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Simple Summary: Fanconi anemia (FA) is the most common inherited bone marrow failure
syndrome, characterized by chromosomal instability and a high risk of cancer. Hematologic
malignancy in FA, mainly myelodysplastic neoplasm (MDS) and acute myeloid leukemia
(AML), associates with characteristic clonal chromosomal abnormalities in the bone marrow.
Although clonal chromosome abnormalities (CCAs) associated with malignant progression
in FA involve chromosomes 1, 3, and 7, information on the broader preleukemic bone
marrow cytogenetic landscape is scarce. In this study, we report the type and frequency
of every kind of non-clonal chromosomal abnormality (NCCA) appearing in the bone
marrow of a group of patients with FA, spanning from cancer-free patients to hematologic
malignancy, where CCA appears. This study unveils the dynamism of emerging karyotypes
in the FA bone marrow and its potential association with the patient’s hematological state.

Abstract: Background/objectives: Fanconi anemia (FA) is an inherited bone marrow fail-
ure syndrome characterized by chromosome instability and predisposition to develop
myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). Clonal chromosome
aberrations (CCAs) in chromosomes 1, 3, and 7 frequently appear in the bone marrow
(BM) of patients with FA and are associated with MDS/AML progression. Given the un-
derlying DNA repair defect that characterizes FA, non-clonal chromosomal abnormalities
(NCCAs) are expected to be common events in the FA BM; in this study, we investigated
the presence and significance of NCCA and CCA in the bone marrow (BM) of patients with
FA. Methods: Here, we transversally examined the BM karyotypes of 43 non-transplanted
patients with FA, 41 with non-clinically detectable hematologic neoplasia and two with
diagnosed MDS. We searched for the presence of NCCAs, complex karyotypes (CKs), and
CCAs as well as their association with the natural history of the disease, including age,
degree of BM failure, and neoplastic transformation. Results: NCCAs were observed in
the metaphase spreads of 41/43 FA patients; CKs were observed in 25/43 patients; CCAs
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were found in 15/43 patients; CCAs involving chromosomes 1, 3 and/or 7 were found in
four patients; and other autosomes were found in the remaining 11 patients. Overall, we
observed a baseline large karyotypic heterogeneity in the BM of FA patients, demonstrated
by the ubiquitous presence of NCCA; such karyotypic heterogeneity precedes the eventual
emergence of CKs and selection of cells carrying fitness-improving CCAs. Finally, CCAs
involving chromosomes 1, 3 and 7, well-known drivers of hematological malignancy in
FA, become established. Overall, we observed that the frequency of NCCAs and CCAs in-
creased with age, even though a significant correlation was not found. Conclusions: These
observations fit the model of evolution towards cancer that comprises a first phase of
macroevolution represented by NCCAs and karyotypic heterogeneity, followed by the
establishment of clones with CCAs, leading to microevolution and cancer. NCCAs are
the most frequent chromosomal alterations in the bone marrow of patients with AF and
constitute a genome with extensive karyotypic heterogeneity that evolves into clones with
more complex genomes and can eventually progress to cancer.

Keywords: Fanconi anemia; non-clonal chromosome aberrations; clonal chromosome
aberrations; complex karyotypes; cancer evolution; bone marrow failure; AML; MDS

1. Introduction
Fanconi anemia (FA) is a chromosome instability syndrome affecting 1 to 5 individuals

per 1,000,000 individuals. FA is also the most frequently inherited bone marrow failure
syndrome and originates from the inheritance of pathogenic variants (PVs) in one of any
23 genes (FANCA-FANCX) that operate in the FA/BRCA pathway, responsible for recogniz-
ing and repairing DNA interstrand cross-links (ICL), through homologous recombination,
an error-free pathway of DNA repair [1–3]. In the absence of a functional FA/BRCA
pathway, the ICLs can be repaired by low-fidelity DNA repair pathways, such as the
non-homologous end joining (NHEJ) or the microhomology-mediated end joining (MMEJ)
pathways [4,5], which promote cell viability at the expense of increasing chromosome
instability (CIN). The latter is a pathognomonic feature of FA, which allows its diagnosis
due to the sensitivity of FA cells to ICL-inducing agents, like mitomycin C (MMC) and
Diepoxybutane (DEB) [2,6–9].

The FA clinical phenotype is highly heterogeneous, affecting multiple organs and
systems. The phenotype includes developmental abnormalities that can be detected from
birth and that are present in 80–96% of patients [10,11]. Bone marrow (BM) failure, which
appears in over 86% of patients with FA, consists of aplastic BM accompanied by peripheral
blood cytopenia of different degrees: mild, moderate, or severe; patients with FA will
develop BM failure around 7 years of age [11,12]. Also, FA patients are prone to develop
cancer, both hematologic and solid tumors, with a cumulative incidence by 40 years of
age of 30–33% and 20–28%, respectively [13,14]. The relative risk for a patient with FA to
develop cancer with respect to the general population is 19X and rises post-HSC transplant
to 55X; specifically, 527X for head and neck squamous cell carcinomas (HNSCC), and after
transplant, 933X; 582X for vulvar squamous cell carcinomas, and after transplant, 6298X;
213X for acute myeloid leukemia (AML); and 5669X for myelodysplastic neoplasia (MDS).
The risk for hematological cancer, MDS and AML, increases by the age of 10 years old,
plateauing at 20–30 years old [14,15].

BM failure in FA has been proposed to be the consequence of damage accumulation
in the DNA of hematopoietic stem and progenitor cells (HSPCs) and hyperactivation of
growth suppressing pathways, such as the TGFβ (Transforming growth factor β) and the
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p53/p21 pathways, thus resulting in critical reductions in the number of HSPCs [16,17].
Despite this harsh BM microenvironment, certain HSPCs thrive, probably due to the
inherent CIN in FA and the acquisition of chromosome abnormalities that allow temporary
survival, although not in the long term.

