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Abstract

Background: A very large and rapidly growing collection of transcriptomic profiles in public repositories is potentially of
great value to developing data-driven bioinformatics applications for toxicology/ecotoxicology. Modeled on human
connectivity mapping (Cmap) in biomedical research, this study was undertaken to investigate the utility of an analogous
Cmap approach in ecotoxicology. Over 3500 zebrafish (Danio rerio) and fathead minnow (Pimephales promelas)
transcriptomic profiles, each associated with one of several dozen chemical treatment conditions, were compiled into
three distinct collections of rank-ordered gene lists (ROGLs) by species and microarray platforms. Individual query
signatures, each consisting of multiple gene probes differentially expressed in a chemical condition, were used to
interrogate the reference ROGLs.

Results: Informative connections were established at high success rates within species when, as defined by their
mechanisms of action (MOAs), both query signatures and ROGLs were associated with the same or similar chemicals.
Thus, a simple query signature functioned effectively as an exposure biomarker without need for a time-consuming
process of development and validation. More importantly, a large reference database of ROGLs also enabled a query
signature to cross-interrogate other chemical conditions with overlapping MOAs, leading to novel groupings and
subgroupings of seemingly unrelated chemicals at a finer resolution. This approach confirmed the identities of several
estrogenic chemicals, as well as a polycyclic aromatic hydrocarbon and a neuro-toxin, in the largely uncharacterized
water samples near several waste water treatment plants, and thus demonstrates its future potential utility in real world
applications.

Conclusions: The power of Cmap should grow as chemical coverages of ROGLs increase, making it a framework easily
scalable in the future. The feasibility of toxicity extrapolation across fish species using Cmap needs more study,
however, as more gene expression profiles linked to chemical conditions common to multiple fish species are needed.

Keywords: Fish, Gene expression profiles, Connectivity mapping

Background
There are an estimated 80,000 chemicals in legal use
today, with hundreds more added to the inventory each
year [1]. A current lack of toxicological information for
most of them poses a serious challenge to safeguarding
human health and the environment from potentially
harmful exposures. Given that traditional toxicity testing

of chemicals based on whole animals is resource-
intensive, time-consuming, and at times challenging in
terms of cross-species and –chemical extrapolation, a
general consensus has emerged across the environmental
science community that alternative practices are needed
for evaluation and management of chemical inventories.
In recognition of rapid scientific advancements in
“-omics” technologies, robotics, computational chemis-
try, systems biology, and high performance computing,
the US National Academy of Sciences has put forth sev-
eral reports since the turn of the century [2–5]
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recommending broader utilization of in vitro, in silico,
and short term in vivo assays with a greater focus on
mechanistic pathways in testing of chemicals and asses-
sing their toxicological risks.
Concurrent with this emerging paradigm of toxicology

is the ongoing “big data” revolution across scientific dis-
ciplines and technological fields. Accelerated by tech-
nical advances, there has been an exponential growth in
data generation. In biology, for example, the number of
DNA sequence bases in GenBank has increased nearly
300,000 fold over the last 30 years, from 0.7 megabases
in 1982 to 187 gigabases in 2015. As of May, 2015, the
NCBI GEO (National Center for Biotechnology Informa-
tion Gene Expression Omnibus) hosted well over 1.4
million gene expression profiles (GEPs), including
~20,000 for fish, ~70,000 for rats, and ~700,000 for
humans. Each GEP represents the collective expression
states of all genes, as measured by a given microarray,
for a sample under study. Many of these GEPs are linked
to chemical treatment or other biological conditions of
potential relevance to toxicology. These abundant tran-
scriptomic data contain a wealth of information and
present opportunities for toxicologists to explore com-
putational assessment of chemical toxicity by a data-
driven approach. In contrast to individual studies with a
narrowly defined scope and limited data, substantial
novel insights may be gained from data mining across a
large number of independent studies conducted within
the same species or even across species. Yet, to date,
there has been little research effort in this area in the
field of toxicology.
Connectivity mapping (Cmap) represents an in silico

and data-driven approach with potentially broad applica-
tions in biomonitoring, chemical exposure assessment,
toxicity evaluation and extrapolation across species, and
grouping of chemicals. Originally proposed for human
biomedical research [6], Cmap connects chemicals and
disease based on similarities in transcriptomic profiles,
driven largely by the underlying mechanisms of action
(MOA). Such similarities are revealed by interrogating a
database of rank-ordered gene lists (ROGLs) with a
query signature. The ROGLs are generated individually
from GEPs of treated samples relative to those of the
corresponding controls, based on gene probes sorted by
their logarithmic fold-changes (LogFCs), and are inclu-
sive of all gene probes on a given microarray. A query
signature, on the other hand, contains only a small num-
ber of gene probes differentially expressed under a
chemical or biological condition of interest. A non-
random distribution of gene probes from a query signa-
ture on ROGLs suggests a similarity in their transcrip-
tomic profiles, and therefore, a connectivity of the
underlying chemical or biological conditions. This Cmap
determination of the chemical identity associated with a

biological sample is thus analogous to forensic database
searches by human or DNA fingerprints. Since its incep-
tion, Cmap has made a significant impact on drug dis-
covery research and development [7], and is now
becoming part of much more ambitious public effort of
profiling cell signatures [8]. A similar data-driven ap-
proach for pharmaceutical research has also been
launched using commercial platforms [9]. For toxicoge-
nomic research with chemicals, the principle of Cmap is
equally applicable: those toxicants sharing the same or
similar MOAs should yield comparable transcriptomic
profiles, and connect with one another [10–12].
Compared to other computational approaches with

similar toxicological applications, Cmap has several ad-
vantages. First, it is algorithmically simple. Connectivity
between two chemical conditions is established simply
based on a non-random distribution of multiple gene
probes on ROGLs. Second, the information in each GEP
is fully preserved, as there is no statistical filtering with
regard to generating ROGLs: the entire set of gene
probes in the GEP of a treated sample is ranked from
top to bottom by their LogFCs relative to the corre-
sponding control(s). Third, Cmap is easily scalable. As
more GEPs become available, ROGLs can be simply
added individually to an existing reference database
without any restructuring or reanalysis. With more
ROGLs in the database, there is a greater coverage of
chemicals and biological conditions, so the power and
applicability of Cmap also increase. Lastly, Cmap is cost-
effective and user-flexible. As publicly-available GEPs
continue to grow, they can be included in a database to
expand chemical coverage. An end user can derive a
query signature for a sample/condition of interest from
a variety of sources such as literature, microarrays, RT-
PCRs (reverse transcription polymerase chain reaction),
or a public “-omics” data repository.
However, adopting a big data approach such as Cmap

for toxicogenomics applications faces many challenges.
Unlike human Cmap where GEPs originated from rela-
tively homogeneous cell cultures from a single species,
the development of Cmap for fish must take into ac-
count data heterogeneity as a result of differences in ex-
perimental designs and lab practices among independent
studies. Technical factors such as choice of expression
profiling platforms (e.g., microarrays vs RNA sequen-
cing) and evolving designs within a platform (e.g., micro-
arrays) may further complicate data integration. Lastly
and perhaps most challenging of all, conducting inter-
specific Cmap introduces further evolutionary
complexity.
Interspecific Cmap requires a signature derived from

