well-established technique for studying

models of binary decision-making similar to that described in Eq. 1

is to reduce the system of equations to a one-dimensional

description of the decision dynamics (e.g. [4,9]). Denote the mean

value of alternatives �vv : ~(vAzvB)=2 and the difference in value

of alternatives Dv : ~vA{vB. For large �vv and small Dv=�vv, it can

be shown that there is a separation of timescales; a singular

perturbation analysis of the zero-noise (k~0) dynamics (Text S1,

Figure S1) reveals fast convergence, dominated by the dynamics of

the uncommitted population yU , to a stable one-dimensional

decision manifold, followed by slow time-evolution, dominated by

the relative dynamics of the accumulators yA and yB, along this

manifold as illustrated in Figure 1. We note that the slow manifold,

defined implicitly by (Text S1)

yAyB~
2�vv

s

yU (1zyA)(1zyB)

3{yU

, ð2Þ

(1)
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depends on �vv and s but not on Dv, whereas the dynamics along

the slow manifold depend explicitly on �vv, s, and Dv (Text S1). The

analytically-calculated slow manifold is superimposed on the

simulated decision-making dynamics in Figure 1 and in Figure

S2, where it can be seen that the slow manifold approximates the

slow dynamics well over a range of parameter values, deteriorating

only when Dv is on the order of �vv.

Thus, analysing the stochastic decision dynamics along the

stable one-dimensional manifold will give a good understanding of

the decision-making properties of the system as a whole. This is

particularly relevant because the reduced dynamics resemble

classical models of binary decision-making. For example, the

general one-dimensional stochastic differential equation

dx : ~(azbx)dtzcdW , ð3Þ

where dW is the Wiener increment as in Eq. 1, includes

Orstein-Uhlenbeck processes (OU — a~0, b=0) and the drift-

diffusion model (DDM — a=0, b~0) as special cases. In these

models as applied to decision-making, a may in certain cases

correspond to the signal in the stimulus presented to the decision-

maker, and c the noise in that stimulus. The decision-variable x

models the tendency to choose one of two alternatives where a

decision is made in favor of one alternative when x crosses a

positive threshold, and the other alternative when x crosses a

negative threshold. In the statistically-optimal DDM parameter-

isation, x represents the log likelihood ratio of the alternatives so

that x~0 corresponds to equal evidence for each alternative.

Bogacz et al. previously recovered O-U processes and the DDM

from two-dimensional connectionist models of choice in the visual

cortex, while we recovered the DDM from two-dimensional

models of nest-site selection by social insect colonies [9]. The

DDM [19] is of particular interest to researchers studying

decision-making because it corresponds to the statistically-optimal

test for compromising between speed and accuracy of decision-

making, and gives the best fits to reaction-time and error-rate

distributions of subjects undertaking psychophysical decision tasks

[4]. The analyses of [4] and [9] were facilitated by studying

equations that converged to a linear stable manifold, whereas the

stable manifold for Eq. 1 is clearly non-linear (Figure 1; Text S1).

Nevertheless approximations to this manifold, as well as stochastic

simulations, will enable us to analyse decision-making along it.

Minimum Value of Acceptable Equal Alternatives
Our previous analysis showed that the decision-making model