CIN, one of the hallmarks of cancer, is characterized by aneuploidy and structural
chromosomal abnormalities (CAs) and can be observed in the early stages of cancer in the
general population [18–20]. Importantly, CIN is a constant in FA patients; from zygote
formation and embryonic development, it produces single cell genomic variation in the
form of heterogeneous karyotypes and has the potential to produce, across the body of
patients with FA, diverse altered genomes with short-term survival and elevated level of cell
death, leading to the loss of somatic and HSPS cells [21,22]. This karyotypic heterogeneity
and its inherent proapoptotic tendency might also be the foundation for the well-known
appearance of clonal hematopoiesis and eventual progression to cancer in FA [22,23]. The
latter might be the reason why up to 40% of children and young patients with FA show
signs of clonal evolution in their BM, and 15 to 60% will develop MDS or leukemia, mainly
AML, at an early age [2,24].

Multiple studies have described, and confirmed, the involvement of clonal chromo-
some abnormalities (CCAs) in the emergence of MDS or AML in patients with FA [23–28].
Most of these studies screened for common CCAs using microarrays or fluorescent in
situ hybridization (FISH) directed to regions of interest in chromosomes 1q, 3q, and 7q,
since these are the most informative cytogenetic markers of clonal evolution towards
MDS/AML [24,29,30]. On the other hand, non-Clonal Chromosome Aberrations (NCCAs)
are often overlooked in cytogenetic analysis because they appear in only a single cell and
are dismissed as “background noise” [31], especially in patients with CIN, as is the case for
FA [24].

NCCAs involve large-scale genomic changes, including numerical and structural
chromosomal abnormalities resulting in the gain and loss of genomic material; they also
include balanced structural alterations such as translocations or inversions, which modify
the topology of chromosome segments and change the gene interaction at the scale of
an entire genome [32], leading to a karyotypically diverse cell population, with each
cell potentially having unique evolutionary properties. NCCAs have gained importance
because they are known to alter the genomic information system by changing the karyotype
coding, either through a loss or gain of genetic material or by changes in the topology of
genes and their regulatory elements, or both. Thus, each cell with a specific NCCA has
unique evolutionary potential, and this karyotypic heterogeneity of a cell population is
essential for macroevolution toward disease, and specifically, toward cancer [33].

Cancer evolution is known to be a dynamic process, directed by large-scale chromo-
somal copy number variations that create karyotypic heterogeneity between the cells that
compose a tissue, privileging the selection of the genomes with the greatest fitness [18]
and eventually leading to the selection of clones with CCAs that will orchestrate cancer
development and evolution [18,34]. FA-inherent CIN is expected to create large levels of
NCCA, generating a BM with high karyotypic heterogeneity, years before full-blown MDS
or AML. In this sense, NCCA could precede the formation of complex genomes and stable
CCAs, eventually transitioning to cancer.

The aim of this study was to cytogenetically analyze the BM of a group of non-
transplanted patients with FA, to investigate whether the multiple steps of karyotypic
evolution towards cancer can be considered in relation to the age of the patients and their
hematological condition. We did not find an association between the complexity of the
BM karyotype and the age of the patients or their hematological condition, suggesting
that the age and stage of bone marrow failure are not the only drivers of leukemogenesis



Cancers 2025, 17, 1805 4 of 20

in FA. However, inspecting the group of FA patients as a whole revealed transitions
from a karyotypically diverse population of BM cells with NCCA to the presence of
complex karyotypes and the emergence of CCAs involving CA of indeterminate potential
in patients with FA [30] and CCAs with the classic high-risk chromosome alterations found
in chromosomes 1, 3, and 7; the only two patients in the group who were identified with
MDS presented with the classic alterations in chromosomes 3 and 7.

2. Materials and Methods
2.1. Patients

We performed a transversal study including non-transplanted patients with a con-
firmed diagnosis of FA with the DEB chromosome breakage test. The samples analyzed
corresponded to the first cytogenetic BM evaluation of each patient within the framework
of the recommended annual follow-up in the search for MDS/AML progression markers.
All samples were processed at the Cytogenetics Laboratory of the National Institute of
Pediatrics (Mexico) between 2015 and 2024. In accordance with the Declaration of Helsinki,
all patients or their relatives gave written informed consent for genetic analyses under
project numbers INP 2014/041 and 2020/012; of the 43 patients studied, 33 had available
genotyping data. The distribution of PVs among FANC genes in this cohort is similar to
that reported in other studied populations. As expected, the most frequently mutated gene
was FANCA. Variants in genes other than FANCA showed slight differences in frequency
compared to those reported in previous studies [11,35]. Among the 33 genotyped patients,
22 (67%) had a PV in FANCA. The remaining 33% were distributed as follows: 3/33 in
FANCE, 2/33 in FANCG, 2/33 in FANCL, and 1/33 each in FANCF, FANCD2, FANCJ, and
FANCN. The available genetic information for FA is presented in Supplementary Table S2.
Clinical and demographic data were obtained from the patient’s medical records and
interviews conducted under the framework of the Fanconi Anemia Registry from Mex-
ico (RAFMex), project INP 2020/053. These projects were approved by the institutional
research and ethics committees at Instituto Nacional de Pediatría (México).

Age at diagnosis was calculated considering the date of a positive DEB test. BMF sever-
ity at the time of cytogenetic study was classified according to Fanconi anemia guidelines
for diagnosis and management [35], using the hemogram data (free of transfusion) nearest
to the cytogenetic study. The use of androgens was recorded irrespective of the length of
treatment or if being taken at the time of sample collection. Transfusion dependency was
considered as the time when the patient could not maintain adequate blood counts without
sequential transfusions at any timepoint.

