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Interaction Control to Synchronize 
Non-synchronizable Networks
Malte Schröder1, Sagar Chakraborty2, Dirk Witthaut3,4, Jan  Nagler5 & Marc Timme1,6

Synchronization constitutes one of the most fundamental collective dynamics across networked 
systems and often underlies their function. Whether a system may synchronize depends on the internal 
unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain 
interaction topologies synchronization might be impossible across all interaction strengths, meaning 
that these networks are non-synchronizable. Here we propose the concept of interaction control, 
generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply 
it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability 
prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may 
localize interactions in state space and thereby synchronize networks. Intriguingly, localizing 
interactions by a fixed control scheme enables stable synchronization across all connected networks 
regardless of topological constraints. Interaction control may thus ease the design of desired collective 
dynamics even without knowledge of the networks’ exact interaction topology and consequently have 
implications for biological and self-organizing technical systems.

One of the simplest and most common types of collective dynamics of a networked system is synchrony, the state 
in which all units behave identically1,2. Synchrony emerges, and is often essential, in natural and artificial systems 
alike, e.g. in the dynamics of circadian oscillators and neural circuits as well as in communication networks and 
power grids3–10. More than 25 years ago, Pecora and Carroll11–13 uncovered that even chaotic units may syn-
chronize; under certain conditions they coordinate their dynamics even though individually the units generate 
dynamics that are sensitive to small variations in the initial conditions.

The types of chaotic units jointly with their interaction topology and strength determine whether synchroni-
zation is possible at all14. Some combinations of system types and interaction topologies do not enable synchroni-
zation of the units for any coupling strength, rendering those systems non-synchronizable13. Yet, several technical 
systems demand synchronization of their units10,15–19, requiring generic methods to achieve synchronization, 
ideally despite such obstacles. In fact, chaos synchronization has attracted a broad range of applications from 
secure communication to new paradigms of network analysis17,20–24.

In this article, we investigate how a simple control of network interactions guarantees reliable synchroniza-
tion independent of the specific interaction topology. We first highlight that a wide range of systems with sparse 
connectivity are non-synchronizable, even if they exhibit at least indirect connections (paths) between any two 
units. We then systematically extend a method of transient uncoupling that has been studied for two coupled 
oscillators25 to propose a general scheme of interaction control applicable to any network. We show that localizing 
the interactions among the units to small regions of state space not only extends the synchronization range but 
newly creates synchrony, even for non-synchronizable networks. We further show that interaction control in fact 
enables synchronization regardless of the underlying interaction topology. The proposed scheme of interaction 
control leaves the system entirely non-interacting in most of state space, potentially saving interaction costs. 
Interaction control may thus help establishing collective dynamical states desired for network function in a simple 
and efficient way.
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Results
Problem setting. Consider networks of N units with dynamics given by
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where ∈xi
d is the state of unit i, f(xi) describes the internal dynamics and Ci(xi, x) represents the pairwise 

interactions between the unit’s state variable xi with the full network’s state ∈x Nd. The interactions are given by
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where Aij ∈  {0, 1} denotes the adjacency matrix of the undirected interaction network and h is the interaction 
function. For the control scheme introduced below, we write c(xi) to be a general control function that localizes 
interactions in state space (see below). For a system without control we have constant c(xi) =  α.

For the numerical examples presented throughout this article we consider the units as Rössler systems26 given 
by = − − + + −y z x uy v z x wf x( ) ( , , ( ))T with parameters u =  v =  0.2 and w =  5.7 and diffusive coupling 
with − = −   x xh x x( ) [( ), 0, 0]j i j i

T for x =  (x, y, z)T. Interaction control is equally applicable in other settings, 
specifically for Rössler oscillators with different parameters, networks of other chaotic units and systems with 
various types of limited observability (see Supplementary Information for details).