of Eq. 1 with k~0, when alternatives are of equal value

(v : ~vA~vB), exhibits a pitchfork bifurcation as a function of

increasing cross-inhibition rate s and value v [13]. In the pre-

bifurcation case, a single attractor exists at which each accumu-

lator is of equal size, whereas in the post-bifurcation case this

attractor becomes an unstable saddle point, and attractors

corresponding to each alternative emerge. That is, there is a

critical level of cross-inhibition s� below which the decision-maker

remains deadlocked between the two equal alternatives, but above

which it converges to choosing one alternative at random. This

threshold, plotted in Figure 2, was previously [13] calculated as

s�~
4v3

(v2{1)2
: ð4Þ

Figure 2 demonstrates a further very useful decision-making

property, that of value sensitivity. To illustrate the general

principle, consider the particular case of a honeybee swarm that

has discovered two equally poor potential nest sites. If both of

these alternatives are of such low value to the swarm, through

having insufficient volume to allow for effective colony growth and

reproduction in the future, for example, then the swarm would be

better off waiting to see if its scouts can discover other, higher

value, alternatives in the vicinity. Figure 2 shows that, if the value

of the alternatives v is sufficiently low given the swarm’s rate of

cross-inhibition s then this is precisely what happens; the recruiter

populations for the two alternatives A and B become deadlocked

at equal commitment, while leaving a proportion of the swarm in

the uncommitted state U and thus available to discover

alternatives through independent exploration of the environment

(Figure 2; bottom-left inset). Figure 3 presents stochastic simula-

tions of a scenario illustrating this behaviour (see Text S1), in

which two equal but poor quality alternatives are discovered, and

stable deadlock persists between them until a third superior

alternative is discovered and subsequently chosen. This late

selection of an alternative differs qualitatively from earlier models

[20], in which no mechanism for adaptive deadlock was

considered; in [20] a lower recruitment rate for a poor alternative

gives enough time for a late-discovered good alternative to

overtake the poor and reach the decision threshold first. Although

we have not presented them, our model with a single-discovered

alternative, in which no cross-inhibition would occur, would

exhibit similar dynamics. There is experimental evidence,

however, that for honeybee swarms even with only two

alternatives available for discovery, times-to-discovery relative to

time-to-decision are sufficient to ensure that both alternatives are

discovered and a competition between them occurs [13]. The

results of our model also agree qualitatively with experimental

evidence that honeybee swarms are able to choose a good-quality

nest site over four other medium-quality nest sites [21], which

Figure 1. Decision-making dynamics on the unit simplex with
vertex U corresponding to a fully uncommitted decision-
maker (yU ~1), vertex A to a decision-maker fully committed to
alternative A (yA~1, and vertex )B to a decision-maker fully
committed to alternative B (yB~1). When the accumulator for
alternative A or B (yA or yB) surpasses a decision threshold, illustrated
with a dashed line, the corresponding alternative is selected by the
decision-maker. Flow lines indicate sample noise-free trajectories over
time, demonstrating fast convergence to a slow, invariant manifold. A
singular perturbation analysis (Text S1) proves this separation of
timescales, and gives the expression Eq. 2 for the slow manifold
(magenta line), which is independent of Dv (thus, the slow manifold is
the same in the right and left plots). The dynamics on the slow manifold
depend on parameters of the decision problem �vv and Dv and of the
cross-inhibition rate s; stable attractors (filled circles) can co-exist with
unstable saddle-nodes (hollow circles) on the slow manifold. Thus,
decision-making can be reduced to a single decision-variable; this is the
form of several classic models of decision-making, including those
implementing provably optimal statistical tests.
doi:10.1371/journal.pone.0073216.g001
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presumably requires an adaptive deadlock to be maintained

between discovered medium-quality sites, until discovery of the

good-quality site enables its selection.

If, however, for the same rate of cross-inhibition s the value of

the equal alternatives is sufficiently high, then the dynamics

bifurcate so that the decision-maker converges on choosing one of

the two alternatives at random (Figure 2; top-right inset). This

illustrates a very sophisticated decision-making strategy; if

information about only two alternatives is available but neither

is very valuable then waiting to see if a better alternative is

discovered could be sensible, whereas if the two alternatives are

both of sufficient quality then quickly choosing one at random

rather than wasting further time waiting for alternatives would be

appropriate. Evolution could tune the level of cross-inhibition s in

a decision-maker to set the acceptance threshold for the value v of

equal alternatives to an appropriate level, given the needs of an

organism and the quality of alternatives typically available in an

environment, as Figure 2 illustrates.