2.2. Cytogenetics

Conventional karyotypes were performed on BM cells using the standard direct
method. Briefly, 1–2 mL of heparinized BM samples were incubated in a 5% CO2 incubator,
cultured during 48 h in MarrowMax medium (Gibco, Life technologies, Grand Island, NY,
USA) without cell division stimulant at 37 ◦C, after which colcemid [10 µg/mL] (Gibco, Life
technologies, NY, USA) was added for the final 2 h of culture. Harvesting, slide preparation,
and GTG banding were conducted according to the classic methodology [36]. On average,
20 metaphase spreads were analyzed per patient and reported according to the International
System for Human Cytogenetic Nomenclature (ISCN) [37]; fewer than 18 metaphases were
analyzed in four patients with severe aplastic anemia due to hypocellular BM.

Chromosome abnormalities were classified as (a) NCCA, non-clonal chromosomal
abnormality, both numerical and structural; (b) CK, complex karyotype, defined in this
study as a cell with ≥3 independent cytogenetic abnormalities [38]; (c) CCA, clonal chromo-
somal abnormalities, when at least two cells bear the same chromosome gains or structural
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rearrangements (including deletions and duplications) or when at least three cells present
with the same whole chromosome loss [37]. CCA 1,3,7 refers to clonal abnormalities in-
volving at least one of the known recurrent alterations, i.e., duplication of the long arm of
chromosome 1 (commonly known as 1q+), duplication of the long arm of chromosome 3
(commonly known as 3q+), complete monosomy of chromosome 7 or deletion of the long
arm of chromosome 7 (commonly known as –7/7q–), while CCA refers to clonal chromo-
some alterations in chromosomes other than 1q+,3q+ and –7/7q–. When aneuploidies of a
whole chromosome were detected at a given metaphase, and to reduce potential technical
errors, the periphery of such metaphases was analyzed with a 10Xobjective to increase the
visibility margin by 10 fields and to detect whether the lost chromosome was located at
the periphery of the metaphase or whether the gained chromosome belonged to a nearby
metaphase. Chromosome breaks and radial exchange figures were recorded during the
screening but are not part of the analysis in this report.

2.3. Statistics

All statistical analyses were performed in Prism (version 10.4.0). Normal distribution
of the data was assessed with the Shapiro-Wilk test. Data with normal distribution were
compared using one-way ANOVA with Tukey’s post-test for multiple comparisons. Com-
parisons between two groups were performed with the unpaired t test. The Fisher’s exact
test was used to compare proportions between two groups. The Pearson correlation test
was used to probe correlation between age and frequency of chromosome abnormalities.
The log-rank (Mantel-Cox) test was used to compare the survival of the patients, according
to the presence of different types of CA.

3. Results
3.1. Patients

Samples from 50 non-transplanted patients with a positive diagnosis of FA were
sent to the cytogenetics laboratory at Instituto Nacional de Pediatría (Mexico) for routine
annual follow-up between 2015 and 2024; six samples had insufficient material to perform
cytogenetic analysis, and one patient was excluded since the provided sample was obtained
once antineoplastic treatment for AML was started. Appropriate cells for cytogenetic
analysis, in quality and number, were obtained from 43 patients (Table S1); in two of
these (FANC031 and RAFMex015), the concurrence of cytopenia and a monosomy of
chromosome 7 clone allowed the diagnosis of MDS in accordance with International
Consensus Classification criteria [39]. Over the course of this study, some of the patients
received more than one cytogenetic analysis on more than one sample; only the first
cytogenetic study was considered for the purposes of this report.

Median age at diagnosis was 8.1 (1.4–15.6) years old, and median age at the time of
the cytogenetic study was 9.14 (4.7–28.6) years old, with a female-male relationship of 1.4:1.
A summary of the population demographics is shown in Table 1, and the main clinical
data are shown in Table 2. Eleven patients died during the time that elapsed between
the cytogenetic study and this report, due to BM failure or HSCT-related complications
in eight patients, MDS in two patients, and acute lymphoblastic leukemia (ALL) in the
remaining one.
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Table 1. Clinical characteristics of study population.

Gender and Age of Patients (n = 43) n Percentage % or (Range)

Female
Male

25
18

58
42

Median age at diagnosis years 8.1 (1.4–15.6)

Median age (years) at cytogenetic study 9.19 (4.7–28.6)

Affected gene (n = 33)

FANCA 22 66.7
FANCE 3 9.1

FANCD2/BRCA1 1 3.0
FANCF 1 3.0
FANCG 2 6.1

FANCJ/BRIP1 1 3.0
FANCL 2 6.1
FANCN 1 3.0

BMF Status (n = 43)

No 5 11.6
Mild 8 18.6

Moderate 15 34.9
Severe 13 30.2
MDS 2 4.7

Androgen treatment (n = 42)

Yes 29 69
No 13 31

Transfusion dependency (n = 42)

Yes 13 31
No 29 69

Transplant (n = 42)

Yes 8 19
No 34 81

Alive/Deceased (Cause of death) (n = 41)

Alive 30 73.2
Deceased (ALL) 1 2.4
Deceased (BMF) 4 9.8

Deceased (BMF, Intracranial bleeding) 1 2.4
Deceased (HSPCT complication) 4 9.8

MDS 1 2.4
BMF—Bone Marrow Failure. MDS—Myelodysplastic Neoplasm. ALL—Acute Lymphoid Leukemia.
HSPCT—Hematopoietic Stem and Progenitor Cell Transplantation.

Table 2. Population and clinical data.

ID Gender
Age at

Diagnosis
(Years)

Age at
Cytogenetic

Study (Years)

Affected
Gene

BMF
STATUS

Androgen
Treatment

Transfusion
Dependency HSPCT Alive/Deceased

(Cause of Death)

RAFMex057 Male 4.2 4.7 FANCE Moderate No No No Alive

RAFMex058 Female 4.1 4.8 NI Mild No No No Alive

RAFMex006 Male 3.5 5.5 FANCF Severe Yes No Yes Alive

RAFMex029 Male 4.5 5.5 NI Mild Yes No No Alive

RAFMex009 Female 3.3 6.2 FANCA Moderate Yes No No Alive

RAFMex043 Male 4.9 6.6 FANCE Severe Yes Yes Yes Deceased (HSPCT
complication)

RAFMex010 Female 5.9 6.7 FANCA Moderate Yes No No Alive
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Table 2. Cont.

