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Abstract

Diffusion functional magnetic resonance imaging (dfMRI) is a promising technique to

map functional activations by acquiring diffusion-weighed spin-echo images. In previ-

ous studies, dfMRI showed higher spatial accuracy at activation mapping compared

to classic functional MRI approaches. However, it remains unclear whether dfMRI

measures result from changes in the intracellular/extracellular environment, perfu-

sion, and/or T2 values. We designed an acquisition/quantification scheme to disen-

tangle such effects in the motor cortex during a finger-tapping paradigm. dfMRI was

acquired at specific diffusion weightings to selectively suppress perfusion and free-

water diffusion, then time series of the apparent diffusion coefficient (ADC-fMRI)

and of intravoxel incoherent motion (IVIM) effects were derived. ADC-fMRI provided

ADC estimates sensitive to changes in perfusion and free-water volume, but not to

T2/T2* values. With IVIM modeling, we isolated the perfusion contribution to ADC,

while suppressing T2 effects. Compared to conventional gradient-echo blood oxygen-

ation level-dependent fMRI, activation maps obtained with dfMRI and ADC-fMRI had

smaller clusters, and the spatial overlap between the three techniques was below

50%. Increases of perfusion fractions were observed during task in both dfMRI and

ADC-fMRI activations. Perfusion effects were more prominent with ADC-fMRI than

with dfMRI but were significant in less than 25% of activation regions. IVIM modeling

suggests that the sensitivity to task of dfMRI derives from a decrease of

intracellular/extracellular diffusion and an increase of the pseudo-diffusion signal

fraction, leading to different, more confined spatial activation patterns compared to

classic functional MRI.
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1 | INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a noninvasive tech-

nique sensitive to the in vivo displacement of water molecules.

Despite the dynamic nature of the signal, dMRI is mostly regarded as

Abbreviations: AC, activation core; ADC, apparent diffusion coefficient;

ADC-fMRI, ADC-based functional MRI; dfMRI, diffusion functional MRI; dMRI, diffusion

MRI; GE-BOLD, gradient-echo blood oxygenation level dependent; IVIM, intravoxel

incoherent motion; IVIM-fMRI, IVIM-based functional MRI; MRI, magnetic resonance

imaging.

Received: 13 May 2019 Revised: 29 July 2019 Accepted: 31 July 2019

DOI: 10.1002/hbm.24758

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2019;40:5069–5082. wileyonlinelibrary.com/journal/hbm 5069

https://orcid.org/0000-0002-2553-7299
https://orcid.org/0000-0002-0716-3780
https://orcid.org/0000-0001-5079-2868
mailto:alberto@isi.uu.nl
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hbm


a structural technique providing static and reproducible snapshots of

the imaged tissue (Acheson et al., 2017; Grech-Sollars et al., 2015).

The dMRI signal carries information about different components of

tissue microstructure. At strong diffusion weightings, the signal is

mainly informative of the intracellular and extracellular environments

(Winston, 2012), whereas at low diffusion weightings, it is sensitive to

intravoxel incoherent motion (IVIM) phenomena, including perfusion

(Le Bihan et al., 1988) and free-water diffusion (Pasternak, Sochen,

Gur, Intrator, & Assaf, 2009; Pierpaoli & Jones, 2004). In the brain, the

IVIM model has been used to quantify perfusion changes during CO2

challenges (Federau et al., 2012), or in the presence of disease (Iima &

Le Bihan, 2016) as cancer (Keil et al., 2017). The concept of IVIM and

its applications suggest sensitivity of the dMRI signal acquired at low

(i.e., b ≤ 200 s/mm2) to moderate b-values (i.e., b ≤ 500 s/mm2) to

physiological dynamics in the vascular and free-water pools. In the

late 1990s, dMRI data at moderate b-values were proven to be sensi-

tive to brain activations by Song, Wong, Tan, and Hyde (1996) that

originally showed how low diffusion weightings can be used to

remove the contribution of major vessels during functional activations

mapping.

At intermediate diffusion weightings (i.e., 1400 ≥ b ≥ 1000 s/mm2),

the dMRI signal measured in the brain originates mainly from hindered

(intracellular and extracellular) components, where structure and not

function is assumed to be fairly constant over short time spans. In other

words, if dMRI is assumed to be insensitive to function, it is also reason-

able to consider that it is static, implying that the signal should not

change over time beyond experimental noise. Nevertheless, an increas-

ing number of reports are challenging the static nature of dMRI at

strong diffusion weightings in the brain. Darquié, Poline, Poupon, Saint-

Jalmes, and Le Bihan (2001) originally observed that visual stimuli

administered during a dMRI experiment caused a small but reproducible

reduction of the apparent diffusion coefficient (ADC) computed with

data repeatedly acquired at both low (b = 200 s/mm2) and intermediate

diffusion weightings (b = 1400 s/mm2). In a later experiment, which

included more diffusion weightings (Le Bihan, Urayama, Aso,

Hanakawa, & Fukuyama, 2006), the authors proposed a biexponential

formulation based on a slow and fast pool model, and observed a 1.7%

expansion of the slower diffusion pool during visual stimuli. In the con-

clusions of their work, cell swelling after neuronal firing was proposed

as an explanation of the findings. Other reports have independently

confirmed the potential of diffusion functional MRI (dfMRI) in terms of

improved spatial localization of brain activations as compared to

standard gradient-echo blood oxygenation level-dependent fMRI (GE-

BOLD) (Song, Woldorff, Gangstead, Mangun, & McCarthy, 2002), and

showed that it well represents underlying neuronal activity in rats

(Nunes, Ianus, & Shemesh, 2019). Furthermore, the response function

(RF) of the dfMRI signal, a mathematical description that relates the

stimulation paradigm to signal changes, has been shown to have a

shorter time to peak compared to GE-BOLD (Aso et al., 2009), which

can be considered to be supporting the neuronal firing theory.

Despite these observations, most of the mechanisms of dfMRI, as

well as its feasibility and usefulness, are yet to be investigated. Miller

et al. (2007) challenged the neuronal firing theory, suggesting a major

role of perfusion via the “T2 shine through” effect (Provenzale,

Engelter, Petrella, Smith, & MacFall, 1999) on the dfMRI signal. Fur-

thermore, previous reports have observed both increases (Song et al.,

1996; Song et al., 2002) and decreases (Darquié et al., 2001; Le Bihan

et al., 2006) in water mobility during task, depending on whether they

acquired data with either low (Song et al., 2002) or intermediate to

strong diffusion weightings (Darquié et al., 2001; Le Bihan et al.,

2006; Nicolas, Gros-Dagnac, Aubry, & Celsis, 2017; Williams,

McMahon, Hocking, & Reutens, 2014). Such strong dependency of

dfMRI on the applied diffusion weightings suggests that different

microscopic processes might simultaneously take place during brain

activation and deserves further investigation. Moreover, evidence

beyond the visual cortex is limited (Aso, Urayama, Fukuyama, & Le

Bihan, 2013; Song et al., 2002).