The preceding analysis assumes an evolutionarily hard-wired

level of cross-inhibition, but further sophistication is possible if one

considers what might happen to our hypothetical decision-maker,

considering two equal but low value alternatives, if it waits too

long. Any decision-maker has finite time and resources available to

make decisions; in the case of a honeybee swarm members have

finite energy reserves, since they load up with honey before

swarming and do not resume foraging until the swarm has found a

suitable nest site [10]. If after a long period of time the swarm still

only has information about the two low-value alternatives then it is

reasonable to assume that no better alternatives are available as

they would likely have been discovered and, in any case, the

resources of the swarm are being rapidly depleted. In this scenario

it would be better for the swarm to choose one of the low value

nest sites than none at all. This can be achieved by progressively

increasing the cross-inhibition rate s; as Figure 2 indicates, by

Figure 2. Value-dependent decision-making over equal alter-
natives. A critical cross-inhibition level s� can be calculated, below
which stable decision-deadlock results due to a single stable attractor
on the yA~yB line. Increasing the strength of cross-inhibition above
the critical threshold s� , this attractor becomes unstable and two stable
attractors, one for each alternative, emerge from it and rapidly move
apart [13]; in this situation one alternative will thus be chosen at
random by the system. As the equation and plot for s� make clear, the
level of cross-inhibition required to break deadlock decreases with
increasing value v of the two alternatives. Thus, holding cross-inhibition
level constant, decisions over equal but low value alternatives can result
in deadlock, while decisions over equal but high value alternatives can
result in a random choice. This can lead to sophisticated decision
dynamics (Figs. 3 and S3).
doi:10.1371/journal.pone.0073216.g002

Figure 3. Stochastic simulation shows that for two sufficiently poor but equal alternatives, deadlock between the two persists until
a third, superior alternative is discovered (at time t~30), at which point it is selected by the decision-maker. The three-alternative
model simulated here is a simple extension of the two-alternative model of Eq. 1, as described in section S.2 of Text S1. Noise parameter k~0:05.
doi:10.1371/journal.pone.0073216.g003

Value-Sensitive Decision-Making

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e73216



doing so a point is reached at which the value of the alternatives v,

which previously resulted in stable deadlock between them, is

suddenly sufficient to precipitate a random choice between the

two. A stochastic simulation illustrates this process in Figure S3.

Minimum Relevant Differences Between Equal
Alternatives

The decision dynamics of the model are sensitive not only to the

value of the available alternatives but also to the absolute difference

jDvj in the values of the alternatives, as illustrated in Figure 4.

First, the results of Figure 2 generalize to non-zero jDvj; an

increase in the rate of cross-inhibition s leads to a bifurcation

resulting in two stable attractors, one for each alternative.

As Figure 4 (Left) shows, for small jDvj the stable deadlock point

(pre-bifurcation) is moved towards the better of the two

alternatives (plot (c) in 4(Left)), but may still be placed such that

neither alternative reaches threshold and thereby is selected.

However, for small jDvj, as in the case of equal value alternatives,

increasing cross-inhibition ensures at least that a decision is

reached; two stable attractors, one for each alternative, are

introduced at the bifurcation with a saddle node between them.

For larger values of jDvj, the saddle node (post-bifurcation)

moves towards the inferior alternative, thereby increasing the

chances that the better alternative is selected (point (d) in 4(Left)).

For jDvj sufficiently large relative to the mean value v of the

alternatives, the (pre-bifurcation) single stable attractor corre-

sponding to the best alternative will be such that the decision-

maker can reach the decision threshold required to select that

alternative. Figure 4 (Middle) illustrates the minimum jDvj
required to retain a (pre-bifurcation) single attractor for the best

alternative as a function of s for a given v.

In Figure 4 (Right) the minimum jDvj required to retain a single

attractor for the best alternative is plotted as a function of v. The

situation in which a single attractor exists is precisely the situation

in which the decision-maker could be thought of as unambiguously

identifying one superior alternative from the two available, since

when two attractors exists, one for each alternative, some decision

trajectories lead the system towards selecting the worst of the two

alternatives. Notably, the minimum jDvj converges on a linear

relationship with v, with slope determined by s (Figure 4 (Right)).