ID Gender
Age at

Diagnosis
(Years)

Age at
Cytogenetic

Study (Years)

Affected
Gene

BMF
STATUS

Androgen
Treatment

Transfusion
Dependency HSPCT Alive/Deceased

(Cause of Death)

RAFMex042 Female 6.9 6.9 FANCL Severe Yes Yes Yes Alive

RAFMex047 Female 7.1 6.9 FANCA Severe Yes No No Alive

RAFMex002 Female 6.0 7.8 FANCA No No No No Alive

RAFMex044 Female 1.4 7.9 FANCA Mild Yes No No Alive

RAFMex033 Male 5.1 8.1 NI Moderate No No No Alive

RAFMex025 Female 6.1 8.1 FANCA No No No No Alive

RAFMex005 Female 6.1 8.2 FANCA Moderate Yes No No Alive

FANC143 Female 3.6 8.3 FANCG Severe Unclear Yes Yes Deceased (HSPCT
complication)

RAFMex026 Female 8.5 8.5 FANCE Severe No No Yes Deceased (HSPCT
complication)

RAFMex011 Female 7.1 8.7 FANCA Moderate No No Yes Alive

FANC161 Female 8.0 8.8 NI Severe Yes Yes NI Deceased (BMF)

FANC157 Male 9.0 9.0 NI Severe Yes Yes No Deceased (BMF)

FANC162 Male 9.1 9.12 NI Severe No NI No NI

FANC148 Male 7.7 9.14 NI Severe No Yes No
Deceased (BMF,

Intracranial
bleeding)

FANC101 Female 8.2 9.2 FANCA Severe Yes Yes Yes Deceased (HSPCT
complication

RAFMex07 Female 9.7 9.7 FANCJ/BRIP1 Moderate No No No Alive

RAFMex035 Male 9.7 10.2 FANCA Mild No No No Alive

FANC032 Male 9.2 10.7 FANCG Moderate Yes No No NI

RAFMex024 Female 8.8 10.9 FANCA Moderate Yes Yes No Alive

RAFMex08 Male 9.5 11.7 FANCA Mild Yes No No Deceased (ALL)

RAFMex032 Female 12.6 12.6 NI Moderate No No No Alive

RAFMex031 Male 13.1 13.4 FANCA Severe Yes Yes No Deceased (BMF)

RAFMex018 Female 9.8 14.7 FANCA Severe Yes Yes No Alive

FANC024 Female 7.4 16.7 FANCA Moderate Yes No Yes Alive

RAFMex051 Female 11.7 17.7 FANCA Moderate Yes Yes No Alive

RAFMex036 Male 6.4 17.8 FANCA Moderate Yes No No Alive

RAFMEX066 Male 9.5 17.9 FANCL No Yes No No Alive

RAFMex038 Male 12.7 18.4 FANCA Mild Yes No No Alive

RAFMex037 Female 14.4 20.2 FANCA No Yes No No Alive

RAFMex059 Male 13.3 22.50 NI Moderate Yes No No Alive

RAFMex027 Male 5.6 22.51 FANCN No No No No Alive

RAFMex022 Female 15.6 25.0 FANCA Mild Yes Yes No Alive

RAFMex034 Female 11.7 25.7 FANCA Mild Yes No No Alive

RAFMex030 Female 12.0 28.6 NI Moderate Yes No No Alive

FANC031 Female 10.3 15.5 FANCD2 MDS Yes Yes No Deceased (MDS)

RAFMex015 Male 9.7 17.2 FANCA MDS Yes Yes No Deceased (MDS)

BMF—Bone Marrow Failure. HSPCT—Hematopoietic Stem and Progenitor Cell Transplantation. ALL—Acute
Lymphoid Leukemia. MDS—Myelodysplastic Neoplasm. NI—No Information.

3.2. BM Cytogenetics of Patients with FA

As expected for patients with FA, their BM showed enormous karyotypic heterogeneity,
evidencing the underlying CIN. The cytogenetic analysis in the 43 included patients showed
that all but one patient displayed chromosomal abnormalities, which were classified in
three types: NCCA, non-recurrent CK, and CCA. Representative karyotypes per CA type
are shown in Figure 1.
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Figure 1. Representative karyotypes showing the various types of chromosomal abnormalities found
in the BM from patients with FA. (a) NCCA: Non-Clonal Chromosome Aberration; (b) CK: Complex
Karyotype showing monosomy of chromosome 6 and deletion of 10p and 18p; (c) CCA = Clonal
Chromosome Aberration of indeterminate potential; (d) Clonal Chromosome Aberration involving
the duplication of the region 1q, a high risk chromosomal abnormality. Red arrows indicate deletions;
blue arrows indicate duplications.

NCCAs were observed in 41/43 patients; karyotypes where NCCAs were the only
findings occurred in 26/43 patients; the presence of only CCA was observed in a single
patient; and the combination of both NCCA and CCA was observed in 15/43 patients.
In addition, 25 patients presented with non-recurrent CK. Among the 15 patients with
CCA, eight had clones with aneuploidy for one complete chromosome, six had clones
with structural chromosomal aberrations, and one patient had clones with both types of
chromosomal aberration (Figure 2). Chromosome losses were more commonly observed
in comparison to chromosome gains. The chromosomes more frequently involved in any
kind of CA were chromosomes 3, 7, 8, and 18, followed by chromosomes 6, 16 12, 17, 20,
and 22; also, we found additional material (add), marker chromosomes (mar), and neutral
aberrations like inversions and balanced translocations (Figure 3 and Table 3).