one species to interrogate ROGLs of one or more other
species. If successful, this allows the broadest possible
inclusion of GEPs available in public repositories, and
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can inform toxicity extrapolation from model to non-
model species. Interspecific Cmap depends on the con-
servation of both genomes and transcriptomes. In the
presence of such conservation, genome annotations be-
come the most limiting factor for interspecific Cmap.
Given these considerations, zebrafish and fathead min-
now appear to be the two very suitable fish species for a
preliminary test of Cmap across species. As a common
biological model with extensive genome-level know-
ledge, zebrafish is a species of choice for many studies,
particularly in developmental biology [13]. As such, zeb-
rafish has the largest number of public GEPs available
among all fish species. The fathead minnow, on the
other hand, has been the dominant aquatic vertebrate
test organism in regulatory toxicity testing for decades
[14]. Estimated to have shared a last common ancestor
31 million years ago [15], both the zebrafish and fathead
minnow are members of the family Cyprinidae, with
well-conserved genomes and transcriptomes [16].
This study was undertaken to explore the applications

of Cmap in ecotoxicology. The goals were three-fold.
First, Cmap was evaluated for connecting the same che-
micals within species. In other words, both a query sig-
nature and ROGLs under consideration were selected
from a single species and associated with an identical
chemical. Second, Cmap was tested on related chemicals
of the same MOA class within species, for example, by
interrogating ROGLs linked to the natural estrogen 17β-
estradiol (E2) with a signature linked to the synthetic es-
trogen 17α-ethinylestradiol (EE2). If successful, Cmap
would not only simplify the development of exposure
biomarkers, but also provide an alternative way to
characterize the extent of overlap among MOAs of re-
lated chemicals and inform as to their relative toxicity.
Lastly, based on a small number of chemical conditions
shared between species, a preliminary trial of interspe-
cific Cmap was conducted to identify issues critical to a
more thorough feasibility study in the future.

Methods
Chemicals and field water samples
The data employed in the present study were derived
from experiments with a number of chemicals (Table 1).
The use or source of these chemicals ranges from pesti-
cides, medicine, industrial chemicals or by products, per-
sonal care products, and fossil fuel contaminants. In the
context of adverse outcome pathways, these chemicals
could be grouped by their molecular initiating events
(MIEs) [17]. A MIE is defined here as a molecular inter-
action between a xenobiotic and a specific biomolecule.
Since many of these MIEs involve various receptors and
enzymes commonly considered as part of the hypothal-
amic pituitary gonadal (HPG) axis [18], a large portion
of chemicals under this study, for example E2 and EE2,

are effectively HPG-active toxicants. Also included,
among others, were several pyrethroid insecticides
(bifenthrin, permethrin, esfenvalerate, cypermethrin) tar-
geting neuro-transmission, and polycyclic aromatic hy-
drocarbons (PAHs).
In addition to experiments with individual chemicals,

the data also include exposures to field water conditions
(Table 1) sampled near several waste water treatment
plants (WWTPs). The water samples were characterized
for a limited number of chemicals (generally around 140
analytes) by their original investigators using traditional
chemical analysis methods. For the purpose of evaluating
Cmap performance, only those chemicals both positively
identified therein and also present in the data of current
study are listed in the table. Almost all of the water sam-
ples had detectable concentrations of estrogens and
bisphenol A. Some of them also contained PAHs.

Microarray data
Microarray data for this investigation came from a series
of US Environmental Protection Agency (USEPA) stud-
ies with zebrafish and fathead minnow [18] and US
Army Corps of Engineers (USACE) studies with fathead
minnow, as well as a number of datasets downloaded
from NCBI GEO as of August 2014 (Table 2, Additional
file 1: Table S1). There were a total of 3516 microarrays
associated with 55 experimental conditions, as defined
by chemical, dose, tissue type, and exposure duration.
This dataset encompassed many independent studies
carried out over years, with a wide range of differences
in their original project objectives, experimental designs,
and chemical treatment conditions and measured ef-
fects, using three microarray platforms in zebrafish and
fathead minnow. Given the complex and heterogeneous
nature of this dataset, it is difficult to describe in general
terms all underlying experimental protocols. Instead,
only a brief overview of this dataset is outlined below.
Greater experimental details about various studies have
been previously published [16, 18–20], are available from
the summaries of individual data series available at NCBI
GEO (Additional file 1: Table S1), or will be published
elsewhere.

USEPA and USACE studies
A number of experiments were conducted with chemi-
cals targeting HPG-axis [18] and neuro-transmission of
zebrafish and fathead minnow. Over the course of these
studies, microarray platforms evolved, leading to mul-
tiple platforms being used, including Agilent 013223,
015064, 019161 for zebrafish, and Agilent 019597 and
036574 for fathead minnow. Since these platforms had
probes duplicated to various extent by design, only
unique probes were considered in their cross-mapping.
Agilent 013223 and 015064 shared the same 21495
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Table 1 Chemicals and field mixtures associated with the exposure experiments considered in the current study

Chemicals/field mixtures Use/source Putative MIE References

1,4-dimethoxybenzene (DMB) Ingredient in consumer products — —

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) Industrial byproduct aromatic hydrocarbon
(Ah) receptor agonist

[48]

2,4-dinitrophenol (DNP) Antiseptic agent, pesticide, industrial
chemical

Uncoupling oxidative
phosphorylation

—

benz(a)anthracene (BAA) Fossil fuels DNA mutagen and Ah
receptor agonist (PAH)

[49]

perfluorinated chemicals (PFC) Industrial chemical — —

tert-Butylhydroquinone (TBHQ) Ingredient in consumer products — —

Phenanthrene (PHE) Fossil fuels DNA mutagen and Ah
receptor agonist (PAH)

[49]

Pyrene (PYR) Fossil fuels DNA mutagen and Ah
receptor agonist (PAH)

[49]

decabromodiphenyl ether (BDE) Flame retardant —

dibenzothiophene (DBT) Fossil fuels DNA mutagen and Ah
receptor agonist (PAH)

[49]

17ß-estradiol (E2) Endogenous estrogen ER agonist [18]

Diethylstilbestrol (DES) medicine ER agonist —

ethniyl estradiol (EE2) medicine ER agonist [18]

fadrozol (FAD) medicine CYP19 inhibitor [18]

fipronil (FIP) insecticide GABA receptor
antagonist

[18]

flutamide (FLU) medicine Androgen receptor
antagonist

[18]

genistein (GEN) phytoestrogen ER and PPAR agonist [50]

ketochonazole (KET) medicine CYP11A/CYP17 inhibitor [18]

trenbolone (TRB) Beef production AR agonist [18]

trilostane (TRI) Veterinary medicine 3βHSD inhibitor [18]

vinclozolin (VIN) fungicide AR antagonist
(fungicide)

[18]

prochloraz (PRO) fungicide CYP17/19 inhibitor [18]

muscimol (MUS) research GABA receptor agonist [18]

bisphenol A (BPA) Industrial chemical ER agonist [51]

Progesterone (PGST) Endogenous hormone, medicine PR agonist [52]

Dihydrotestosterone (DHT) Endogenous hormone AR agonist [53]

Haloperidol (HAL) medicine Dopamine D2 receptor
antagonist

[54]