This is analogous to Weber’s law of just-noticeable difference,

formulated in psychology, which states that the minimum

difference in stimulus intensity required to discriminate between

two sources varies linearly with their mean intensity as

Dv

v
~K , ð5Þ

where K is an empirically-determined constant. From Figure 4

(Right) it is evident that K in Eq. 5 is a function of cross-inhibition

rate s. Thus cross-inhibition controls the Weber coefficient with

lower rates s corresponding to lower Weber coefficients K , leading

to a shallower increase of decision difficulty with mean value of

alternatives in the decision.

Full Dynamics Classification
Figure 5 illustrates the full set of dynamical regimes that the

stop-signal model of Eq. 1 can exhibit, as its parameters are

changed. Figure 5 (Left) shows the pitchfork bifurcation with

increasing cross-inhibition s in the jDvj~0 case. The dynamics in

the jDvj=0 case exhibit a saddle-node bifurcation as a function of

cross-inhibition rate s (Figure 5 (Middle)). The dynamics also

exhibit a hysteretic effect as a function of difference in value of the

two alternatives Dv (Figure 5 (Right)). For a given value of v, the

bifurcations of the dynamics of Eq. 1, in two parameters Dv and s,

are qualitatively identical to the cusp catastrophe [22]. The plots

in Figure 5 represent three slices through this cusp catastrophe

bifurcation set. Each of these regimes is illustrated with stochastic

simulations in the movies S1, S2, S3; the hysteresis loop implied by

Figure 5 (Right) is illustrated in movie S4.

The saddle-node bifurcation of Figure 5 (Middle) clearly shows

two features of the cross-inhibition rate s. First, even for small

differences in the value of alternatives relative to their mean value,

Figure 4. Dependence of decision-making over alternatives on absolute difference in value of alternatives jDvj, cross-inhibition
strength s, and mean value of alternatives v. (Left) Bifurcation set as a function of s and jDvj, for fixed v~4. This generalises the result of
Figure 2, for which jDvj~0. The grey region corresponds to parameters where the decision dynamics have a single stable attractor (pre-bifurcation),
whereas the white region corresponds to those having two stable attractors and one saddle node (post-bifurcation). Sample phase-portraits illustrate
how the positions of these fixed points change according to s and jDvj. Plots (a) and (b) illustrate the results of Figure 2, in which jDvj~0. Increasing
jDvj moves the stable attractor towards the superior alternative in the pre-bifurcation case (see plot (c)), although it may still correspond to a
population state in which threshold is reached for neither alternative; whereas increasing jDvj in the post-bifurcation case moves the saddle point
towards the inferior alternative, thereby increasing the basin of attraction for the superior alternative (see plot (d)). Thus for a decision with given jDvj
that is too low to precipitate a threshold decision, increasing s precipitates a decision, in which the more valuable alternative is more likely to be
selected. (Middle) The relationship between s and the minimum jDvj required for a unique attractor for the best alternative depends on v. (Right) The
relationship between v and the minimum jDvj required for a single alternative to unambiguously be considered the best converges on a linear
relationship, with slope determined by s. This is similar to Weber’s law of just noticeable difference, observed in psychological studies, with s
determining the Weber coefficient.
doi:10.1371/journal.pone.0073216.g004
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increasing cross-inhibition s improves decision-making by moving

the (pre-bifurcation) single stable attractor further and further

towards the state in which there is a more highly-activated

accumulator for the superior alternative. If the decision threshold,

defined by dashed lines, is set to an appropriate value, increasing

the cross-inhibition would therefore amplify the differences in the

qualities of the the alternatives sufficiently to precipitate a decision

for the better alternative, on average.