Prevalence of non-synchronizable networks. Synchronizability of such networks of chaotic units 
depends on the interaction topology. Trivially, if the network is not connected synchronization is impossible. 
Yet, even connected networks exhibiting (at least) indirect interaction paths among every pair of units may be 
non-synchronizable, compare also27,28. Indeed, whereas some networks may be synchronizable, similar networks 
with similar statistics of their topologies are non-synchronizable: Fig. 1 illustrates topology and dynamics of two 
networks, where one is synchronizable and the other is not, despite both having identical dynamical units and 
identical degree sequence. More generally, we highlight that a large fraction of sparse networks with heterogene-
ous degree sequence is indeed non-synchronizable (Fig. 2).

Control to localize interactions. The most obvious way to change the synchronizability of a non-synchronizable  
network is modifying the network topology such that the synchronized state becomes stable, an approach fol-
lowed previously29,30. However, changing the topology is often costly, if not impossible, in particular if the exact 
network topology is unknown. Can stable synchronization be achieved for these non-synchronizable networks 
at all? 

Let us control the interactions to a small, local part of state space and now take c(xi) in Eq. (2) to be a binary 
switch as in ref. 25: the control function then regulates whether the units are coupled at strength c(xi) =  α, if 
the local state is in some small region of state space where ||xi −  s|| <  r (for some offset point s), or whether the 
units do not interact, c(xi) =  0 otherwise. In the limit of r →  ∞ , the units interact for all xi in state space such that 
c(xi) ≡  α and we recover the original network of coupled chaotic units.

For small r the control strongly localizes the interactions (e.g., in the following examples with r =  2.75 interac-
tion is active only about 5% of the time), thereby vastly reducing the information exchanged across the network. 

Figure 1. Synchronizable or not? Similar networks may exhibit different synchronization properties. 
(a,b) Two networks, despite having the same number of units, identical units, identical coupling strength and 
identical degree sequences exhibit different synchronizability (here for N =  12 coupled Rössler oscillators 
with identical parameters (see text), and identical coupling strength α =  0.5). (c) Network (a) enables stable 
synchronization. (d) For network (b) the synchronized state is unstable. More generally, no choice of α results 
in stable synchronization: in this sense, the network is entirely non-synchronizable.
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For communication systems, for instance, where information exchange comes with energetic or other costs, such 
interaction control might reduce these costs by limiting the interactions. At the same time, localizing the inter-
actions in this way stabilizes synchrony for a range of choices of s and r. In the following examples, we employ 
s ≈  (− 8.7, 2.3, 0.01)T (see Supplementary Information “Choice of the coupling region” and Fig. S1) and systemat-
ically vary the localization radius r of the coupling as well as the coupling strength α.

Enabling synchronization by interaction control. Intriguingly, we find that interaction control may 
reliably enable synchronization of networks if the interactions become strongly localized. In particular, synchro-
nization is achieved even for systems that are non-synchronizable without control. We first illustrate the effects 
of interaction control for the small non-synchronizable network displayed in Fig. 1(b) in dependence of cou-
pling strength α and localization radius r, see Fig. 3. For small r (highly localized coupling), synchronization 
becomes stable as long as the coupling strength is sufficiently large. For moderate r, synchronization is still pos-
sible, but only in some interval of coupling strengths. Without control (r =  ∞ ), however, the network is entirely 
non-synchronizable.

To understand how interaction control is successful in enabling synchronization, consider the following intui-
tive argument: compare the local Lyapunov exponents (expansion or contraction) of the system with and without 
coupling. In some regions of state space the coupled system will be less expanding (more contracting) than the 
uncoupled system while in other regions the coupled system is more expanding (less contracting). Intuitively, 
applying interaction control and activating coupling only at the former, more contracting regions will lead to 
overall stronger contraction and will thus be beneficial for synchronization. This is the basic mechanism of inter-
action control. Note, however, that this argument is only approximate as it neglects the impact of interaction 
control on the local Lyapunov exponents: for instance, activating coupling only in one region, A or B, might be 
beneficial for synchronization, whereas activating coupling in both, A and B, might destabilize the synchronized 
state due to the effect of coupling in A on the effectiveness of coupling in B (see also Supplementary Information 
“Choice of the coupling region” and Fig. S1). Nevertheless, the general mechanism is applicable for a wide range 
of network structures and chaotic systems:

In fact, the qualitative behavior is robust for larger networks and, intriguingly, generalizes to all connected 
network topologies: Fig. 4 illustrates the typical characteristics for a network of N =  1000 units taken from the 
regime of non-synchronizability displayed in Fig. 2, now with interaction control localizing the coupling up to 
a parameter r. Systematically varying both r and α shows a common pattern: (i) For large r, i.e. without control 
or only weak localization, the system remains non-synchronizable (ii) For moderate r, the system becomes syn-
chronizable for a finite interval of coupling strengths. (iii) For some sufficiently small r, even non-synchronizable 
networks become synchronizable for an infinite range of coupling strengths. Combined with the fact that every 
finite network has a finite and thus bounded spectrum the theory of master stability14 implies that interaction 
control may enable stable synchronization for all connected network topologies by strongly localizing where the 
units interact: for sufficiently large coupling strengths all eigenvalues of any finite, undirected graph fall within the 
range of negative transverse Lyapunov exponents, see Fig. 5.

Furthermore, interaction control can enable synchronization not only across network topologies but is 
successful for a range of different dynamical units and under various observability conditions. For instance, 
for different parameters in the chaotic regime of the Rössler oscillator we find qualitatively the same results 
to those presented above [see Supplementary Information “Rössler oscillator for different parameters” and 
Fig. S2 (a,b)]. Additionally, we find similar effectiveness of interaction control for different other dynamical sys-
tems, e.g., Lorenz31 and Chen32 oscillators (see Supplementary Information “Lorenz System”, “Chen System” and 
Fig. S3 and S4 respectively). Moreover, interaction control is applicable in networks with limited observability or 
limited controllability: All of the above examples already demonstrate successful interaction control with only one 
of the dynamical variables (for example only x) observed for each unit. We also find that interaction control can 
enable synchronization when measurements are possible at only a few discrete points in time [see Supplementary 

Figure 2. Prevalence of non-synchronizable networks. Synchronizability of ensembles of Barabási-Albert 
networks49 of N units with M =  Nk links. The main panel shows the probability psynch that these networks are 
synchronizable (measured as the fraction of 100 networks that enable stable synchronization for some value of 
the coupling strength α). The panel shows a clear transition to non-synchronizable networks with increasing 
sparseness (decreasing k). Insets: examples of the largest transverse Lyapunov exponent as a function of the 
coupling strength α for networks of N =  1000 units. Top left: synchronizable network (k =  16); the range of 
coupling strengths α enabling synchronization is shaded. Bottom right: Non-synchronizable network (k =  4).
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Information “Rössler oscillator for different parameters” and Fig. S2(c)]. Finally, we considered interaction con-
trol in networks where a fraction of units is not observable and thus not directly controllable. Depending on the 
interaction topology of the entire network, all units may become synchronizable through interaction control 
under some conditions on the coupling strengths. Generally, the controlled part of the network stays or even 
becomes synchronizable in the presence of interaction control, irrespective of its topology (see Supplementary 
Information “Partially controlled networks” and Fig. S5).

Conclusion
Many networks are non-synchronizable for various types of coupled units and across all interaction strengths 
because synchronizability is intrinsically limited by the topology of the interaction network. Here we propose 
interaction control to synchronize arbitrary networks, even if they are entirely non-synchronizable without con-
trol. Generalizing the idea of transient uncoupling previously suggested for two coupled oscillators25 to arbitrary 
networks is thereby generically successful and operates by localizing interactions in state space. The interaction 
control scheme requires no changes to the network topology and exploits only a binary switch to strongly localize 
interactions to a small region in state space. As it works across all network topologies, the topology of any given 
network even need not be known.

Previous studies discussing time or state dependent uncoupling enhanced the stability of the synchronized 
state and extended synchronizability of systems that are already synchronizable25,33–35. Related works aimed at 
enabling synchronization in non-synchronizable networks focused on topological constraints and permanent 
changes to the network topology36–38 or adaptive coupling strengths requiring permanently active interactions 
and detailed control over the coupling of the individual units39,40. In contrast, in this article we demonstrate 
how interaction control may synchronize previously non-synchronizable networks. Specifically, interaction 
control induces a qualitative rather than a quantitative change of the synchronizability interval that cannot be 
explained by extending existing ranges of synchronizability or modifying effective coupling strengths. As we 
report, non-synchronizability prevails among sparse networks with heterogeneous degree sequence, emphasizing 
the range of systems for which interaction control may be valuable.