Table 3. Cytogenetic findings in the BM of 43 patients with FA.

n ID Total Frequency
of CA

Frequency of NCCA/Cell
(Frequency of Cells with CK)

Frequency of
CCA/Cell

Involved
Chromosome in CCA

Genes Involved in
AML and MDS

1 RAFMEX057 0.8 0.55 (0.10) 0.25 del(3q27) TERC

2 RAFMEX058 0.26 0.26 (0.04) 0.00

3 RAFMEX006 0.75 0.75 (0.04 0.00

4 RAFMEX029 0.65 0.65 (0.05) 0.00

5 RAFMEX009 0.45 0.45 (0.00) 0.00

6 RAFMEX043 0.54 0.33 (0.03) 0.21 del(6p22)

7 RAFMEX010 0.50 0.30 (0.05) 0.20 –21 RUNX1, U2AF1, ERG

8 RAFMEX042 0.36 0.36 (0.00) 0.00

9 RAFMEX047 0.00 0.00 (0.00) 0.00

10 RAFMEX002 0.23 0.00 (0.00) 0.23 add(2p)

11 RAFMEX044 0.50 0.50 (0.05) 0.00

12 RAFMEX033 0.90 0.90 (0.21) 0.00

13 RAFMEX025 0.85 0.85 (0.10) 0.00

14 RAFMEX005 0.90 0.75 (0.10) 0.15 –20 ASXL1
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Table 3. Cont.

n ID Total Frequency
of CA

Frequency of NCCA/Cell
(Frequency of Cells with CK)

Frequency of
CCA/Cell

Involved
Chromosome in CCA

Genes Involved in
AML and MDS

15 FANC143 0.60 0.60 (0.10) 0.00

16 RAFMEX026 0.95 0.63 (0.11) 0.32 dup(3q26)
MECOM, MDS1 and

EVI1 complex
locus, TERC

17 RAFMEX011 0.40 0.40 (0.00) 0.00

18 FANC161 0.35 0.35 (0.05) 0.00

19 FANC157 0.10 0.10 (0.00) 0.00

20 FANC162 0.10 0.10 (0.00) 0.00

21 FANC148 1.25 0.55 (0.15) 0.70 +8 MYC

22 FANC101 0.40 0.40 (0.00) 0.00

23 RAFMEX007 0.85 0.85 (0.10) 0.00

24 RAFMEX035 0.25 0.25 (0.00) 0.00

25 FANC32 0.30 0.30 (0.00) 0.00

26 RAFMEX024 0.15 0.15 (0.00) 0.00

27 RAFMEX008 0.63 0.63 (0.05) 0.00

28 RAFMEX032 0.70 0.40 (0.10) 0.30 –17, –22
TP53, NF1, PPM1D,

ERBB2, SRSF2,
PRPF8, EP300

29 RAFMEX031 1.20 1.20 (0.15) 0.00

30 RAFMEX018 0.05 0.05 (0.00) 0.00

31 FANC24 0.40 0.25 (0.05) 0.15 –18 SETBP1

32 RAFMEX051 0.22 0.22 (0.00) 0.00

33 RAFMEX036 0.68 0.68 (0.05) 0.00

34 FANC46 1.13 0.93 (0.07) 0.20 –16 CREBBP, CTCF 8

35 RAFMEX038 0.81 0.67 (0.00) 0.14 add(3p25)

36 RAFMEX037 0.99 0.99 (0.06) 0.00

37 RAFMEX059 0.75 0.50 (0.15) 0.25 der(6)t(1q;6p) MDM4

38 RAFMEX027 0.70 0.45 (0.10) 0.25 del(3p13)

39 RAFMEX022 0.30 0.30 (0.00) 0.00

40 RAFMEX034 0.25 0.25 (0.00) 0.00

41 RAFMEX030 0.35 0.35 (0.05) 0.00

42 FANC31 1.05 0.45 (0.1) 0.60 –7, –8
CUX1, SAMD9, MLL3,

EZH2, EGFR,
LUC7L2, MYC

43 RAFMEX015 3.40 0.40 (1.00) 3.00 –7, der(18)t(3;18) CUX1, SAMD9, MLL3,
EZH2, EGFR, SETBP1

SUM
(percentage) 27 20.05 (74.3%) 6.95

(25.7%)

Average 0.63 0.47 (0.07) 0.16

Abbreviatures: CA—Chromosome Abnormality. NCCA—Non-Clonal Chromosome Abnormality. CK—Complex
Karyotype. CCA—Clonal Chromosome Abnormality.

The complexity and heterogeneity of the karyotypes present in the bone marrow (BM)
of patients with Fanconi anemia (FA) are evident in Figures 2 and 3 and Table 3. As shown,
all but one patient (RAFMex047) presented with composite karyotypes. Unlike a classic
karyotype, in which no CAs are found or in which the same alteration is found in all
cells, we refer to a composite karyotype as a karyotype in which multiple chromosomal
changes, both numerical or structural, are identified in different cells, meaning there is
cell-to-cell variation in CA within the same cell population [40], forming a “composite”
genetic profile. Specifically in neoplasias, the composite karyotype is useful to track how
chromosomal alterations change in a cell population over time by evidencing the karyotypic
heterogeneity of the clones, where the metaphases are different, although they share CCA
due to the accompanying alterations, which can subsequently form subclones such that
clonal evolution is evident [37]. We found composite karyotypes in patients with and
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without clones, reflecting a highly complex cell population harboring distinct chromosomal
alterations, primarily copy-number variations, which underscore the karyotypic diversity
resulting from chromosomal instability in patients with FA [23,37].

 

Figure 2. Frequency of chromosomal aberrations found in BM of FA patients ordered by age and
MDS diagnosis at time of cytogenetic study. Distribution of the frequencies of the different type of
chromosomal aberrations, per patient, in ascendent order of age. Age is indicated in parentheses.