Figure 5 (Middle) also shows that too high a rate of cross-

inhibition s can be detrimental. If the cross-inhibition rate is

increased then a stable attractor for the inferior alternative suddenly

appears in a saddle-node bifurcation, with an unstable saddle point

between it and the original stable attractor. This can be helpful to

ensure a decision if a threshold is not reached pre-bifurcation;

however, in the case that a threshold is reached pre-bifurcation for

the superior alternative, the bifurcation might not be helpful

because post-bifurcation the superior alternative is no longer a

unique solution. Further increase in the cross-inhibition rate s
moves the inferior attractor further toward or beyond the decision

threshold for the inferior alternative, and moves the saddle point

closer towards equal-magnitude accumulators for each alternative

(0.5 on the y-axis of Figure 5 (Middle)). Thus increasing cross-

inhibition too much changes the dynamics such that there may be

an increasing risk of the decision-maker converging on choosing

the inferior of the two alternatives. However, as we show below

higher levels of cross-inhibition can have benefits for speed-

accuracy trade-offs.

In Figure 5 (Right), there is a hysteretic effect as difference in the

quality of alternatives Dv is smoothly increased and then decreased

over time; this is illustrated in an animation of stochastic

simulations in Text S1. While Dv is increasing, from an initially

low level, over the interval of Dv in which three fixed points co-

exist (approximately 20.5 to +0.5 in the figure) the system will be

in the vicinity of the lower of the two stable attractors. At a

sufficiently high value of Dv (approximately 0.5), the system will

jump to the other, upper stable attractor. If Dv is then reduced

over the same interval, the system will remain in the vicinity of the

upper, stable attractor until Dv is less than approximately -0.5.

While for a bee swarm, values of alternatives are unlikely to

change smoothly over time in this way, this may be the case for

other decision-makers, where exploitation of an alternative

degrades its value, as in the example of intracellular decisions on

activation of metabolic pathways considered in the Discussion. For

neural decision-circuits, as also mentioned in the Discussion,

laboratory experiments may be able to vary stimuli over time in

this way. In both these cases the hysteretic effect of Figure 5 (Right)

could act as a diagnostic that the decision-circuit used is similar in

form to that described in Eq. 1.

Other authors have previously presented similar bifurcation

results in different contexts for different models. For example [23]

examines error rate and reaction times in connectionist models

with non-linear interactions between accumulators, where these

interactions serve to act as priming biases for decisions. Cell-fate

decisions are analysed in [24] with respect to speed of intracellular

signalling change, using the tools of bifurcation analysis. Foraging

by social insect colonies, which differs from decision-making in

that optimal foragers should exploit resources proportionally to

their quality [25], has also been studied in this way [26], as has

accuracy of collective decisions in such models [27]. While these

previous studies do not, as we do, consider decisions in which a

single decision-maker must choose only one option whose value

they are rewarded by, they do highlight the importance of

nonlinear interactions between accumulators in enabling the kinds

of bifurcation behaviour presented here. In particular, nonlinear

interaction between accumulators is not necessary for such

behaviour; indirect nonlinear interaction, through accumulator

populations competing for a finite pool of uncommitted individuals

[26], for example, is sufficient.

Speed-Accuracy Trade-offs
As noted above, several classical models of decision-making,

including the DDM and the (un)stable O-U process, are described

using equations of stochastic motion on a line. The separation of

timescales result presented above demonstrates that the decision

dynamics converge rapidly to a line, along which they slowly

diffuse. Of particular interest in decision-making models are speed-

accuracy trade-offs [28-30], and the optimal compromise between

these two quantities [4,9]. We therefore undertook preliminary

numerical investigations (described in the Text S1) into the

stochastic behaviour of the decision system under different

parameterisations, once the system has converged to the stable

decision-manifold, and until it crosses a decision-threshold.