In this work, we investigated whether the dfMRI signal measured at

increasing diffusion weightings, and derived time series, such as the

ADC-fMRI, the IVIM derived signal fractions (fIVIM-fMRI) and the IVIM

corrected ADC (ADCIVIM-fMRI), are sensitive to brain activations in

response to a finger-tapping paradigm. In such case, we hypothesize

that it is possible to disentangle the contributions of intracellular/

extracellular diffusion, free-water diffusion, and blood perfusion to the

observed signal changes, by taking advantage of the multiple diffusion

weightings acquired in our dfMRI experiments.

2 | METHODS

In this study, we performed fMRI acquisitions while eliciting brain

activations in the motor cortex with a finger-tapping task (Akhlaghi

et al., 2012). Being well studied, straightforward to implement, and

consisting of only two conditions (rest vs. task), this paradigm repre-

sented an excellent starting point for the investigation of the dfMRI

signal in the motor cortex.

2.1 | Dataset

Seven subjects (24 ± 3 years, four females) underwent a 3 T MRI ses-

sion. The experiment was approved by the local ethical committee,

and informed written consent was obtained from all subjects. The

data that support the findings of this study are available on request

from the corresponding author. The data are not publicly available

due to privacy or ethical restrictions.

2.2 | MRI acquisition

Data were acquired on a research dedicated Philips Ingenia CX scanner

(Philips Medical System NV) with multiband (MB) imaging capabilities

(Setsompop et al., 2012) and a 32-channel head coil. The acquisition

protocol consisted of anatomical 3D T1-weighted imaging, a GE-BOLD,

and two dfMRI acquisitions. The main imaging parameters of each

sequence are reported in Table 1. The dfMRI sequence was spin-echo

(SE) EPI with monopolar Stejskal–Tanner gradients of varying amplitude.

Three volumes were sampled for each diffusion weighting sampling
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orthogonal gradients aligned with the main scanner axis, i.e. vectors [1 0

0], [0 1 0], and [0 0 1], respectively. The characteristic times of the gra-

dients were Δ/δ = 48.7/23.7 ms for the first run, and Δ/δ = 52.8/27.6 ms

for the second run. The echo time of the two dfMRI sequences was set

to shortest, resulting in a 6 ms difference to accommodate the longer

diffusion weightings employed in the second run. The second dfMRI

run of one subject was not completed due to time constraints.

2.3 | Functional acquisitions

To elicit motor activation, we implemented a previously reported experi-

ment design (Nicolas et al., 2017), which alternates six repetitions of rest

and activation blocks with 32 s duration (384 s in total). Instructions were

presented on a video device installed in the MR scanner room, and the

start condition (task or rest) was pseudo-randomized across subjects (five

subjects started with task blocks, whereas two with rest blocks). Three

functional datasets were acquired for each subject. The first acquisition

was a GE-BOLD sequence featuring 16 dynamics repeated over six task

and six rest blocks, for a total of 192 volumes. The second and the third

acquisitions were dfMRI sequences with four dynamics per diffusion

weighting, repeated in six task and six rest blocks, for a total of 48 vol-

umes per diffusion weighting and 48 nonweighted images (b = 0 s/mm2),

which are also referred to as SE-BOLD (Glielmi, Xu, Craddock, & Hu,

2010). The acquisition of multiple diffusion weightings resulted in less

dynamics per block compared to a GE-BOLD acquisition. However, with

these data, we can investigate different microstructural components, as

explained in the following section.

2.4 | Separating physiological contributions with
dfMRI, ADC, and IVIM

According to the traditional IVIM theory (Le Bihan et al., 1988), the

diffusion MRI signal measured in vivo arises from both cellular and

IVIM contributions. Recently, it has been shown that not only vascular

contributions, but also water diffusing in large extracellular or peri-

vascular spaces, commonly referred to as free water, contributes to

the IVIM phenomenon (Rydhög et al., 2017). In this work, we leverage

the acquisition of dfMRI data at multiple diffusion weightings to sepa-

rate the signal into intracellular/extracellular and IVIM contributions,

as explained in the following paragraphs.

The GE-BOLD signal is T2* weighted and is sensitive to changes in

blood volume, blood flow, and oxygenation. The SE dfMRI images are

sensitive to changes in tissue diffusion, as well as in T2 and in (blood)

water compartment volumes (the vasculature, intracellular and extracel-

lular water, and free water), according to the multicompartment signal

model we will use here. The signal S measured at time tj, echo time TE,

and diffusion weighting b, can be expressed as:

S tj
� �

= S0
X

i

f ie
−

TE

T2,i tjð Þe−bDi tjð Þ ð1Þ

In Equation (1), S0 is the nonweighted signal, whereas fi is the signal

fraction, T2, i is the T2 value, and Di the is diffusion coefficient of the ith

component. Adjusting the diffusion weighting in the dfMRI experiment

allows one to selectively suppress specific contributions. Data acquired

at b = 0 s/mm2 (SE-BOLD) are sensitive to all tissue components,

whereas data at b = 300 s/mm2 are considered largely free of contribu-

tions from large vessels and part of the capillary network (e.g., signal

change <5% for spins diffusing faster than 10 × 10−3 mm2/s)

(Chandarana, Lee, Hecht, Taouli, & Sigmund, 2011; Federau et al., 2015;

Finkenstaedt et al., 2017). At stronger diffusion weightings, as

b = 800 s/mm2 and b = 1200 s/mm2, the signal is considered to be

insensitive to most vascular contributions (e.g., signal change <5% for

spins diffusing faster than 3.7 × 10−3 and 2.5 × 10−3 mm2/s, respec-

tively). Data acquired at b = 1200 s /mm2 are also negligibly sensitive to

contributions from free-water diffusion, as its signal is attenuated by

over 96% at that diffusion weighting.

If the tissue composition is monocompartmental, that is, i = 1 in the

above equation, all dfMRI data are sensitive to T2 changes indepen-

dently from the applied diffusion weighting. However, if T2 changes

take place only in specific components, for instance, only in the vascular

network, dfMRI data acquired at b ≥ 300 s/mm2 should be insensitive

to such effects. In addition to the T2 sensitivity, the EPI readout of the

used dfMRI sequence is to some extent sensitive to T2* changes—and

hence to the BOLD contrast—but to a much lesser extent than conven-

tional T2* weighted GE-BOLD (Goense & Logothetis, 2006).

If the acquired dfMRI data contain at least two diffusion

weightings, it is possible to compute the ADC over time (ADC-fMRI).