Intuitively, interaction control increases synchronizability by disabling coupling in regions of state space 
where the trajectories of the coupled system diverge more than those of the uncoupled system. Thus, interac-
tion control enables synchronization with little information transmission between the units, thereby providing 
a potentially efficient control for engineered systems where interaction generates costs in terms of energy or 
other resources33,41, for example for communication with chaos synchronization17,42. At the same time, interaction 

Figure 3. Interaction control to synchronize non-synchronizable networks. Panels display the average 
convergence or divergence of trajectories for the non-synchronizable interaction network displayed in Fig. 1(b). 
Averages are taken over R =  500 initial conditions randomly drawn from boxes of linear size 0.01 around points 
drawn randomly on the attractor. Each panel displays the relative average divergence of the states of the units 

δ δ= 
 ∑ 

=d t t( ) exp log( ( )/ (0))
R k

R1
1  where δ = ∑ || − ||=t x x( ) i j

N
i j, 1 . The black lines illustrate the scaling expected 

from the maximum transverse Lyapunov exponent. Without control (r =  ∞ ) the network is non-synchronizable, 
independent of the coupling strength α. For moderate control, the system is synchronizable (negative exponent, 
highlighted by green shading) for some intermediate range of α. For strong control where interactions are highly 
localized, stable synchrony prevails at sufficiently large coupling strengths (highlighted by blue shading).
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control can be successfully applied to induce synchronization even in systems with limited observability. For 
instance access may only be possible to some of the dynamical variables of each node, measurements at discrete 
points in time or in the presence of unobservable and thus uncontrollable units (see Supplementary Information), 
opening up potential perspectives, e.g., also for natural and synthetic biological systems43,44. Following the intu-
itive mechanism, from a general dynamical systems perspective interaction control might be applicable to any 
collective state that exhibits instabilities due to coupling among variables. Specifically, this includes potentially 
inducing different collective dynamics, for instance phase synchronization, or enabling coordinated dynamics 
also for delayed or pulsed interactions36,37,45.

Figure 4. Control generically enables synchronization for large networks. Localized interactions induce stable 
synchronization even in large networks with arbitrary topology. Panel (a) shows the largest transverse Lyapunov 
exponent for a non-synchronizable Barabási-Albert network of N =  1000 units and k =  4 without control (light 
gray line, compare Fig. 2) and with interaction control. Moderately localized interactions (control parameter 
r =  14.5) enable stable synchronization in a small range of coupling strengths only (shaded in green). Stronger 
localization (r =  2.75) enables stable synchronization for all sufficiently large coupling strengths (shaded in blue). 
Panel (b) illustrates the synchronizability for all combinations of coupling strength α and localization radius r.

Figure 5. Stable synchronization for arbitrary network topologies. Master stability function μ for real values 
γα, where γ are the eigenvalues of the Laplacian of the interaction network and α is the coupling strength (see 
also Supplementary Information “Extension of the master stability formalism”). The light blue points mark γα 
for the eigenvalues of the non-synchronizable network displayed in Fig. 1(b). (a) Without control the network is 
non-synchronizable because some transverse modes are unstable regardless of the choice of α (shown here for 
α =  1). (b) With interaction control (r =  2.75) all transverse modes are stable (negative λ ⊥

max ) if the coupling 
strength is large enough (α =  15), since the master stability function is negative for large γα. Similarly, 
interaction control can be used to synchronize any connected, undirected network independent of its topology, 
since for sufficiently large coupling strengths all transverse modes will become stable.
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In summary, interaction control offers a generic control scheme for collectively coordinated networks. 
Although requiring interaction only in a small region of state space, interaction control enables synchroni-
zation in all connected networks independent of their specific topology, even if the network would normally 
be non-synchronizable. Generally, interaction control may functionally help beyond enabling synchrony, for 
instance to create consensus among interacting agents46. Interaction control may thus offer a complementary net-
work control method47,48 and thereby a valuable paradigm for enabling a number of different collective dynamical 
phenomena in a range of networked systems.
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