Figure 6 presents a classic speed-accuracy trade-off, for a

parameterisation that results in only a single attractor for the best

alternative available. In Figure S5 in Text S1 we present

numerical analyses of other cases, which highlight further

interesting decision dynamics; in particular, we show for certain

parameterisations that having an attractor for the incorrect

Figure 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-
maker, the dynamics include (i) pitchfork bifurcation as a function of cross-inhibition rate s in the equal alternatives case, (ii) saddle-node bifurcation
as a function of cross-inhibition s in the unequal alternatives case, and (iii) hysteresis as a function of difference in value of alternatives Dv. Fixed
points are projected onto the ½0,1� line as described in Text S1 and Figure S4. Blue dots indicate stable attractors, and red indicate unstable saddle
points. Decision thresholds at yA~yB~0:7 are indicated by dashed lines.
doi:10.1371/journal.pone.0073216.g005
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alternative can actually improve reaction time, without compromis-

ing decision accuracy (compare top left and top right plots of

Figure S5). The fact that this improvement is possible indicates

that decision-making along the stable manifold with a single

attractor is not a statistically-optimal drift-diffusion process under

the parameterisations studied here.

Discussion

Although motivated by and presented in terms of decision-

making by house-hunting honeybee swarms, our model exhibits a

number of beneficial decision-making qualities that we might

expect other organisms to exhibit. At the heart of our analysis is

the observation that, in a choice, an animal is typically rewarded

by the value of the chosen alternative, rather than whether or not

it chose the best. In particular the model decision-maker displays a

sensitivity to the absolute as well as the relative value of the

alternatives under consideration; this enables it to wait for

information on better alternatives to arise when considering

equally poor alternatives, but to spontaneously choose one equal

alternative at random when both are good enough relative to a

crucial decision-making parameter, the rate of stop-signalling, or

cross-inhibition, s. The decision-maker exhibits other properties

observed in psychological studies, such as speed-accuracy trade-

offs, and Weber’s law of just-noticeable difference. The increasing

rate of cross-inhibition may also improve the energetic costs of

decision-making, although possibly at the expense of decision

accuracy (as discussed in Text S1 and Figure S6). Our

investigation has focussed on analytic treatment of the noise-free

equations and stochastic simulations of speed-accuracy trade-offs

and decision dynamics for binary decision-problems. Much work

remains to be done in extending these analyses, for example to

decisions over more than two alternatives.

Having suggested that our model might describe adaptive

decision-making in general, what are the prospects for finding

similar decision-making networks in other species? The form of the

model equations is that of chemical reaction kinetics, in which

interactions between chemical species are described by `mass

action’ terms. Therefore, there is the potential for intra-cellular

regulatory networks to implement these decision-dynamics quite

easily, for example in deciding for which of a number of available

substances to activate the associated metabolic pathway. Evidence

that single-cells can, for example, implement Bayesian-estimation

through intra-cellular signalling [31], or exhibit Weber’s law in

gene regulatory pathways [32,33] indicates that such decision-

making at the cell level is entirely plausible. Mutual inhibition also

features in models of transcription in cell-fate decisions [24].

Another obvious class of decision models that invite comparison

are those developed to describe neural networks for decision-

making in simple perceptual decision tasks, such as those that take

place in the primate visual cortex. A variety of accumulator models

have been studied for their ability to fit experimental data, as well

as implement optimal decision strategies (e.g. [4]). Optimal

parameterisation of many such models requires evidence-accu-

mulating pathways to interact [4], which the cross-inhibition

mechanism in our model also implements. While optimality

analyses in these models do take account of variable rewards for

correct choices (e.g. [34,35]), they do not typically account for the

fact that in real animals incorrect choices over, for example, food

items still result in a reward, albeit one that is not the best

available. Recently however, there is increasing interest in

combining ideas from psychophysics, such as the Drift-Diffusion

Model (DDM) [19], with the study of value integration processes

(e.g. [36,37]).