ADC-fMRI is regarded as insensitive to T2 and T2* effects, as such

dependencies cancel out in the ADC equation. However, this is only

true for a monocomponent tissue formulation (i = 1). If multiple

TABLE 1 Imaging parameters of the sequences employed in this study. No slice gap was employed for any of the sequences. All functional
acquisitions were performed with echo planar imaging readout. Data at b = 300, 800, and 1200 s/mm2 were acquired with gradients along three
orthogonal directions aligned with the scanner axes

Sequence Resolution (mm3) MB SENSE TE (ms) TR (ms) Slices FOV (mm3)
b-values
(s/mm2)

Bandwidth
in PE (Hz) Duration

T1-w 1 × 1 × 1 – 2, 2.6 3.7 8 180 256 × 256 × 180 – 191.5 3 min 54 s

GE-BOLD 2.5 × 2.5 × 3 2 2 30 2000 52 240 × 240 × 156 – 34.2 6 min 40 s

dfMRI 1 2.5 × 2.5 × 4 2 2 85 8000 14 240 × 240 × 56 0, 300, 800 35.0 6 min 50 s

dfMRI 2 2.5 × 2.5 × 4 2 2 91 8000 14 240 × 240 × 56 0, 300, 1200 33.9 6 min 50 s

Abbreviations: dfMRI, diffusion fMRI; fMRI, functional magnetic resonance imaging; FOV, field of view; GE-BOLD, gradient-echo blood oxygenation level

dependent; MB, multiband; PE, phase encoding; SENSE, sensitivity encoding parallel imaging acceleration; TE, echo time; TR, repetition time.
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components coexist in one voxel, ADC-fMRI becomes sensitive to

factors affecting the b = 0 s/mm2 image, such as perfusion and free

water volume changes, among others.

If the dfMRI experiment features three or more diffusion

weightings with appropriate values, it is possible to subdivide the sig-

nal contributions into an intracellular/extracellular component and an

IVIM component, applying the IVIM model in a biexponential formula-

tion (i = 2):

S
S0

= f IVIMe
−bD*

+ 1− f IVIMð Þe−bADCIVIM ð2Þ

In Equation (2), fIVIM represents the signal fraction of a component

including both vascular (pseudo-diffusion) and free-water contribu-

tions with diffusion coefficient D*, whereas ADCIVIM is the diffusion

coefficient of both intracellular and extracellular diffusion corrected

for IVIM contamination. Equation (2) assumes that all nontissue diffu-

sion terms will contribute only to the first term, but a more thorough

decomposition of the signal should also account for the presence of

free-water (including blood water) explicitly (Rydhög et al., 2017). This

is, however, unfeasible in this study as such decomposition would

require four or more diffusion weightings. Under the above men-

tioned assumptions, the temporal series of fIVIM (in the following,

referred to as fIVIM-fMRI) reflects the signal fraction changes related

to free-water/perfusion and is theoretically less sensitive to T2 and

T2* contamination than ADC-fMRI, whereas the temporal series of

ADCIVIM (in the following, referred to as ADCIVIM-fMRI) summarizes

intracellular/extracellular diffusion changes.

2.5 | Data preprocessing

GE-BOLD data of each subject were corrected for subject motion

using the FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,

2012) tool MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002),

realigning all volumes to the first volume. Individual GE-BOLD data

were used as the space of reference for all functional analyses.

The processing pipeline applied to dfMRI data is elucidated in

Figure 1. The two dfMRI series were concatenated, corrected for sub-

ject motion and eddy currents using ExploreDTI (Leemans, Jeurissen,

Sijbers, & Jones, 2009), aligning all dfMRI volumes to the first

b = 0 s/mm2 image. The first nonweighted image was registered to

the individual fMRI space using a nonlinear b-spline transformation

restricted to the phase-encoding direction (Klein, Staring, Murphy,

Viergever, & Pluim, 2010), then all the data were transformed with a

single interpolation step. Brain extraction was performed on the

dfMRI data with FSL BET (Smith, 2002). The dMRI data corresponding

to each diffusion weighting (b-value) were geometrically averaged. To

determine the signal to noise ratio (SNR) of the data, a homogeneous

region was manually delineated on an axial slice of each subject. The

SNR was determined as ratio between spatial average and SD and

corrected for the Rician nature of the noise (Gudbjartsson & Patz,

1995). The temporal SNR (tSNR) of all dataset was determined within

the same ROI as temporal average divided by temporal SD.

The FreeSurfer reconstruction pipeline (Dale, Fischl, &

Sereno, 1999) was applied to T1-weighted data to derive the

grey matter (GM)/white matter (WM) interface used for the

graphical representations. Further, the FSL pipeline “fsl_anat”

(Jenkinson et al., 2012; Smith, 2002; Zhang, Brady, & Smith,

2001) was applied to each T1 image to derive segmentation of

GM and WM, which were registered to the fMRI space with

F IGURE 1 Workflow of this study. dfMRI data are first processed
to attenuate motion and eddy currents-related artifacts, then warped
to the individual GE-BOLD space, which is used as standard space for
all analysis. Data are geometrically averaged per diffusion weighting
and used (a) directly for activation mapping or (b) to derive ADC-fMRI
and IVIM-fMRI. After activations are individually mapped, temporal
series of the signals in the activation ROIs are computed. ADC-fMRI,
apparent diffusion coefficient-functional magnetic resonance imaging;
dfMRI, diffusion fMRI; gx,y,z, diffusion gradient along the x, y, or z axis;
FWE, familywise error; GE-BOLD, gradient-echo blood oxygenation
level dependent; IVIM, intravoxel incoherent motion; TTP1,2, time-to-
peak of the two gamma functions [Color figure can be viewed at
wileyonlinelibrary.com]
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elastix (Klein et al., 2010) using a b-spline registration (Klein,

Staring, & Pluim, 2007).

2.6 | dfMRI, ADC, and IVIM processing

We performed Z-normalization of the dfMRI data, that is, we

subtracted from each time series its average value and divided it by

the SD, independently for each diffusion weighting. We then

concatenated the normalized data to maximize the statistical power in

the subsequent analyses.

The ADC-fMRI estimates were computed by combining the data

at b = 0 s/mm2 with the data at b = 300 s/mm2 (ADC-fMRI300),

b = 800 s/mm2 (ADC-fMRI800), and b = 1200 s/mm2 (ADC-fMRI1200)

separately, using the classic log ratio solution of the ADC equation

(MATLAB R2016b; The MathWorks Inc.). Each ADC-fMRI series was

normalized independently and then concatenated.

The IVIM fit of the data was performed by using a biexponential

formulation (Cho et al., 2015), and an ordinary linear least-squares

segmented fit method (Sigmund et al., 2012) (MATLAB R2016b;

The MathWorks Inc.). Accordingly, perfusion corrected ADC values

were computed using data at two diffusion weightings, while the

normalized difference between the measured and the estimated

nonweighted signal represented the perfusion fractions. Values of

perfusion fractions (fIVIM-fMRI) and of the perfusion corrected

ADC (ADCIVIM-fMRI) over time were computed for both the first

(fIVIM-fMRI300,800, ADCIVIM-fMRI300,800) and the second acquisition

(fIVIM-fMRI300,1200, ADCIVIM-fMRI300,1200). The abovementioned

approaches are schematically summarized in Figure 1.