Diazepam (DIA) medicine GABA-A receptor
modulator

[55]

bifenthrin (BIF) insecticide voltage-gated sodium
channels disruption

[56]

cypermethrin (CYP) insecticide voltage-gated sodium
channels disruption

[56]

esfenvalerate (ESF) Insecticide voltage-gated sodium
channels disruption

[56]

Linuron (LIN) Herbicide photosynthesis inhibitor [57]

Terbufos (TER) Insecticide acetylcholine esterase
inhibitor

[58]

methylparaben (MPA) Anti-fungal agent Uncoupling oxidative
phosphorylation

[59]
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probes but with different layouts (hereafter referred to
as ZF 21K). Agilent 019161 had 43603 probes (ZF
43K), but only 37 % (16083) of them could be
mapped to Agilent 015064. For fathead minnow,
Agilent 019597 had 15208 probes (FHM 15K), which
formed a subset of 49849 unique probes found in
Agilent 036574 (FHM 60K). The experimental con-
ditions in this study for fathead minnow overlapped
considerably between these two platforms. In order
to keep their ROGLs as a single collection for
maximum comparability, only the 15000 common
probes were retained. The entire microarray dataset
from these studies is available at NCBI-GEO as the
accessions GSE38070, GSE60202, GSE70807, and
GSE70936.

Animal usage
Fish were treated humanely, and all laboratory proce-
dures involving animals were reviewed and approved by
the USEPA Animal Care and Use Committee in

accordance with Animal Welfare Act regulations and
Interagency Research Animal Committee guidelines.

Zebrafish experiments
Reproductively mature zebrafish (ab wild-type strain, 5–
7 months old) were exposed to a continuous flow of
sand filtered, UV-sterilized, Lake Superior water (LSW;
controls) or test chemicals dissolved in LSW for 24, 48,
or 96 h at the USEPA laboratory in Duluth, MN. At the
end of each exposure period, fish were anesthetized in a
buffered solution of tricaine methanesulfonate (MS-222;
Finquel, Argent, Redmond WA, USA) and various tis-
sues were collected and shipped overnight on dry ice to
the USEPA laboratory in Cincinnati, OH. Total RNA
isolated from selected tissue samples was then sent to
Cogenics Corporation, an Agilent certified contract
laboratory (Morrisville, North Carolina 27560, USA).
Hybridization was conducted using a two-color protocol
on ZF 15K and ZF 43K microarrays (Agilent Technolo-
gies, Santa Clara, CA, USA), followed by high-resolution

Table 1 Chemicals and field mixtures associated with the exposure experiments considered in the current study (Continued)

permethrin (PER) Insecticide voltage-gated sodium
channels disruption

[56]

Propanil (PPL) Herbicide photosynthesis inhibitor [60]

azinphos-methyl (APM) Insecticide acetylcholine esterase
inhibitor

[61]

Propranolol (PPLL) Medicine β-adrenergic receptor
antagonist

[62]

protein kinase C inhibitor 412 (PKC412) Pharmaceutical compound tyrosine kinase inhibitor [63]

Triclocarban (TCC) Anti-bacterial agent — —

Gemfibrozil (GEM) Medicine PPAR binding and
activation

[64]

cyclotrimethylenetrinitramine (RDX) Explosive Neuro-toxin? —

TNT Explosive — —

Water samples near WWTPs

Effluent; WWTP, San Diego, California (EFFLa,
EFFHa)

Positive for GEM, DIA, E2, PGST — [29]

Effluent; WWTP, Los Angeles, California (EFFHb) Positive for GEM, PGST — [29]

Effluent; WWTP, Duluth Minnesota (WLSSD) Positive for various estrogens, BPA — Unpublished observations
(Jenna Cavallin US EPA)

Upstream, effluent, downstream, WWTP, Ely
Minnesota (ElyUS, ElyEFF, ElyDS)

At least one site positive for various
estrogens, BPA, TCC, PAHs, chlorpyrifos

— [30]

Upstream, effluent, downstream, WWTP,
Hutchinson Minnesota (HutUS, HutEFF, HutDS)

At least one site positive for various
estrogens, DES, BPA, TCC, PAHs,
chlorpyrifos

— [30]

Upstream, effluent, downstream, WWTP,
Rochester Minnesota (RochUS, RochEFF,
RochDS)

At least one site positive for various
estrogens, BPA, TCC,

— [30]

storm, stream, waste water; WWTP, Gainesville,
Florida (stormH2O, strH2O, wasteH2O)

wasteH2O seasonally positive for BPA, DIA,
PFCs

— [65]

AR androgen receptor, ER estrogen receptor, GABA gamma-aminobutyric acid, HSD hydroxysteroid dehydrogenase, MIE molecular initiating event, PAH polycyclic
aromatic hydrocarbons, PR progesterone receptor, PPAR peroxisome proliferators-activated receptor–α, WWTP waste water treatment plant
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Table 2 A summary of 3516 microarray samples and their chemical treatment conditions

Zebrafish microarray design, sample size, and
chemicals

Fathead minnow microarray design, sample size, and chemicals

ZF 21K (Agilent 013223, 15064): USEPA (290) FHM 15K (Agilent 019597,_036574): USEPA (580)

ethniyl estradiol (EE2)a bifenthrin (BIF)a

fadrozol (FAD)a cypermethrin (CYP)a

fipronil (FIP)a permethrin (PER)a

flutamide (FLU)a esfenvalerate (ESF)

ketochonazole (KET)a EE2a

muscimol (MUS)a Terbufos (TER)a

prochloraz (PRO)a

trenbolone (TRB)a FHM 15K (Agilent 019597): USACE (1711)

trilostane (TRI)a BPA

vinclozolin (VIN)a FADa

FLUa

ZF 21K (Agilent 013223, 15064): NCBI (154) Gemfibrozil (GEM)a

tert-Butylhydroquinone (TBHQ)a KETa

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)a KET_TNT_KET

oxygen (O2)a KET_TNT_TNT

2,4-dinitrophenol (DNP) PRO

1,4-dimethoxybenzene (DMB) RDX

azinphos-methyl (APM)a Effluent of Western Lake Superior Sanitary District (WLSSD)

Haloperidol (HAL) TRBa

TRB_BPA_TRB_BPA

ZF 43K (Agilent 019161): USEPA (24) TRB_BPA_BPA

FLUa TRB_BPA_TRB

PROa TRB_EE2_EE2

TRB_EE2_TRB

ZF 43K (Agilent 019161): NCBI (270) TRB_EE2_TRB_EE2

benz(a)anthracene (BAA)a TRB_TCC_TCC (triclocarban)

decabromodiphenyl ether (BDE)a TRB_TCC_TRB

bisphenol A (BPA)a TRB_TCC_TRB_TCC

dibenzothiophene (DBT) TRIa

Diazepam (DIA)a VINa

17ß-estradiol (E2)a

E2a FHM 15K (Agilent 019597_036574): NCBI (487)

EE2a Diethylstilbestrol (DES)a

FLU Dihydrotestosterone (DHT)

genistein (GEN)a E2a

Linuron (LIN)a Field exposure (EFFLa, EFFHaa; effluent, WWTP San Diego; EFFHba; effluent, WWTP Los
Angeles)

methylparaben (MPA)a Field exposure (surface, stream, waste watera)

protein kinase C inhibitor 412 (PKC412)a Field exposure (liver: ElyUSa, ElyEFFa, ElyDSa, HutUS, HutEFFa, HutDSa, RochUSa, RochEFFa,
RochDSa))

Propanil (PPL)a Field exposure (ovary: ELYeff, ELYds, HUTeff, HUTds, ROCHds, ROCHeff)

PROa FLU

Pyrene (PYR) Linuron
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scanning and image processing by Agilent Feature Ex-
traction software.