Figure 3. NCCA and CCA abnormalities in 43 FA patients. In the upper panel, patients are ordered
by age and MDS diagnosis. The rightmost column signals which chromosomes are involved in CA.
Complete aneuploidy, including loss and gain, was observed for all 24 chromosomes. Structural
aberrations, depicted in the lower section, involved all chromosomes except 16, 19, 20, 21, and Y.
Marker chromosomes refer to non-identified abnormal chromosomes and add refers to additional
chromosomal material of unknown origin. Neutral aberrations signal inversions and balanced
translocations. Patient RAFMex057 showed two structural alterations on chromosome 8, one deletion

and one inversion, as indicated by .
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3.3. Non-Clonal Chromosomal Abnormalities

Patients with inherent CIN, such as in FA, are expected to have enormous karyotypic
heterogeneity, as was evidenced in their BM, where stochastic chromosomal alterations
were found (Table 3 and Figure 2). All 24 human chromosomes were involved in these CAs,
and numerical aberrations were the most common (Figure 3).

NCCAs were observed in the vast majority of FA patients, 95% (41/43), including non-
recurrent CK. NCCAs without evidence of any additional chromosomal clones were found
in 26 patients. NCCAs were the most prevalent type of CA, accounting for 74.6% of the total
abnormalities observed, and included CK in 25/43 patients, with most being non-recurrent.
Patient RAFMex015 was exceptional, since clonal and complex karyotypes were found in
100% of the analyzed cells, concurrent with an MDS diagnosis (Table 3 and Figure 2).

In most patients, NCCAs were the most frequent CAs; these were highly diverse and
included numerical and structural alterations. Among the structural CAs, 11/78 were
neutral in that they did not appear to condition a loss or gain of chromosome information;
most were inversions, but there was also one translocation (Figure 3, green cells).

3.4. Clonal Chromosomal Abnormalities (CCAs)

CCAs accounted for 25.4% of the total CAs found in the 43 patients with FA (Table 3).
They were found in 35% (15/43); among these, the presence of CCAs involving monosomy
of chromosome 7 in two of these patients led to a MDS diagnosis, and both presented with a
composite karyotype, RAFMex015: 45,XY,–7,–18,+der?(18)t(3;18)(q13.3;q?12)[15]/45,idem,
del(2)(p23)[1]/45,idem,del(5)(p14)[1]/45,idem,–13,+mar2[1]/45,idem,–21,+mar1[2][cp20].
In this karyotype, a main stem line with a clone with monosomy 7 and a subclone with
monosomy 21 were found; both alterations were recognized as high risk in patients with
FA, with an evident clonal evolution. The patient FANC31: 45,XX,–7[8]/44,sl1,add(1)(p36),
–17[1]/45,XX,–8[2]/44,sl2,–15[1]/45,X,–X[1]/44,XX,del(7p),–17,–21[1]/45,XX,–14[1]/46,XX,
del(17)(p11.2)[1][cp16]/46,XX[4], presented with two unrelated stem lines, one of them -sl1-
with monosomy 7, also a high-risk CA. Within the 15 patients that presented with clonal
chromosome abnormalities (WC), seven presented clones consisting of whole-chromosome
aneuploidy, losses involving chromosomes 7, 8, 16, 17, 18, 20, 21, and 22, gains involving
chromosome 8, and/or a marker chromosome. Seven patients had clones with structural
CA in chromosomes 1, 3, 6, and 18, and one patient presented a clone with both numer-
ical (chromosomes 7 and +mar) and structural (chromosomes 3 and 18) CAs. Among
15 patients WC, 11 presented CCAs involving autosomes other than 1, 3, and 7, and in
4/15 patients WC, the clone involved the regions on chromosomes 1, 3, and 7 associated
with the evolution towards hematological malignancy; one of them had a duplication
1q21-qter, due to a translocation t(1;6)(q21;p21.3). Patients WC, in addition to having cyto-
genetic clones, revealed a variety of NCCAs: 3/15 had whole-chromosome aneuploidies,
11 had numerical and structural NCCAs, and only one patient did not present NCCAs
(Figure 3 and Table 3). Within the chromosomes or chromosomal regions involved in
CCAs, in addition to the genes commonly associated with MDS and AML in patients with
FA, such as MDM4, EVI1, and RUNX1 [23,26], we identified other genes contained in
CCAs that may also play a role in the progression to these malignancies, as detailed in
Supplementary Table S3.

3.5. Clonicity and Chromosomal Damage

In this group of patients, we find that the average frequency of CCAs (0.16) is only
~20% of the observed average frequency of NCCAs (0.47) (Table 3). In addition, it is
evident that when the total frequency of ab/cell is higher, CCA appears in a patient
(Figure 4). In patients WC who have MDS, a large number of CAs are observed in their BM,
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because the fittest clone is present in a large proportion (Figures 1 and 4). In patients WC,
CCA alterations coexist with NCCAs, although the latter are generally the most common
alteration. However, it should be noted that in the two patients who already presented
MDS, CCAs prevailed over NCCAs (Figure 2).

Figure 4. Frequency of chromosomal aberrations per cell. The population was divided into pa-
tients without clones (blue box), with clones (red box), and with –7/MDS (myelodysplastic neo-
plasm). Statistical analyses were performed using one-way ANOVA with Tukey’s post-test for
multiple comparisons.

3.6. Complex Karyotypes and Clonicity

Several analyzed metaphases had more than one CA; we classified the patients that
had at least one metaphase that also had three or more CAs as having a CK. Twenty-five out
of 43 patients had metaphases with these CKs, which represent a greater complexity within
the population of cells with NCCAs. When comparing the frequency of CKs in patients
with and without clones, there is a higher proportion of patients with CKs among those
who have already developed clones, showcasing an increased complexity of the diverse
karyotypes found in their BM (Figure 5).