The merged Z(dfMRI), Z(ADC-fMRI), and Z(fIVIM-fMRI300,800) time

series featured 288, 192, and 48 volumes, respectively.

2.7 | Activation ROIs mapping

Task-induced activations were mapped on the GE-BOLD data using

FSL FEAT with cluster correction for multiple comparisons. Voxel-

wise Z-statistics were computed by convolving the paradigm design

with the default hemodynamic RF (HRF), a gamma function with aver-

age delay 3 s and SD 6 s (Glover, 1999). The Z-statistics were

corrected for multiple comparisons using a first level Z-threshold

equal to 0.5 and a cluster p-value equal to .05, and finally thresholded

at Z ≥ 2.3 (Nicolas et al., 2017). The statistical analysis of Z(dfMRI), Z

(ADC-fMRI), Z(ADCIVIM-fMRI), and Z(fIVIM-fMRI) was performed simi-

larly to that of GE-BOLD but employing a boxcar RF instead of the

default HRF. Flattened projection maps of the Z-scores of the spatial

activations with GE-BOLD, dfMRI, and ADC-fMRI can be found in the

Supporting Information.

2.8 | Time series in activation ROIs

Statistically significant ROIs of Z(dfMRI) and Z(ADC-fMRI) were

thresholded above 70% of their peak value to determine their activa-

tion core (AC) (Nicolas et al., 2017), here defined as AC(dfMRI) and

AC(ADC-fMRI), respectively. dfMRI at each diffusion weighting, ADC-

fMRI and GE-BOLD were corrected for linear trends, divided by their

maximum value, spatially averaged within the AC ROIs and temporally

processed with a three-points moving average filter, to mitigate high

frequency noise.

Further, the Z-scores of the average GE-BOLD, dfMRI, and ADC-

fMRI signals of each subject were computed and overlaid to investi-

gate the sensitivity of the signals to task, as well as to qualitatively

observe temporal aspects—for example, lags in their response. To

compute the Z-scores, the signals were corrected for linear trends and

divided by their SD after demeaning.

Relative percent changes of dfMRI, ADC-fMRI, and fIVIM-fMRI

between the task and rest conditions were derived for each subject.

The signals were averaged within the ROIs and over time within the

corresponding blocks, then statistical significance was assessed with

Z-tests.

2.9 | Spatial overlap of activation ROIs

The spatial agreement between two spatial activation maps, referred as

A and B, was quantified using the overlap metric, which is defined as:

OVERLAP A,Bð Þ= A\Bj j
min Aj j, Bj jð Þ ð3Þ

with the operator |A| indicating the volume of A.

Comparisons were performed between GE-BOLD, dfMRI, and

ADC-fMRI. Furthermore, the effect of perfusion on dfMRI and ADC-

fMRI was quantified by computing their overlap with fIVIM-fMRI acti-

vations. Projection maps of the Z-scores of the overlaps between GE-

BOLD, dfMRI, and ADC-fMRI were computed by summing their

values along the feet-head direction, to qualitatively appreciate their

extents in a planar format. These maps can be found in the Supporting

Information. Finally, to understand whether dfMRI and ADC-fMRI

activations were specific of GM or WM processes, we computed the

overlap between the segmentations derived from the T1 images and

GE-BOLD, dfMRI, and ADC-fMRI activations.

3 | RESULTS

3.1 | Diffusion fMRI

The average SNR and tSNR of the acquired dataset are reported in

Table 2. Both the SNR and the tSNR of dfMRI data were sufficient

and comparable to GE-BOLD up to b = 800 s/mm2, while ADC-fMRI

provided remarkably lower values. Figure 2 shows the 3D mapping on

the WM/GM interface of the activations detected in correspondence

of the task > rest condition with dfMRI, GE-BOLD, and their overlap.

Bilateral activation in the primary motor cortex area is observed on

the dfMRI activation maps of all subjects, whereas the supplementary

motor area is detected only on two out of seven subjects. The activa-

tion maps with dfMRI include some artifactual patterns and have

smaller activation clusters than those with GE-BOLD. The overlap

between statistically significant voxels of dfMRI and GE-BOLD is
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45 ± 14%. dfMRI activations overlapped more with GM than WM,

41 ± 7% versus 31 ± 10%, respectively. Axial projections of the acti-

vation maps and of the spatial overlap are shown in Figure S1,

Supporting Information.

Time series of GE-BOLD, dfMRI (for different diffusion

weightings), ADCIVIM-fMRI, and fIVIM-fMRI averaged within

AC(dfMRI) are reported in Figure 3. All diffusion weighted sig-

nals consistently show increases in correspondence of task exe-

cution followed by decreases at rest, similarly to GE-BOLD.

Although all signal changes are consistent with the task-rest par-

adigm, signals acquired at b = 800, 1200 s/mm2 exhibit a larger

number of artifacts than those at b = 300 s/mm2. Considering

the average signals within task and rest blocks, we observe sig-

nificant increases of +0.51 ± 0.20% (p = 10−4), +0.34 ± 0.23%

(p = 10−3), +0.44 ± 0.24% (p = 10−3) and +0.53 ± 0.19%

(p = 10−4) during the task for b = 0, 300, 800, and 1200 s/mm2,

respectively. Regarding ADC-fMRI signals in AC(dfMRI), only

ADC-fMRI300 showed significant signal increases during task

compared to rest.

ADCIVIM-fMRI and fIVIM-fMRI are very noisy at individual levels, but

on average show response to task execution, with fIVIM-fMRI300–800

showing an increase between 4 and 5%, and ADCIVIM-fMRI a decrease

during finger tapping. The average changes of the considered metrics

from task to rest within AC(dfMRI), and their statistical significance, are

reported in Table 3.

Activations detected with fIVIM-fMRI appear noisier than those

with dfMRI and characterized by smaller spatial extents. The overlap

between activations from the two techniques is limited, with values

equal to 15 ± 14%.

Figure 4 shows the Z-values of the time series of GE-BOLD

and dfMRI at multiple diffusion weightings. The sensitivity of the

dfMRI signal to task is similar to that of GE-BOLD, with increases

and decreases reaching ±2 SDs of the signal variation. Consider-

ing the average inter-subject signals, changes in dfMRI at

b = 1200 s/mm2 slightly preceded those of SE-BOLD

(b = 0 s/mm2).