Fathead minnow experiments
Fish exposures were conducted in the USEPA laborator-
ies in Duluth, MN and Cincinnati, OH; and the USACE
laboratories in Vicksburg, MS. For exposures to HPG-
active toxicants, reproductively mature fathead minnows
(5–7 months old) were tested using LSW as the control
and carrier of the test chemicals. All exposures con-
ducted at EPA Duluth laboratories were continuous,
flow-through experiments. Representative experimental
designs for these experiments are detailed elsewhere
[18–20]. Exposures to pyrethroids were conducted in
Cincinnati. Fathead minnow fry (48 hours post hatch)
and adults (5–7 months old) were exposed to the se-
lected chemicals for 24, 48, or 72 hours in a static or
flow-through system. Exposures to TNT, RDX, and mix-
ture of TNT and KET were conducted at USACE Vicks-
burg laboratories under static renewal conditions using
adult fathead minnow (5–7 months old) that will be de-
scribed elsewhere. At the end of each exposure period,
whole fry or tissues from adult fish used for transcrip-
tomic analyses were snap-frozen in liquid nitrogen and
stored at −80 ° C until RNA was extracted, using either
Qiagen RNeasy mini kits (Qiagen, Valencia, CA, USA)
or Tri-Reagent (Sigma, St. Louis, MO, USA). Expression
profiling was carried out using a single-color protocol
on either a FHM 15K (GEO accession GPL9248, de-
signed by Dr. Nancy Denslow, University of Florida,
Gainesville, FL, USA) or a FHM 60K microarray
(GPL17098, designed by Dr. Natalia Garcia-Reyero) [21],
in the Environmental Laboratory of the US Army Engin-
eer Research and Development Center in Vicksburg, MS
(1711 arrays) or in EPA Cincinnati (580 arrays). One
hundred to 1000 ng of total RNA was used for all hy-
bridizations. Probe labeling, amplification, and
hybridization were performed using Agilent Quick Amp
Labeling Kit following the manufacturer’s One-Color
Microarray Hybridization Protocol. Microarrays were
scanned with a high-resolution scanner and the images
were processed with Agilent Feature Extraction software.

Public data from NCBI GEO
A total of 911 text output files from Agilent Feature
Extraction software, representing 33 GEO data series
sharing a common microarray platform with those of
the USEPA and USACE studies as described above, were
assembled and curated (Additional file 1: Table S1). Each
sample file was annotated according to chemical expos-
ure, dose, tissue type, and exposure duration.

Cmap development and analysis
Fish Cmap consists of three components: construction
of query signatures from microarray samples of chemical
and biological interest, construction of a reference data-
base of ROGLs tagged with chemical or biological condi-
tions, and computational query of the database using the
prepared signatures. Each of the three components is
outlined below.

Query signatures
A query signature for a treatment condition contained
multiple differentially expressed gene probes (DEGs)
relative to an appropriate control. The DEGs were deter-
mined by a modified t-test implemented in the R pack-
age limma [22]. A number of R scripts [23] were
developed for this purpose to accommodate different
microarray designs such as one-color, two-color direct
comparison of treatment and control, two-color with a
common reference, and two-color with dye-swaps.
Greater detail about DEG determination is available else-
where [16]. The number of top DEGs selected as a sig-
nature and ranked by false discovery rate depended on
the types of Cmap query. The Cmap query minimum
was lowered from the recommended value of 10 [24], to
four DEGs in order to encompass more experimental
conditions. On average, though, a signature contained
57 to 88 DEGs for queries made within platforms/spe-
cies, and 110 to 181 DEGs for Cmap across platforms/
species. Intuitively, a larger number of DEGs per signa-
ture in the latter case might help to compensate for the
possible inconsistencies in GEPs from different micro-
array platforms within a species, and the possible diver-
gence of chemical MOAs across species. Each DEG in a
signature was accompanied by its own value of

Table 2 A summary of 3516 microarray samples and their chemical treatment conditions (Continued)

cyclotrimethylenetrinitramine (RDX)a perflorinated chemicals (PFC)

Phenanthrene (PHE)a

Progesterone (PGST)

Propranolol (PPLL)

RDX

Zebrafish: ZF 21K (Agilent 013223, 21495 probes unique; Agilent 015064, 21495 probes), ZF 43K (Agilent 019161, 43603 probes unique). Fathead minnow: FHM
15K (Agilent 019597, 15208 unique probes; Agilent 036574, 15208 of 49849 unique probes). Chemicals with at least one experiment condition (different exposure
durations either in single or combinations) with DEGs ≥ 4 are marked by “a”, and those shared across platforms or species are highlighted once in bold
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logarithmic fold-change. In total, 109 unique signatures
were prepared for within-platform queries and 61 signa-
tures for queries across platforms/species (Additional file
2: Table S2). These signatures were named after fish
sample treatment conditions by the order of chemical,
dose, gender, tissue, and exposure duration.

ROGLs
A ROGL of a treated sample was prepared from appro-
priate GEPs in several ways depending on study design.
For one-color data, gene probe intensities of each
treated sample were compared to the corresponding
average intensities derived from its specific group of
control samples. As a result, each gene probe was given
a LogFC of treated over control. Gene probes were then
sorted by the absolute values of their LogFC from the
smallest to the greatest, and assigned either a positive or
negative rank from 1 to N based on the signs of LogFC,
with N being number of probes in a given microarray.
For two-color direct comparison of a pair of treated over
control samples on the same microarray, a ROGL was
generated similarly for the treated but within the pair
only. For two-color with a common reference design,
gene probe intensities of each treated sample were again
compared to those averaged over the corresponding ref-
erence group. In total, there were 2387 ROGLs in the
constructed fish reference database: 386, 203, and 1798
respectively for ZF 21K, ZF 43K, and FHM 15K. For
maximum flexibility, the ROGLs from these three plat-
forms were maintained as three distinct collections.
Cmap across-platform or across-species was imple-
mented by substituting the probe identifications (IDs)
from a source query signature with their equivalent/
orthologous probe IDs in its target platform or species.