Many accumulator models, like the classic DDM, also struggle

with the correct choice when presented with zero net evidence,

such as when choosing between two stimuli of equal average

magnitude, and thus cross decision thresholds only through

random drift. When choice of either alternative would result in

Figure 6. Speed-accuracy trade-off when differences between alternatives are sufficiently large that a single attractor for the best
alternative exists; the observed speed-accuracy trade-off is qualitatively similar to that realised by the statistically-optimal drift-
diffusion model of decision-making (see Text S1). When two attractors for alternatives of different values exist, however, the presence of the
unstable saddle-node can improve error rate without compromising reaction time (see Text S1 and Figure S5).
doi:10.1371/journal.pone.0073216.g006
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an equal reward, such behaviour is clearly sub-optimal. Proposals

to deal with this include implementing `urgency signals’ or

collapsing decision thresholds over time [38,39], and the use of

time-dependent sensory gain, and asymmetric inhibition between

evidence pathways [38]. Our model differs from these proposed

mechanisms, in that it spontaneously exhibits behaviour like that

of an unstable Ornstein-Uhlenbeck process in order to break

deadlock, according to the value of the alternatives under

consideration and the strength of cross-inhibition.

Our non-linear model differs from the linear formulation of

accumulator models underlying many analyses (e.g. [4]). The non-

linear interaction terms of our model can, however capture neural

activation dynamics; the logistic activation curve for neural

populations in an accumulator model, used in [23], are

qualitatively similar to`activation patterns’ in the stop-signalling

model, and [23] derives behaviour qualitatively similar, although

not identical, to the stable-deadlock and deadlock-breaking results

presented above. It is not unreasonable to expect convergent

evolution to arrive at the same simple solution to the problem of

value-dependent decision-making, in systems as diverse as single

cells, honeybee swarms, and vertebrate nervous systems.

Supporting Information

Figure S1 Level curves in x,z coordinates.
(TIFF)

Figure S2 Comparison between the analytically com-
puted slow manifold h(x) plotted in magenta and
simulations of the stop-signaling dynamics (S1). The

match between the analytical slow manifold and the simulations is

excellent, except for the case Dv~O(v), s~O(v). For this set of

plots, v~10, O(v):10 and O(1):1.

(TIFF)

Figure S3 Simulations of the stochastic dynamics (S20)
with time-varying stop-signal. A deadlocked population is

able to converge to a decision for one of two equal alternatives by

slowly ramping up the stop-signal; the critical value of stop-signal

for the pitchfork bifurcation is marked on the bottom plot. Noise

parameter k~0:05.

(TIFF)

Figure S4 Illustration of equilibrium (yAeq,yBeq) project-
ed orthogonally onto yU~0. These projected equilibria are

plotted in Figure 5 of the main text.

(TIFF)

Figure S5 Increasing stop-signalling rate s has energet-
ic benefits, as the total number of individuals involved in
decision-making at any point in time is reduced.

However, given the wisdom-of-the-crowds effect, this may have

an adverse effect on collective accuracy, as fewer individual value

estimates are pooled.

(TIFF)

Figure S6 Error Rate (ER, green) and Reaction Time
(RT, blue) for the stochastic decision-making dynamics
(S20) stopsde as a function of decision threshold v.
Parameters are indicated on each plot: (a) standard parameterisa-

tion from figure 6 in main text, (b) bistability with difference in

value of alternatives, resulting from stronger cross-inhibition, (c)

monostability for larger difference in value of alternatives and

stronger cross-inhibition, (d) symmetric bistability when alterna-

tives are equal in value.

(TIFF)

Matlab Code S1 Matlab code for stochastic simulation models.

(ZIP)

Movie S1 Locations of fixed-points, and simulated stochastic

trajectories, as a function of varying stop-signal level (equal

alternatives).

(MP4)

Movie S2 Locations of fixed-points, and simulated stochastic

trajectories, as a function of varying stop-signal level (unequal

alternatives).

(MP4)

Movie S3 Locations of fixed-points, and simulated stochastic

trajectories, as a function of varying difference in quality of

alternatives.

(MP4)

Movie S4 Hysteretic effect as result of smoothly varying

difference in quality of intervals repeatedly over a fixed interval.

(MP4)

Text S1 Further information on analytic and simulation results.

(PDF)
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