TABLE 2 SNR and tSNR of GE-BOLD, dfMRI, and ADC-fMRI in
each separate acquisition. GE-BOLD and dfMRI had comparable SNR
levels, whereas the SNR of ADC-fMRI is remarkably lower

Data

SNR tSNR

Run 1 Run 2 Run 1 Run 2

GE-BOLD 30 ± 10 NA 30 ± 9 NA

dfMRI (b = 0 s/mm2) 33 ± 9 26 ± 5 30 ± 10 28 ± 6

dfMRI (b = 300 s/mm2) 28 ± 9 27 ± 9 29 ± 10 28 ± 7

dfMRI (b = 800 s/mm2) 25 ± 9 NA 23 ± 8 NA

dfMRI (b = 1200 s/mm2) NA 18 ± 7 NA 17 ± 4

ADC-fMRI300 15 ± 4 11 ± 5 14 ± 4 11 ± 3

ADC-fMRI800 18 ± 4 NA 19 ± 5 NA

ADC-fMRI1200 NA 11 ± 6 NA 15 ± 3

Abbreviations: ADC, apparent diffusion coefficient; dfMRI, diffusion fMRI;

fMRI, functional magnetic resonance imaging; GE-BOLD, gradient-echo

blood oxygenation level dependent; NA, not applicable; SNR, signal to

noise ratio; tSNR, temporal SNR.

F IGURE 2 dfMRI versus GE-BOLD activation maps. Individual activation maps detected with dfMRI (red) as compared to GE-BOLD (blue),
and their overlap (green) overlaid on the gray/white matter surface of each subject. Bilateral activation as response to finger tapping was
observed on all subjects with both sequences. Activations with dfMRI were smaller than those with GE-BOLD. Spurious activations due to
multiband reconstruction artifacts can be spotted on the dfMRI activations of some subjects. dfMRI, diffusion functional magnetic resonance
imaging; GE-BOLD, gradient-echo blood oxygenation level dependent [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | ADC-functional MRI

Figure 5 shows a 3D rendering of the functional activation maps

detected with ADC-fMRI, GE-BOLD, and their overlap on the

GM/WM interface. Bilateral activations in the primary motor cortex

are observed on all subjects with ADC-fMRI, but they have a smaller

extension than those observed with dfMRI. Furthermore, activations

with ADC-fMRI appear noisier compared to dfMRI. The overlap

between Z(ADC-fMRI) and GE-BOLD is 33 ± 15%, while the overlap

between Z(ADC-fMRI) and Z(dfMRI) is the lowest, 16 ± 10%. ADC-

fMRI activations were equally located in GM and WM, with overlap

values of 38 ± 6% and 38 ± 4%, respectively. Axial projections of the

activation maps of ADC-fMRI and of its spatial overlap with dfMRI

and GE-BOLD are shown in Figure S1, Supporting Information.

Time series of GE-BOLD, ADC-fMRI, ADCIVIM-fMRI, and fIVIM-fMRI

within AC(ADC-fMRI) are shown in Figure 6. The average GE-BOLD

signal follows the task-rest paradigm, but to a smaller extent than in the

dfMRI activations. Changes of Z(ADC-fMRI) are highly coherent with

the functional paradigm, with an increase during task followed by a

decrease at rest. The first run of subject S3 does not show such behav-

ior due to a signal discontinuity artifact approximately at the half of the

acquisition. During task, significantly higher ADC values than at rest are

observed, +2.17 ± 1.15% for ADC-fMRI300 (p = 10−3), +1.14 ± 0.57%

for ADC-fMRI800 (p = 10−3), and + 1.18 ± 0.76% (p = 10−3) for ADC-

fMRI1200. The average changes of the considered metrics from task to

rest within AC(ADC-fMRI), and their statistical significance, are reported

in Table 3. SE-BOLD showed significant increases in AC(ADC-fMRI)

during task execution, whereas dfMRI at b = 1200 s/mm2 significantly

decreased in the same condition.

Within the AC(ADC-fMRI) ROIs, fIVIM-fMRI300–800 shows a strong

dependence on task execution and shows an increase of on average

around 7–9% during activation compared to rest. However, the overlap

between ADC-fMRI activations and fIVIM-fMRI300–800 activations is rel-

atively modest, 19 ± 11%. Increases of ADCIVIM-fMRI were observed

during task execution within AC(ADC-fMRI), but these were significant

only in one of the two runs.

F IGURE 3 Time series in AC(dfMRI). Normalized average time series of GE-BOLD, dfMRI (for different diffusion weightings, red, black, blue,
and light blue solid lines), ADC-fMRI, ADCIVIM-fMRI, and fIVIM-fMRI of each subject (each row), and after group averaging (last row), within the
dfMRI activation ROIs. Gray blocks correspond to task execution, whereas white blocks to rest. GE-BOLD and dfMRI showed increases and
decreases in correspondence of task and rest, respectively. fIVIM-fMRI showed synchronization with the task execution, but to a less extent than
dfMRI. The ADCIVIM-fMRI signal was characterized by strong pseudo-random fluctuations, but its average variation suggested its decrease during
task execution. ADC, apparent diffusion coefficient; dfMRI, diffusion functional magnetic resonance imaging; GE-BOLD, gradient-echo blood
oxygenation level dependent [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 7 shows the Z-score of the time series of GE-BOLD and

ADC-fMRI computed with three different combinations of diffusion

weightings. The ADC-fMRI series showed signals increases and

decreases up to ±2 SDs, but their changes exhibited a consistently higher

delay with task execution compared to GE-BOLD and dfMRI (Figure 4).

4 | DISCUSSION

In this work, we investigated changes in the diffusion-weighted signal

measured in the brain during a motor cortex paradigm to verify

whether (a) the dMRI signal acquired at different diffusion weightings

is sensitive to changes evoked by the execution of a motor task; and

(b) it is possible to separate the signal sources from the observed

dfMRI signal changes. Our findings suggest that the dMRI signal is

sensitive to task evoked changes in brain function, and that per-

fusion/free-water changes can explain only part of the observed sig-

nal alterations.

In all subjects, we detected clusters where the paradigm signifi-

cantly explained the dfMRI signal. The activations detected with

dfMRI (Figure 2) are located approximately in the same areas as

observed with GE-BOLD, but their extension is markedly smaller, in

line with a previous study on the visual cortex (Nicolas et al., 2017)

and with previous reports comparing SE-based activation with GE-

BOLD (Glielmi et al., 2010; Norris, Zysset, Mildner, & Wiggins, 2002).

Furthermore, the overlap between the activations from the two tech-

niques is limited, with values smaller than 50%, suggesting adjacent

and only partially overlapping areas. The reduced extension can be

explained either by the reduced temporal resolution of dfMRI as com-

pared to GE-BOLD, or by the choice of the boxcar RF in place of a

more sophisticated formulation (Aso et al., 2009). Additionally, the

signal crushing effect of the diffusion gradients on the vascular net-

work may also reduce the activation extent and thus to lead to a more

accurate spatial localization, as previously suggested (Song et al.,

2002). Further, such effect is unlikely to be due to SNR, as dfMRI and

GE-BOLD were characterized by similar SNR and tSNR levels, both

around 30, but could be influenced by the lower number of samples

collected in dfMRI as compared to GE-BOLD.