Cmap
Interrogation of the fish reference database was con-
ducted using software sscMap [24], containing an algo-
rithm based on the principles of the original Cmap [6].
Basically, Cmap measures the strength of connectivity
between a query signature and a ROGL by a connectivity
score of their summed ranks. To assess its associated p-
value, the default value of 10,000 simulated signatures,
each containing the same number of gene probes as the
original query signature, are randomly generated from
the ROGL. From them connectivity scores are calcu-
lated. The p-value for the original query is the propor-
tion of simulated query signatures with their
connectivity scores greater than or equal to the observed
score. In practice, related ROGLs are typically organized
by sscMap into various sets, each defined by some com-
mon experimental parameters such as chemical, dosage,
and tissue types, and then interrogated by query signa-
tures. Both connectivity score and p-value are slightly

modified to account for the variation in the size of indi-
vidual ROGL sets. With a parameter S denoting the
number of ROGL sets contained in a database collection
and interrogated by a query signature, the number of
false connections was controlled by a critical p-value of
1/S. Each signature was set as “unordered” in the ana-
lysis so all up-regulated genes had the same weight of
+1, and down-regulated genes had a weight of −1 in
contributing to the connectivity score. The highest-
scored, statistically significant, and unique pairs of
signature-ROGL (excluding those originated from the
same experiment) were identified across queries within
each platform, and visualized in Cytoscape [25].
To fully evaluate the effectiveness of Cmap, query

signatures and ROGLs were arranged into three con-
figurations: within the same platforms and species,
across zebrafish platforms, and across species. Be-
cause of the differences in coverage of chemicals and
their varying transcriptomic impact as measured by
the number of DEGs/average LogFC among treat-
ment conditions, queries across platforms and across
species were conducted in both directions in order
to identify all potential chemical-chemical connec-
tions. To enable queries across platforms and spe-
cies, however, their corresponding probes or
orthologs had to be mapped first. This was imple-
mented through several successive steps of ID map-
ping among ZF 21K, ZF 43K, and FHM 15K
microarrays. For example, to identify orthologs be-
tween FHM 15K and ZF 21K, the probe sequences
from FHM 15K were mapped to their corresponding
fathead minnow EST (Expressed Sequence Tag) tar-
get sequences (courtesy of Dr. Nancy Denslow, Uni-
versity of Florida) first by TBLASTX. These EST
sequences were then mapped to the NCBI nucleotide
(NT, as of July, 2013) and protein (NR, as of July
2013) databases by TBLASTX and BLASTX respect-
ively, effectively associating fathead minnow probe
IDs to their corresponding NCBI accession IDs.
With their greater sequence length, ESTs are pre-
sumably more likely than shorter probe sequences to
capture orthologs across species. All three rounds of
BLAST mapping had a minimum E-value cutoff of
E−06. These fathead minnow IDs were then joined to
a variety of zebrafish accession IDs prepared by the
NCBI [26], and finally to Agilent probe annotations
[27]. In the end, a total of 9304 probes (43 %) from
ZF 21K were linked to 6899 probes (45 %) from
FHM 15K through 6573 common Entrez GeneIDs in
NCBI. Similarly, 16376 probes (38 %) from ZF 43K
were mapped to 9861 probes (65 %) of FHM 15K
based on a common set of 10353 Entrez GeneIDs.
In addition, 13273 probes (62 %) from ZF 21K
mapped to 16083 probes (37 %) of ZF 43K were
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based entirely on the NCBI “gene2accession” file
without using any BLAST programs.

Results
The performance of Cmap was evaluated by examining
the ROGL hits with connectivity scores ranked highest
either by individual query signatures or across signa-
tures, based on fish samples profiled on each of the
three microarray platforms: ZF 21K, ZF 43K, and FHM
15K. The primary purpose of examining queries indi-
vidually was to evaluate whether a query signature can
indeed connect with its intended ROGL targets when
they had commonly associated chemical conditions. This
evaluation was carried out both within and across
microarray platforms, as well as across fish species.
These connections essentially establish the chemical
identity of a query signature based on the degree to
which chemicals involved have shared MOAs. High-
scoring pairs of query signature-ROGL across-queries,
on the other hand, could reveal additional novel insights
about the MOA similarity of related chemicals. For bet-
ter clarity in their visualization in a chemical network,
each connected pair of chemical conditions was treated
as directionless, regardless of which node in the pair
represented a signature or a set of ROGLs.

Validation of Cmap algorithm
Overall Cmap performance was variable, as measured by
the percentage of query signatures producing inform-
ative connections. An informative connection is arbitrar-
ily defined as a signature and one of its top five ROGL
hits sharing the same or similar class of chemicals.
Cmap was very effective when both query signatures and
ROGLs were from the same microarray platform/species
(Table 3). The relatively lower performance in fathead
minnow was probably because many treatment condi-
tions had no or very few DEGs (Table 2, Additional file
3: Figure S1). When query signatures and ROGLs were
from different platforms and species, the gene probe IDs
in a query signature had to be cross-mapped to those in
the targeted ROGLs. With the configuration of target
probe IDs coupled with source LogFC, an average

success rate of 61 % was observed based on a small
number of treatment conditions in common across the
platforms/species.
A more detailed examination of connectivity between

query signatures and ROGLs provided additional insights
into the performance of Cmap. As expected, a query signa-
ture almost always connected with ROGLs of its originating
treatment condition as the best hit when both came from
the same platform (Table 4). In many instances, this con-
nectivity of the same or similar class of chemicals extended
across independent experiments, different tissue types, and
chemical mixtures as well. For example, a signature from
the brain tissue of zebrafish treated with EE2
(EE2_30ngL_M_Brain_48hr) connected with the ROGLs of
both EE2_testis and EE2_ovary, overriding the strong im-
pact of tissue types typically observed on fish transcrip-
tomes [28]. Significantly, this strong connectivity among
chemical treatment conditions based on their shared
MOAs was not limited to HPG-active toxicants. Similarly
strong connections were observed in chemicals targeting
other biological pathways/processes such as neuro-
transmission (BIF_0.15ugL_larvae_48hr), regulation of
xenobiotic metabolism (TCDD_2nM_embryo_6h), signal
transduction (PKC412_40ugL_fish_6dpf), and photosyn-
thesis (linuron_1.2mgL_embryo_48hr).
Beyond single chemical exposures, Cmap was also ef-

fective in discriminating chemical mixtures. For ex-
ample, when fish were exposed to a mixture of two
different chemicals (Mixture_M_Brain; containing terbu-
fos and permethrin), this mixture had barely detectable
effects on gene expression, so no signature could be
constructed. Still, its ROGLs were informative, connect-
ing to the signatures of both terbufos and bifenthrin
from other independent experiments. Bifenthrin is an-
other pyrethroid insecticide similar to permethrin. Not-
able was the fact that the bifenthrin signature here
originated from whole fish larvae while the ROGLs of
terbufos/permethrin mixture came from adult brain tis-
sue. At the concentrations used in the exposure, per-
methrin had very little effect on gene expression,
resulting in a relatively uninformative signature consist-
ing of only six gene probes. As ROGLs, however, per-
methrin also formed strong connection with terbufos
and bifenthrin.
The microarray data from previous studies of water con-

ditions near several municipal WWTPs across the USA
provided a “real world” assessment of Cmap performance
(Table 5). Several observations were notable. There were
considerable similarities among the water conditions near
these WWTPs as reflected in their fish ROGLs. These
similarities were observed both within locations (e.g., up-
stream, effluent, downstream) and across geographic loca-
tions. Second, there were high agreements between Cmap
and chemical analyses from those studies with regard to

Table 3 Summary of Cmap by the percentage of query
signatures producing informative connections

Microarray platforms ZF 21K ZF 43K FHM 15K

ZF 21K 35/36 (97 %) 11/13 (85 %) 4/8 (50 %)

ZF 43K 6/12 (50 %) 36/36 (100 %) 5/10 (50 %)

FHM 15K 6/12 (50 %) 5/6 (83 %) 35/46 (76 %)

An informative connection was established when a query signature shared the
same or similar class of chemicals with at least one of the top five ROGL hits,
as ranked by an adjusted connectivity score with a p-value ≤ 1/(S sets of
ROGLs). All cross-platform/species Cmap were based on target probe IDs +
source gene log-fold changes on shared chemical conditions. Only unique
query signatures were considered in calculations
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Table 4 Top five significant hits, if any, of selected Cmap queries within microarray platforms