 

Figure 5. Patients with complex karyotypes (CKs), according to clonicity. In yellow, the proportion of
patients who present at least one metaphase with CKs (≥3 CA). Patients with MDS were excluded.
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3.7. Chromosomal Damage and Patient Demographic and Clinical Characteristics
Chromosomal Abnormalities and the Age and Gender of Patients

Pearson correlation analysis revealed that as the patients grow older, the total fre-
quency of CAs does not increase (R = 0.056, p = 0.73) (Figure 6a). However, when patients
were sub-divided into three groups of age, 4–9 years old, 10–15 years old, and >16 years old,
a significantly higher frequency of CAs was observed between the older patients WC (ex-
cluding MDS patients) and the younger patients without clones (one-way ANOVA with
Tukey’s post-test) (Figure 6b). Finally, there were no significant differences in AC frequency
when comparing males and females (Figure 7).

Figure 6. Correlation between the total frequency of CAs and patient age. (a) No correlation was
found between the amount of CAs and increasing age of patients WC and without clones (Pearson
R = 0.056 p = 0.73). (b) A significant increase in total CAs was found only in patients 4–9 years old
without clones and patients > 16 years with clones.

Figure 7. Sex does not influence the frequency of CAs. No differences in the total frequency of CAs
were found when comparing females vs. males.

We searched for an association between the frequency of chromosomal aberrations and
bone marrow failure severity: 5/43 did not have BMF, 28/43 had moderate or severe BMF.
As a group, the patients WC show slightly more CA than WOC, and although no statistical
differences were found, it would appear that in individuals WC, CAs would increase as the
BMF becomes more severe (Figure 8a). Other hematological status parameters, including
transfusion dependency and androgen treatment, did not influence the total frequency of
CAs observed in patients with FA (Figure 8b,c).
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Figure 8. Frequency of CA with respect to hematologic status. (a) The frequency of CA in FA does not
correlate with the severity of bone marrow failure, determined in accordance with the FA clinical care
guidelines [35]. (b) CA per cell with respect to transfusion dependency. (c) CA per cell in reference to
androgen therapy. No differences in the frequency of CA were observed with respect to hematological
conditions or patients’ treatment.

Finally, we performed a survival analysis, according to the presence of the diverse
types of cytogenetic abnormalities in general and contrasting the presence of the well-
known adverse abnormalities in FA (affecting chromosomes 1, 3, and 7) and other clonal
chromosome abnormalities of indeterminate potential. In addition, we examined the
impact of complex karyotypes upon survival (Figure 9). We did not observe significant
differences in patient survival based on the type of CA. However, the presence of clonal
cytogenetic abnormalities (CCAs) involving the known high-risk cytogenetic alterations
(such as duplication of 1q, duplication of 3q, monosomy 7) complex karyotypes, or com-
posite karyotypes with high-risk alterations plus monosomy 17 and monosomy 21 appears
to negatively impact survival in patients with FA. Although these trends were evident,
statistical significance may not have been reached, likely due to the small sample size.

 

Figure 9. Survival estimates in Mexican individuals with FA according to the presence of the diverse
types of cytogenetic abnormalities. (a) Survival according to the presence of clonal cytogenetic abnormal-
ities. Patients without clones are in blue, and patients with clones are in red. (b) Survival in individuals
with cytogenetic clones: aberrations affecting chromosome 1 (1q duplication), 3 (3q duplication), and
7 (7q deletion or –7) in pink, and all other clonal aberrations of indeterminate potential in orange.
(c) Survival according to the presence of complex karyotypes (CKs): absence of CKs in blue, presence of
CKs in red. (d) Survival according with the presence of composite karyotypes, including or excluding
recognized high-risk CA plus –17 and –21 in FA patients. Log-rank (Mantel-Cox) Test.
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4. Discussion
In this study, we conducted a cytogenetic cross-sectional analysis of the BM of

43 patients with the chromosome instability and cancer predisposition syndrome, FA.
As anticipated, a high number of CAs were observed in virtually all participants. NC-
CAs were the most prevalent, reflecting an underlying karyotype heterogeneity caused
by faulty DNA repair mechanisms in individuals with FA. CCAs, mostly abnormalities
of indeterminate potential, were also observed, with high-risk CAs being detected in
four patients, two of whom had MDS defining CAs. This comprehensive analysis of the
type and frequency of CAs in the BM of individuals with FA stresses the natural history
of hematological cancer in FA, from heterogeneous NCCA towards CK, and finally CCA
and cancer. This study complements the information on the genomic changes involved
in the evolution towards hematological cancer, which has been extensively studied by
other authors [22,23,30], given that we analyzed the chromosomes of pre-leukemic BM and
at the individual cell level, revealing the presence of composite karyotypes in the BM of
practically all patients.

As shown in Figure 3, the observed NCCAs included both structural alterations and
aneuploidies (gains and losses of whole chromosomes). Structural alterations included
gains of chromosome material and chromosome deletions. Specifically, chromosome
gains may arise from the joining of non-homologous chromosome segments through
the non-homologous end-joining (NHEJ) pathway, causing chromosome translocations.
Additionally, the segregation of radial exchange figures during mitosis could produce
daughter cells harboring single derivative chromosomes (with the corresponding gain
and/or loss of chromosome material). On the other hand, chromosome deletions were
six times more frequent than gains. Their origin could be chromosomal rearrangements or
non-repaired double-strand breaks (DSB) that reached mitosis and whose broken segment
was not retained in the same cell after exiting mitosis, leaving a deleted chromosome.

We saw an overrepresentation of loss-of-chromosome aneuploidies, raising the possi-
bility of technical errors during the preparation of metaphase spreads; nonetheless, given
our strict scoring criteria during chromosome analysis (see methodology), we consider that
most of these alterations are genuine chromosome numerical losses. In this context of ge-
nomic instability, we hypothesize that chromosome losses are related to the mis-segregation
of structurally altered chromosomes that became incorporated into micronuclei and further
shattered, as others have shown to occur with lagged chromosomes [41].