The time series reported in Figure 3 show remarkable synchroni-

zation between task execution and dfMRI signal changes at different

diffusion weightings. Although the observed alterations are modest in

absolute value, i.e. below 1%, they are consistent across subjects, and

statistically significant (10−4 < p < 10−2). Such changes are of the same

order of magnitude and sign of those originally reported by Le Bihan

et al. (2006), and suggest that dfMRI at weak diffusion weighting

(b = 300 s/mm2) is less sensitive to activation than both SE-BOLD

(b = 0 s/mm2) and dfMRI at intermediate to strong weighting (b = 800,

1200 s/mm2). In our study, the average signal changes observed at

b = 800 and 1200 s/mm2 slightly anticipated changes in SE-BOLD,

but to a small extent, while previous works (Aso et al., 2009; Aso

et al., 2013; Le Bihan et al., 2006) reported that the time-to-peak

of the dfMRI signal is considerably faster than both SE-BOLD and

GE-BOLD. This might be explained by taking into consideration the

repetition time employed in this work, 8 s, which is the same order of

magnitude of the time offset between dfMRI and SE-BOLD reported

in the above-mentioned works. An alternative interpretation is that

the maximum diffusion-weighting employed in this study

(b = 1200 s/mm2), which is remarkably lower than that employed in

the above-mentioned studies (b = 1600, 2400 s/mm2), might be not

sufficient to take advantage of the higher temporal resolution of

dfMRI. It should also be noted that in contrast to the abovementioned

studies, in this study we acquired two diffusion weightings

TABLE 3 Values at rest of the time series of dfMRI, ADC-fMRI, ADCIVIM-fMRI, and fIVIM-fMRI in AC(dfMRI) and AC(ADC-fMRI), and their
signal change during task as compared to rest. The p-value refers to a two-sided t test between the average values in the two conditions and is
highlighted in bold when significant

Signal

AC(dfMRI) AC(ADC-fMRI)

Average value Signal change p-Value Average value Signal change p-Value

GE-BOLD – +1.02 ± 0.64 <.01 – +0.72 ± 0.53 .01

dfMRI (b = 0 s/mm2) – +0.51 ± 0.20 <.01 – +0.47 ± 0.24 <.01

dfMRI (b = 300 s/mm2) – +0.34 ± 0.23 <.01 – −0.06 ± 0.18 .38

dfMRI (b = 800 s/mm2) – +0.44 ± 0.24 <.01 – −0.13 ± 0.31 .31

dfMRI (b = 1200 s/mm2) – +0.53 ± 0.19 <.01 – −0.22 ± 0.18 .03

ADC-fMRI300 (1.11 ± 0.08) × 10−3 mm2/s +0.55 ± 0.26 <.01 (1.10 ± 0.11) × 10−3 mm2/s +2.17 ± 1.15 <.01

ADC-fMRI800 (0.92 ± 0.08) × 10−3 mm2/s +0.06 ± 0.16 .37 (0.93 ± 0.09) × 10−3 mm2/s +1.14 ± 0.57 <.01

ADC-fMRI1200 (0.85 ± 0.07) × 10−3 mm2/s +0.05 ± 0.21 .58 (0.83 ± 0.06) × 10−3 mm2/s +1.18 ± 0.76 .01

ADCIVIM-fMRI300–800 (0.83 ± 0.08) × 10−3 mm2/s −0.28 ± 0.24 .02 (0.84 ± 0.08) × 10−3 mm2/s +0.46 ± 0.58 .08

ADCIVIM-fMRI300–1200 (0.78 ± 0.06) × 10−3 mm2/s −0.26 ± 0.25 .05 (0.75 ± 0.08) × 10−3 mm2/s +0.56 ± 0.53 .05

fIVIM-fMRI300–800 0.07 ± 0.01 +3.92 ± 1.81 <.01 0.07 ± 0.01 +7.70 ± 3.67 <.01

fIVIM-fMRI300–1200 0.09 ± 0.01 +3.16 ± 2.07 .01 0.09 ± 0.01 +6.02 ± 2.53 <.01

Abbreviations: ADC, apparent diffusion coefficient; dfMRI, diffusion fMRI; fMRI, functional magnetic resonance imaging; GE-BOLD, gradient-echo blood

oxygenation level dependent; NA, not applicable; SNR, signal to noise ratio; tSNR, temporal SNR.
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(in addition to b = 0 s/mm2 volume) per run. This results in an intrinsic

temporal offset of 1.5 s between different diffusion weightings, which

we did not take into account. While considering such shift is not triv-

ial, this acquisition scheme offers the advantage of acquiring multiple

diffusion weightings in a reasonable time and ensures that all data

experience the same task evoked condition.

A controversial point about dfMRI relates to its underlying physio-

logical mechanisms. Some studies suggest that these mechanisms

have a neuronal (or closer to) origin (Darquié et al., 2001; Le Bihan

et al., 2006; Nunes et al., 2019), whereas others show a perfusion

related origin (Miller et al., 2007; Rudrapatna, van der Toorn, van

Meer, & Dijkhuizen, 2012). Although intermediate diffusion gradients

(i.e., b = 1200 s/mm2) are expected to completely suppress the perfu-

sion signal, this might still affect the measured signal via the “T2 shine-

through” effect (Provenzale et al., 1999). This would be especially true

if the signal would originate from a single tissue component, which is

not likely to be the case. To investigate this, we tailored our dfMRI

acquisition design to disentangle multiple components. When using a

two-component model, we observed increases of perfusion signal

fractions in AC(dfMRI), between 3 and 4%. Hypothesizing invariance

of the intra/extracellular environment, such perfusion changes would

result in net signal alterations at b = 800 and 1200 s/mm2 above 1%.

Taking into account that ADCIVIM-fMRI (Figure 3)—which is theoreti-

cally less influenced by perfusion/T2/T2* contamination—shows weak

but consistent decreases in AC(dfMRI) during task execution, we

suggest that in such ROI, a reduction of intracellular/extracellular dif-

fusivity (Darquié et al., 2001; Le Bihan et al., 2006) takes place simul-

taneously to increases in T2 and blood volume (Miller et al., 2007).