Signatures 1st match 2nd match 3rd match 4th match 5th match

Within ZF 21K (p-value cutoff 1/45 = 0.022)

EE2_30ngL_Ovary_96hr Self FAD_Ovary TRB_F_Brain EE2_Testis FAD_M_Brain

EE2_30ngL_M_Brain_48hr Self EE2_Testis FAD_M_Brain TRB_F_Brain EE2_Ovary

EE2_30ngL_M_Liver_48hr Self TRB_F_Liver EE2_Testis O2_Testis KET_M_Liver

EE2_30ngL_Testis_48hr Self EE2_Ovary EE2_M_Brain FIP_F_Brain TRI_TestisLow

FAD_25ugL_F_Brain_48hr Self TRB_F_Brain FAD_M_Brain FAD_Ovary EE2_Testis

FAD_25ugL_Ovary_96hr Self EE2_Ovary FAD_M_Brain TRI_TestisLow TRB_F_Brain

FIP_5ugL_Testis_48hr Self FIP_Ovary TRI_Testis FIP_M_Brain FLU_Testis

FLU_1700ugL_Ovary_48hr Self FLU_Testis PRO_Testis VIN_Ovary KET_Ovary

MUS_500ugL_F_Brain_48hr Self VIN_Ovary MUS_M_Brain KET_M_Brain VIN_Testis

MUS_500ugL_M_Brain_48hr Self MUS_F_Brain VIN_Ovary KET_M_Brain KET_Ovary

O2_1mgL_Testis_4d Self O2_Ovary EE2_M_Liver O2_Ovary VIN_Testis

PRO_500ugL_F_Brain_48hr FLU_Testis self PRO_Testis VIN_Ovary KET_Ovary

PRO_500ugL_Ovary_48hr Self FLU_Ovary FLU_Testis KET_Ovary PRO_Testis

TCDD_2nM_Embryo_6h Self TCDD_Embryo TRI_Ovary O2_Ovary PRO_Testis

TRI_2500ugL_Testis_24hr Self VIN_Testis VIN_Ovary KET_Ovary TRI_TestisLow

VIN_1000ugL_Ovary_48hr Self KET_Ovary TRI_Testis VIN_Testis FIP_Ovary

VIN_1000ugL_Testis_48hr Self FLU_Testis PRO_Testis TRI_Testis VIN_Ovary

Within ZF 43K (p-value cutoff 1/39 = 0.026)

BPA_0.01ugL_Ovary_96hr Self BPA_Ovary BPA_Ovary BPA_Ovary BPA_Embryo

E2_1uM_Embryo_4dpf self E2_M_Liver GEN_Embryo GEN_Embryo FLU_Embryo

EE2_0.65mgL_Embryo_48hr EE2_Embryo EE2_Embryo GEN_Embryo PARAB_Embryo PYR_Embryo

E2_5ugL_M_Liver_48hrs self E2_Embryo PARAB_Embryo PARAB_Embryo GEN_Embryo

GEN_2.4mgL_Embryo_48hr self GEN_Embryo PARAB_Embryo DBT_Embryo diazepam_Brain

PKC412_40ugL_fish_6dpf PKC412_fish self RDX_fry diazepam_Brain RDX_fry

PRO_500ugL_F_Brain_48hr PRO_Ovary linuron_Embryo FLU_Ovary PRO_F_Brain linuron_Embryo

PRO_500ugL_Ovary_48hr self FLU_Ovary linuron_Embryo PRO_F_Brain linuron_Embryo

RDX_7.5mgL_fry_96hr self RDX_fry RDX_fry RDX_fry RDX_fry

BPA_8mgL_Embryo_48hr self BPA_Embryo EE2_Embryo BAA_Embryo PRO_Embryo

diazepam_273ngL_brain_14d self diazepam_Brain PKC412_fish RDX_fry RDX_fry

linuron_1.2mgL_Embryo_48hr self linuron_Embryo PKC412_fish BPA_Embryo diazepam_Brain

PARAB_19.8mgL_Embryo_48hr self PARAB_Embryo linuron_Embryo linuron_Embryo PYR_Embryo

PRO_1.7mgL_Embryo_48hr self PRO_Embryo E2_Embryo BPA_Embryo PARAB_Embryo

Within FHM 15K (p-value cutoff 1/132 = 0.0076)

BIF_0.15ugL_Larvae_48hr BIF_Larvae self TER_M_Brain Mixture_M_Brain KETTNTKET_Ovary

BIF_0.3ugL_Larvae_48hr self CYP_Larvae ESF_Larvae ESF_Larvae PER_Larvae

CYP_1ugL_Larvae_48hr self VZ_Ovary PER_Larvae CYP_larva RDX_Ovary

DES_1ngL_Liver_96h EE2_Liver self PHE_High_Liver E2_X_M_Liver DES_Liver

E2_4ugL_M_Liver_14d self E2_M_Liver EE2_Liver DES_Liver ElyEFF_Liver

EE2_25ngL_Liver_72h E2_M_Liver self E2_X_M_Liver DES_Liver ElyEFF_Liver
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the occurrence of known estrogenical chemicals, such as
E2 and EE2 [29, 30]. For example, the water samples near
WWTPs of San Diego (EFFHa, EFFLa) and Los Angeles
(EFFHb), California were both reported to be estrogen-
positive [29]. Their estrogenic identities were confirmed
by Cmap when they were examined either as query signa-
tures (Table 5) or ROGLs (not shown). Various types of
estrogenic chemicals were also found near the WWTPs of
Ely, Hutchinson, and Rochester, MN [30]. By Cmap,
estrogen-associated ROGLs were also connected to the
signatures of these water samples, with connectivity scores

ranked at 10th (Ely effluent, Ely downstream), 16th (Ely
upstream, Hutchinson effluent), 13th (Hutchinson down-
stream), 18th (Rochester downstream), 11th (Rochester ef-
fluent), and 12th (Rochester upstream). Measured against
a p-value cutoff of 1/132 = 0.0076, all these estrogen con-
nections were statistically highly significant. Finally, the
sediment samples, and presumably the surrounding water,
near the WWTPs in Ely and Hutchinson were positive for
a number of PAHs (e.g. anthracene, phenanthrene, pyr-
ene) and an organophosphate insecticide (chlorpyrifos)
[31]. The query signatures from both locations ranked

Table 4 Top five significant hits, if any, of selected Cmap queries within microarray platforms (Continued)

GEM_600ugL_Ovary_8d self GEM_Ovary TrbEE2TrbEE2_Ovary RochDS_Ovary TrbEE2TRB_Ovary

PHE_High_Liver_48hr self PHE_Med_Liver ElyEFF_Liver ElyUS_Liver PFCs_Low_Liver

TRB_30ngL_Ovary_24h self FLU_Ovary TrbTCCTCC_Ovary GEM_Ovary GEM_Ovary

TER_57.5ugL_M_Brain_72h self Mixture_M_Brain PER_M_Brain BIF_Larvae KET_Ovary

Only signatures connected to multiple conditions are included. Where similar signatures exist for a condition, only one is listed. ROGL hits are ranked by their
adjusted connectivity scores and filtered by a p-value cutoff of 1/(number of sets of ROGLs). Informative connections, defined as a signature and one of its top five
ROGL hits sharing the same or similar class of chemicals, are highlighted in bold. Self: a query signature and the connected ROGLs originated from the
same experiment