Interestingly, we also identified neutral CA, i.e., balanced CA such as chromosome
inversions and translocations. Traditionally, these alterations were thought to be less detri-
mental than deletions and duplications, but it is now recognized that they can have a
significant impact in cancer evolution, since the change in the 3D distribution pattern of
genes and regulatory elements is responsible for emerging network dynamics [42]. In-
versions are not commonly reported in previous cytogenetic studies of patients with FA,
most likely because cytogenomic analysis using microarrays is usually preferred over GTG
banded chromosomes [23]. These inversions could result from the presence of two DSBs in
the same chromosome that were rejoined after a 180-degree rotation. Other mechanisms
may also explain the presence of inversions, including chromothripsis-like rearrangements,
but with fewer breakpoints than traditional chromothripsis, which usually involves ex-
tensive fragmentation and rearrangement of a single chromosome. It is known that an
intact FA/BRCA pathway plays a crucial role in the micronucleus-related chromosome
fragmentation that leads to chromothripsis, while a deficient FA/BRCA pathway generates
significantly less chromosome fragmentation under similar conditions [41]. This type
of alteration, evidenced here by G banding, may represent just the tip of the iceberg of
more complex ACs; these can be studied at higher resolution, with methodologies such as
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SKY or M-FISH, with which one can identify CA in greater number and complexity. This
undoubtedly deserves further study.

Of note, NCCAs in FA are quite variable from cell to cell, and this is probably due to
multiple factors, including the following: first, a continuous generation of DSBs, which
are incorrectly and not homogeneously rejoined due to the reliance of the FA cells on
error-prone DNA repair pathways [4]; second, dividing cells harboring NCCAs will not
parent chromosomally identical daughter cells, particularly when dicentric chromosomes
and radial figures are present, as mitotic segregation will not equally distribute the CAs
into the daughter cells [2]; third, NCCAs might confer differential surviving capacities, and
therefore alterations incompatible with life will not thrive, while fitness-providing CAs
will persist, in a constant cycle of cell replacement and cell attrition. During this cycle of
depletion and emergence of cells with NCCAs, new genome compositions in the tissue
will arise, producing a unique combination of CAs that will benefit the survival of cells
harboring stable karyotypes with CCAs.

Cells carrying a specific CCA can be considered evidence of a successful genome
arrangement. However, this specific clone could also be transient, as the continuous
production of CAs does not cease, leading to the emergence of CKs, most of which are
NCCAs. Some CKs may appear in cells that already contain a specific CCA, generating
genomes that may either disappear or adapt, eventually evolving towards a clone with
higher fitness. In a cell population exhibiting CIN, NCCAs will create dynamic karyotypic
diversity. This heterogeneity of cells, with stochastic CAs, eventually gives rise to CCAs,
which may be transient, creating a dynamic cycle of NCCA/CCA. The NCCA/CCA cycle
establishes a macroevolutive phase that may continue until the emergence of stable clones
that encompasses a phase transition. One surviving genome with CCAs carrying high-risk
CAs, such as clones with dup(1q), dup(3q), del(7q), and –7, with a composite karyotype
showing clonal evolution and a decrease in NCCAs (as in patients with MDS), could
be indicative of evolution towards leukemia. Clonal expansion is characteristic for the
microevolutionary phase [43]. These specific karyotype alterations are known to facilitate
the progression to cancer. The cells with these CAs will proliferate until they become
a clone, thus completing the transition from NCCA to CCA. In patients with FA, the
transition to cancer also involves specific genetic alterations such as RUNX1 and TP53,
among others [23].

Importantly, progression towards cancer, which typically takes a long time in DNA
repair-proficient individuals, is accelerated in patients with FA. In this work, through an in-
depth cytogenetic analysis of the BM of patients with FA, we recapitulate macroevolution
patterns previously described [23,30,31], including an initial phase of high karyotypic
heterogeneity leading to more stable “end products of evolution”, i.e., CCA abnormalities
that combine large-scale chromosomal changes with genetic mutations and copy number
alterations, which will ultimately drive micro-evolution steps towards cancer.

5. Conclusions
In this study, we observed that the frequency of ACs was not associated with gen-

der, severity of bone marrow failure, or androgen treatment. The frequency of NCCAs
and CCAs increased with age; although no significant correlation was found, a signifi-
cant difference was observed between older patients with CCAs and younger patients
without CCAs.

In general, the preleukemic bone marrow of patients with FA exhibits significant
basal karyotypic heterogeneity, evidenced by the widespread presence of NCCAs. This
karyotypic heterogeneity precedes the eventual appearance of CKs and the selection of
CCA-bearing cells that enhance adaptation, which may be transient until the appearance of
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a stable CCA. The NCCA/CCA cycle establishes a macroevolutionary phase that could
continue until the emergence of stable clones, leading to a phase transition. A surviving
CCA genome harboring high-risk ACs emerges, such as clones with dup(1q), dup(3q),
del(7q), and –7, and the associated NCCAs decline. These observations fit the model of
evolution towards cancer that comprises a first phase of macroevolution represented by
NCCA and karyotypic heterogeneity, followed by the establishment of clones with CCAs,
which leads to microevolution and cancer.

These observations warrant a longitudinal follow-up study of patients with FA to
determine the macro- and microevolutionary phases and to detect potential cytogenetic
biomarkers that precede clonal hematopoiesis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers17111805/s1, Supplementary Table S1. Database containing
the cytogenetics of 43 patients with FA. Complete data. Supplementary Table S2. Table containing
data on the genes and variants of patients with FA. Supplementary Table S3. Genes located in CCA,
involved in MDS and AML [16,17,23,26,44–69].
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