Interestingly, we observed an increase of ADC-fMRI300 in AC(dfMRI),

which seems in disagreement with previous studies. However, such

result was previously observed also by Yacoub, Uluda�g, U�gurbil, and

Harel (2008), who reported ADC increases during activation when

computing ADC from b = 1600 s/mm2, in contrast to decreases when

using data at b = 1200, 2400 s/mm2. Indeed, when applying the IVIM

decomposition (Equation (2)), we observed that a significant ADC

decrease (ADCIVIM-fMRI300–800) and a significant perfusion fraction

increase (fIVIM-fMRI300–800) take place simultaneously during activa-

tion. The increase in perfusion signal fraction can explain why previ-

ous studies employing low diffusion weightings observed ADC

increases (Song et al., 1996; Song et al., 2002), whereas the reduction

in intracellular/extracellular diffusivity is in line with the observation

of ADC decreases (Darquié et al., 2001; Le Bihan et al., 2006) at

strong diffusion weighting. These two effects are entangled and may

cancel out when including data at b = 0 s/mm2 in the ADC computa-

tion, explaining the lack of significance of changes in ADC-fMRI800

and ADC-fMRI1200 within AC(dfMRI). For this reason, we suggest

deriving ADC values either with IVIM modeling or by excluding data

at b = 0 s/mm2 from the computation. This is consistent with the

observation of a slightly faster responsiveness of the dfMRI signal to

the neuronal stimulus at b = 1200 s/mm2 compared to that at

b = 0 s/mm2 (Figure 4), and with our results on the poor overlap

between Z(dfMRI) and Z(fIVIM-fMRI300–800) activations (around 15%),

suggesting that perfusion is a potential contributor of the observed

dfMRI changes. We further observed that dfMRI activations were

mostly located in GM but also had a large component in WM, where

swelling has been shown as a mechanism implicated in neuronal trans-

mission (Fields, 2011). Changes in T2* appear to have a limited influ-

ence on the dfMRI signal, provided that the detected activations were

not fully included in those derived from GE-BOLD but rather

exhibited an alternative spatial pattern, as suggested by the limited

overlap values equal to 45 ± 14%. This is in good agreement with the

study of Tsurugizawa, Ciobanu, and Le Bihan (2013), which compared

GE-BOLD and dfMRI in animals under strict experimental conditions.

The study showed that the activation maps detected with GE-BOLD

extend well beyond those derived with dfMRI, but also that the sensi-

tivity of the latter to activation is preserved after the removal T2/T2*

changes by inhibition of neurovascular coupling mechanisms.

F IGURE 4 Sensitivity of GE-BOLD and dfMRI in AC(dfMRI).
Z-score of the time series of GE-BOLD and dfMRI (for different
diffusion weightings, red, orange, and purple solid lines) within the
dfMRI activation core. The individual dfMRI signals showed signal
changes up to 2 SDs in correspondence of task execution in line with
GE-BOLD, irrespectively of the applied diffusion-weighting. The time
series suggest that dfMRI signals at b = 1200 s/mm2 exhibited slightly
faster reactivity to task than SE-BOLD (b = 0 s/mm2), whereas
differences with GE-BOLD were minimal. dfMRI, diffusion functional
magnetic resonance imaging; GE-BOLD, gradient-echo blood
oxygenation level dependent; SE-BOLD, spin-echo BOLD [Color
figure can be viewed at wileyonlinelibrary.com]
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Analysis of significantly task-activated ADC-fMRI voxels resulted in

bilateral clusters partially overlapping those obtained with GE-BOLD

(Figure 3), similarly to what was observed for dfMRI. Activations with

ADC-fMRI are generally more confined than those from dfMRI but

show less artifactual areas. Further, the supplementary motor cortex is

hardly revealed, which might be partially due to the smaller sample size

of ADC-fMRI series compared to dfMRI, as well as to its remarkably

lower SNR values (see Table 2). Future studies performing ADC-fMRI

should consider the combined penalty of reduced sample size and SNR

in comparison to dfMRI, for instance, by increasing the number of col-

lected samples. The ADC-fMRI values increase during activation

between 2% (ADC-fMRI300) and 1% (ADC-fMRI800, ADC-fMRI1200),

which is in line with what is observed in the visual cortex by Nicolas

et al. (2017), and in the same magnitude but opposite sign of what is

originally reported by Darquié et al. (2001). Considering that fIVIM-fMRI

but not ADCIVIM-fMRI (Figure 5) show significant changes during task

execution in AC(ADC-fMRI), we suggest that the observed increase in

ADC values is largely driven by blood volume and T2 values changes.

This result might seem counterintuitive, given the dependency of ADC

from T2 values cancels out in the ADC equation. However, such

assumption holds only if the signal originates from a single water pool,

that is, adhering to the classic monoexponential diffusion equation.

When applying the biexponential IVIM model, our results indeed show

an increase in perfusion signal fraction between 6 and 7% in the ADC-

fMRI activations (Table 3), which is more than what was observed for

the dfMRI activations. The activation overlap with fIVIM-fMRI activa-

tions is higher with ADC-fMRI (~19%) than with dfMRI (~15%) (see also

Figure S1, Supporting Information), and fIVIM-fMRI exhibits a stronger

correlation with task execution in AC(ADC-fMRI) than in AC(dfMRI).

ADCIVIM-fMRI, which is theoretically less affected by perfusion effects,

shows small but significant decreases during activation in AC(dfMRI), in

line with previous reports on ADC during activations (Darquié et al.,

2001; Le Bihan et al., 2006; Tsurugizawa et al., 2013; Yacoub et al.,

2008), but also unexpected increases in AC(ADC-fMRI). Finally, changes

in ADC-fMRI (Figure 7) exhibit a visible lag to task execution compared

to both GE-BOLD and dfMRI (Figure 4), suggesting the latter to be

closer to the early activation mechanisms. Given these observations and

taking into account that ADC-fMRI activations equally cover GM and

WM, we conclude that perfusion is likely to be a stronger contributor in

the ADC-fMRI response compared to the dfMRI response.

Some limitations of this work must be acknowledged. Our sequence

design allows to repeatedly acquire data at multiple diffusion weightings

in reasonable times, allowing to simultaneously derive ADC measures

and perfusion signal fractions. However, due to the inherent delay of

7 s introduced between b = 0 s/mm2 volume and the last diffusion

weighted volume acquired in each dynamic, the temporal resolution

advantage of diffusion weighted data at strong b-value might be par-

tially compromised if no further corrections are considered. However,

the nature of our experiments does not allow to thoroughly investigate

the temporal aspects of the dfMRI signal, which needs further investiga-

tion with dfMRI data acquired with shorter repetition times. The perfu-

sion changes observed in this work are noticeably smaller than those

reported in Federau et al. (2015). This might be due to simultaneous

mechanisms taking place in the free water regime, which was

F IGURE 5 ADC-fMRI versus GE-BOLD activations maps. Individual activation maps detected with ADC-fMRI (red) as compared to GE-BOLD
(blue), and their overlap (green) overlaid on the gray/white matter surface of each subject. Bilateral activation was observed on all subjects with
both sequences. However, activations with ADC-fMRI were weaker than those with dfMRI, and generally did not include the supplementary
motor cortex. compared to GE-BOLD, activations from Z(ADC-fMRI) had smaller extension. ADC, apparent diffusion coefficient; dfMRI, diffusion
fMRI; fMRI, functional magnetic resonance imaging; GE-BOLD, gradient-echo blood oxygenation level dependent [Color figure can be viewed at
wileyonlinelibrary.com]
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suppressed with a fluid attenuated inversion recovery acquisition.