Table 5 Cmap performance under “real world” conditions

Signatures (NCBI GEO accession) 1st – 2nd match 3rd-4th match 5th-6th match 7th-8th match 9th-10th match

EFFHa_5Perc_MaleLiver_14d (GSE29350) self BIF_Larvae BIF_Larvae Wastewater_Liver FLU_50_Ovary

EFFLa_M_Liver HutDS_Liver EFFHb_M_Liver HutUS_Liver PFCs_Mix_Liver

EFFHb_5Perc_MaleLiver_14d (GSE29350) self Wastewater_Liver FAD_Ovary TRI_Ovary RDX_Liver

E2_M_Liver HutEFF_Ovary VIN_Ovary KET_Ovary RDX_fry

ElyDS_999_Liver_4d (GSE49098) self HutEFF_Liver RochUS_Liver RochDS_Liver PHE_Liver

ElyEFF_Liver ElyUS_Liver HutUS_Liver HutDS_Liver E2_M_Liver

ElyEFF_999_Liver_4d (GSE49098) self ElyUS_Liver PHE_Liver RochDS_Liver RochUS_Liver

ElyDS_Liver HutEFF_Liver HutUS_Liver PHE_Liver E2_M_Liver

ElyUS_999_Liver_4d (GSE49098) self ElyDS_Liver HutEFF_Liver HutUS_Liver BIF_Larvae

ElyEFF_Liver PFCs_Liver EFFHa_M_Liver RochDS_Liver PFCs_Mix_Liver

HutchinsonDS_999_Liver_4d (GSE49098) self RochDS_Liver HutEFF_Liver ElyEFF_Liver PFCs_Mix_Liver

RochUS_Liver ElyDS_Liver HutUS_Liver KET_Ovary KET_Ovary

HutchinsonEFF_999_Liver_4d (GSE49098) self ElyDS_Liver HutUS_Liver HutDS_Liver PHE_Liver

ElyEFF_Liver ElyUS_Liver RochUS_Liver RochDS_Liver KET_Ovary

RochesterDS_999_Liver_4d (GSE49098) self HutUS_Liver HutDS_Liver ElyEFF_Liver RochEFF_Liver

RochUS_Liver ElyDS_Liver ElyUS_Liver HutEFF_Liver BIF_Larvae

RochesterEFF_999_Liver_4d (GSE49098) HutUS_Liver self HutEFF_Liver BIF_Larvae PFCs_Mix_Liver

ElyUS_Liver RochDS_Liver ElyDS_Liver RochUS_Liver PFCs_Liver

RochesterUS_999_Liver_4d (GSE49098) self RochDS_Liver HutEFF_Liver HutUS_Liver ElyUS_Liver

ElyDS_Liver ElyEFF_Liver HutDS_Liver RochEFF_Liver PFCs_Mix_Liver

Wastewater_999_Liver_48h (GSE37550) self CYP_Larvae NA NA NA

E2_M_Liver surfaceH2O_Testis NA NA NA

Fathead minnow samples were exposed to various water conditions near several waste water treatment plants in the USA either by field deployment or in a
laboratory setting. Only those exposures generating a significant number of DEGs thus having query signatures available are listed. The top ten matched ROGLs
are listed to provide a broad list of candidate chemicals. Waste water treatment plant locations: Ely, Hutchinson (Hut), Rochester (Roch), Minnesota; San Diego
(Ha), Los Angeles (Hb), California; Gainesville (GSE37550), Florida. Abbreviations: EFF, effluent; US, upstream; DS, downstream. P-value cutoff 1/132 = 0.0076. Self: a
query signature and the connected ROGLs originated from the same experiment
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phenanthrene with high connectivity scores. With the
same MIE (acetylcholinesterase inhibitor) shared between
terbufos and chlorpyrifos, a strong connectivity was also
found between a terbufos signature and the ROGLs of Ely
downstream (6th), Ely effluent (8th), Hutchinson down-
stream (14th), and Hutchinson effluent (16th).
Cmap had a more limited success, ranging from 50 %

to 85 %, across platforms and species based on a small
number of conditions common to them (Table 2). In
spite of varying performance between ZF 21K and ZF
43K in either direction, Cmap was able to connect query
signatures to target ROGLs for all the conditions com-
mon to these two platforms: EE2/E2/genistein, fluta-
mide, and prochloraz (Table 6, Additional file 4: Table
S3). There was little difference in cross-platform per-
formance between maximum signature size set at 100

and 500. Similar variation in the performance of Cmap
was also observed across species. Among the conditions
shared between FHM 15K and ZF 21K, and between
FHM 15K and ZF 43K, were EE2/E2/DES/genistein,
trenbolone, and RDX. With the exception of RDX and
trenbolone, successful connections were made between
query signatures and ROGLs for all other conditions.

Discovery of novel chemical connections
While the chemical identities of individual query signa-
tures and their connected high-scored ROGLs enable an
evaluation of Cmap performance, those connections that
ranked high across query signatures also could provide
novel insights into possibly shared MOAs and toxicity
pathways among seemingly different chemicals. By indi-
vidual platforms of ZF 21K, ZF 43K, and FHM 15K, the

Table 6 Top five significant hits, if any, of selected Cmap queries across microarray platforms and species

Signatures 1st match 2nd match 3rd match 4th match 5th match

From ZF 21K to ZF 43K (p-value = 0.026; signature size average = 181, min = 15, max = 375)

EE2_30ngL_M_Brain_48hr.sig.500.IDswap LIN_Embryo PRO_F_Brain LIN_Embryo E2_M_Liver FLU_Ovary

EE2_30ngL_M_Liver_48hr.sig.500.IDswap E2_M_Liver RDX_fry RDX_fry RDX_fry PKC412_fish

EE2_30ngL_M_Testis_48hr.sig.500.IDswap GEN_Embryo BPA_Ovary BPA_Embryo BPA_Ovary DBT_Embryo

FLU_Ovary_48hr.sig.500.IDswap FLU_Embryo PKC412_fish BPA_Ovary PPL_Embryo RDX_fry

FLU_Testis_48hr.sig.500.IDswap LIN_Embryo LIN_Embryo FLU_F_Ovary PKC412_fish FLU_Embryo

PRO_F_Brain_48hr.sig.500.IDswap E2_M_Liver PRO_F_Brain GEN_Embryo FLU_Embryo PRO_Ovary

PRO_Ovary_48hr.sig.500.IDswap PRO_Ovary FLU_Ovary PRO_F_Brain

PRO_Testis_48hr.sig.500.IDswap E2_M_Liver PRO_Ovary* PRO_F_Brain*

From ZF 43K to ZF 21K (p-value = 0.022; signature size average = 134, min = 5, max = 310)

E2_1uM_Embryo_4dpf.sig.500.IDswap EE2_Testis EE2_M_Liver TRB_F_Liver O2_Testis O2_Ovary

E2_5ugL_M_Liver_4hrs.sig.500.IDswap EE2_M_Liver TRB_F_Liver O2_Testis O2_Testis TCDD_Embryo

PRO_2mgL_Embryo_48hr.sig.500.IDswap DMB_Embryo tBHQ_Embryo TRB_F_Brain PRO_F_Brain EE2_M_Liver