Unfortunately, such acquisition is not advantageous in the dfMRI con-

text due to the need for short repetition times. To further investigate

such hypothesis, the dfMRI acquisition should be modified to accom-

modate a third intermediate diffusion weighting value within TR limita-

tions. It is also worth mentioning that in Federau et al. (2015), the value

of the TR was 12 times longer than the one used in this study, which

affects the T1-weighting of the signal and, hence, may partially explain

the observed differences. The acquisition of more diffusion weightings

would also allow to employ more sophisticated IVIM fit approaches

than the one here used, such as stretched exponentials (Koh, Collins, &

Orton, 2011) or proper multiexponential fit (De Luca, Leemans,

Bertoldo, Arrigoni, & Froeling, 2018; van Baalen et al., 2017), taking into

account the diffusion coefficient of the pseudo-diffusion pool and

improving fit quality. When trying to map task activations directly with

ADCIVIM-fMRI, we did not find any activation cluster, likely due to insuf-

ficient statistical power. More advanced fit strategies and a larger num-

ber of measurements are therefore needed to achieve such mapping

within clinically achievable SNR levels. A more refined modeling of the

dfMRI signal could also allow, for instance, to investigate the origin

behind the observed ADCIVIM-fMRI increases in AC(ADC-fMRI). A pos-

sible explanation for such increases is the expansion of a free-water like

component due, for instance, to cell swelling (Fields, 2011). Such com-

ponent is not explicitly taken into account in our IVIM modeling

and might therefore be erroneously assimilated to the intracellular/

extracellular diffusivity component due to modeling errors.

The choice of the gradient waveform employed in a dfMRI experi-

ment is to date not standardized and represents a further source of

variability in the reported results. Previous studies have indeed

employed monopolar Stejskal–Tanner gradients (Darquié et al., 2001;

Nicolas et al., 2017; Yacoub et al., 2008), twice refocused SE (TRSE)

acquisitions (Aso et al., 2009; Aso et al., 2013; Kohno et al., 2009; Le

Bihan et al., 2006; Miller et al., 2007; Tsurugizawa et al., 2013;

Williams et al., 2014), as well as less conventional waveforms (Nunes

et al., 2019; Song et al., 2002). In this study, we have employed classic

monopolar Stejskal–Tanner diffusion gradients, which are potentially

F IGURE 6 Time series in AC(ADC-fMRI). Normalized average time series of GE-BOLD, dfMRI (for different diffusion weightings, ADC-fMRI,
ADCIVIM-fMRI, and fIVIM-fMRI of each subject (each row), and after group averaging (last row), within the ADC-fMRI activation ROIs. Gray blocks
correspond to task execution, whereas white blocks to rest. GE-BOLD and ADC-fMRI showed increases and decreases in correspondence of task
and rest, respectively. fIVIM increases with task execution and decreases during rest were more prominent within ADC-fMRI activations than
within AC(dfMRI). The average of the ADCIVIM-fMRI signal did not exhibit clear correlations to the task. ADC, apparent diffusion coefficient;
dfMRI, diffusion fMRI; fMRI, functional magnetic resonance imaging; GE-BOLD, gradient-echo blood oxygenation level dependent [Color figure
can be viewed at wileyonlinelibrary.com]
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sensitive to interactions with background gradients (Pampel,

Jochimsen, & Möller, 2010). The interaction between the applied dif-

fusion gradients and background contributions is effectively removed

only when using bipolar or asymmetric gradient designs (Froeling,

Strijkers, Nederveen, & Luijten, 2015), but has been predicted by

Pampel et al. (2010) to be attenuated also by TRSE acquisitions

(Reese, Heid, Weisskoff, & Wedeen, 2003). In particular, background

gradients in the presence of deoxygenation have been shown to

strongly decrease ADC values (Does, Zhong, & Gore, 1999), while

simulations (Pampel et al., 2010) predict ADC values from monopolar

gradients to be much less sensitive than TRSE to activation changes,

configuring it as a potential confounder in our results. According to

the study of Kohno et al. (2009), the effect of the cross terms would

cause an overimposed diffusion weighting scaled between 1 and 10%

the amplitude of the applied diffusion gradient, with dependence on

the effective echo time, likely reducing the overall applied diffusion

weighting. Applying the same reasoning to our results, dfMRI at

b = 300 s/mm2 could fall to a lower diffusion weighting, with

increased sensitivity to vascular pools. However, in the case of dfMRI

at b = 800 or 1200 s/mm2, this is less likely to happen. In practice,

while the effect of cross terms could determine a bias in measures

subsequently derived from dfMRI, for example, ADC-fMRI, it should

not change the nature of the observed dfMRI signal changes in

AC(dfMRI) and AC(ADC-fMRI) (Pampel et al., 2010). In support of this,

we observed remarkable similarities between the above-mentioned

studies employing both SE Stejskal–Tanner and TRSE sequences, and

our findings of: (a) reduced activation extent and limited overlap of

dfMRI as compared to GE-BOLD (Nicolas et al., 2017; Song et al.,

2002) and (b) dfMRI signal increases and ADCIVIM-fMRI decreases

during activation (Le Bihan et al., 2006). The results presented here

are therefore in general agreement with recent literature, suggesting

potential advantages of dfMRI over GE-BOLD, especially in terms of

spatial localization of the brain activated areas. However, it remains

unclear whether the more focal activations detected with dfMRI (and

ADC-fMRI) are closer to the real neuronal source of motor activation

than conventional GE-BOLD fMRI activations, as recently suggested

(Nunes et al., 2019).

Furthermore, we observed that both dfMRI and ADC-fMRI pro-

vide bilateral activations when comparing task and rest conditions,

but that the overlap among the two is rather low, suggesting the

detection of adjacent but not identical clusters. Establishing which of

the two is closer to the neuronal activation will require further investi-

gation, although our results suggest dfMRI as the most likely.

In conclusion, this study shows that the dfMRI signal is sensitive

to task evoked activity, and that by employing appropriate diffusion

weightings it is possible to investigate changes in different tissue

domains. While dfMRI (and ADC-fMRI/fIVIM-fMRI/ADCIVIM-fMRI) is

more challenging to perform and prone to artifacts than GE-BOLD, its

selective sensitivity to different microstructural features has the poten-

tial to provide additional insights into brain activation mechanisms, to

complement standard GE-BOLD.
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