From ZF 21K to FHM 15K (p-value = 0.0076; signature size average = 124, min = 9, max = 257)

EE2_30ngL_Ovary_96hr.sig.500.IDswap FAD_Ovary EE2_M_Brain EE2_M_Brain*

EE2_30ngL_M_Liver_48hr.sig.500.IDswap EE2_Liver RochDS_liver PHE_Liver RochUS_liver Stream_Liver

EE2_30ngL_Testis_48hr.sig.500.IDswap PFCs_Liver KTC_Ovary PFCs_High_Liver RochEFF_liver

From FHM 15K to ZF 21K (p- value = 0.022; signature size average = 110, min = 5, max = 272)

DES_100ngL_Liver_96h.sig.500.IDswap EE2_M_Liver DNP_Embryo DMB_Embryo TCDD_Embryo APM_Embryo

E2a_4ugL_M_Liver_14d.sig.500.IDswap EE2_M_Liver KET_F_Liver DNP_Embryo KET_M_Liver TRI_Ovary

EE2_25ngL_Liver_72h.sig.500.IDswap EE2_M_Liver KET_M_Liver KET_F_Liver TRB_F_Liver FLU_M_Testis

From ZF 43K to FHM 15K (p-value = 0.0076; signature size average = 120, min = 6, max = 274)

E2_M_Liver_4hrs.sig.500.IDswap ElyEFF_liver ElyDS_liver PHE_Liver E2_M_Liver DES_Liver

GEN_Embryo_48hr.sig.500.IDswap PFCs_Blood KTC_Ovary BIF_Larvae E2_M_Liver PER_Larvae

From FHM 15K to ZF 43K (p-value = 0.026; signature size average = 139, min = 5, max = 363)

DES_1ngL_Liver_96h.sig.500.IDswap E2_M_Liver

E2_4ugL_M_Liver_14d.sig.500.IDswap E2_M_Liver PKC412_fish BPA_Embryo GEN_Embryo BPA_Embryo

EE2_25ngL_Liver_72h.sig.500.IDswap E2_M_Liver PKC412_fish LIN_Embryo BPA_Embryo BDE_Embryo

Where similar signatures exist for a condition, only one of them is listed. ROGL hits are ranked by their adjusted connectivity scores and filtered by a p-value cutoff
of 1/(number of sets of ROGLs). Informative connections, defined as a signature and one of its top five ROGL hits sharing the same or similar class of chemicals,
are highlighted in bold. “*”, p-values slightly greater than the cutoffs
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highest-scored connection was selected from all the sig-
nificant ones for each distinct pair of chemicals, regard-
less of direction (i.e., two conditions linked to each other
as either a signature or ROGLs), tissue type, dose, expos-
ure duration or data origin, and visualized collectively in
Cytoscape as a chemical network. With the recognition
of likely confounding contributions from such factors as
tissue type, this network provided a composite or “aver-
age” view of how chemicals relate to one another. Each

chemical in this network became a node, with the con-
nection between two nodes forming an edge. An edge
was weighted by the connectivity score between the two
connected chemicals. Such a network essentially pro-
vides a glimpse of chemical “neighborhood” as arranged
by the similarities in the transcriptomic profiles among
its chemical members.
In ZF 21K where a total of 17 chemicals were linked,

10 confirmed HPG-active toxicants formed a tight

Fig. 1 A network view of chemical-chemical connectivity based on fish samples profiled on various microarray platforms. Each treatment condition is
represented as a node. Two nodes are connected by an edge weighted by their connectivity score. A shorter, darker, and wider edge between two nodes
denotes a higher connectivity score. All connections shown are statistically significant. a ZF 21K: 117 connections among 17 treatment conditions; b ZF
21K: 45 connections among 10 nodes with each node containing a connectivity score of≥ 10 in at least one connection; c ZF 43K: 110 connections
among 16 treatment conditions; d ZF 43K: 54 connections among 11 nodes with each node containing a connectivity score of≥ 10 in at least one
connection; E) FHM 15K: 541 connections among 53 treatment conditions; F) FHM 15K: 293 connections among 32 nodes with each node containing a
connectivity score of≥ 10 in at least one connection
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cluster in the network while other chemicals that likely
were not HPG-active spread out as distant outliers
(Fig. 1a). A further differentiation of the 10 HPG-active
toxicants could be made when they were selected to
form their own sub-network based on achieving a mini-
mum connectivity score (Fig. 1b). Under this scenario,
there appeared to be two distinct groups: one made up
of vinclozolin, ketoconazole, flutamide, trilostane, fipro-
nil, muscimol, and prochloraz; and the other of EE2 and
fadrozole. Trenbolone seemed to be unique as it shared
substantial similarity to both groups. These observed
clustering patterns were still clearly visible when both
chemical and tissue type were considered together
(Additional file 5: Figure S2). Beyond the contributions
from chemical and sometimes tissue type, the structure
of this network did not appear to coincide with other ex-
perimental conditions such as the lab origins of data.
In ZF 43K, there was also a distinct pattern in chemical

connectivity (Fig. 1c, d). Prochloraz, flutamide, linuron,
E2, and to the lesser extent, EE2, methylparaben, bisphe-
nol A, formed a group of similar chemicals while RDX,
PKC412, and diazepam formed another. Interestingly, the
three confirmed estrogens; genistein, EE2, and E2; had
relatively weak connections among themselves.
In FHM 15K, a number of interesting observations

could also be made. Consistent with the earlier analysis
by individual query signatures (Table 5), the water con-
ditions near the three Minnesota WWTPs, as reflected
in the transcriptomic profiles of deployed male fish, were
indeed highly similar to one another not only across
sites within a location, but also across locations (Fig. 1e,
f; liver tissue of male fish exposed to water from Ely ef-
fluent, downstream, upstream: ElyEFFlr, ElyDSlr,
ElyUSlr; Hutchinson effluent, downstream, upstream:
HutEFFlr, HutDSlr, HutUSlr; Rochester effluent, down-
stream, upstream: RochEFFlr, RochDSlr, RochUSlr).
These sites, all of which had detectable estrogens present
[30], showed relatively strong connectivity with diethyl-
stilbestrol (DES), E2, and EE2. However, in female fish
samples exposed to these same sites (ELYeffO, ELYdsO,
HUTdsO, HUTeffO, ROCHeffO, ROCHdsO), no detect-
able impact was found on gene expression, and perhaps
not surprisingly, no obvious pattern in the connectivity
among these conditions was observed. In a similar but
independent study of WWTPs in San Diego (EFFHa,
EFFLa) and Los Angeles (EFFHb), California [29], poten-
tial estrogenic properties as determined by chemistry
were revealed in the current study by their significant
connectivity to DES, E2, and EE2. Also notable is the
fact that, probably due to the San Diego WWTP being a
primary treatment plant and the Los Angeles WWTP a
secondary treatment plant, their ROGLs were quite dis-
tinct. Finally, several pyrethroid insecticides (bifenthrin,
BIF; cypermethrin, CYP; esfenvalerate, ESF), though

seemingly far apart, also shared strong connectivity
among themselves as indicated by their edge size and
color. In the case of a mixture (Mix) of terbufos (TER)
and permethrin (PER), the mixture was strongly con-
nected to both terbufos and bifenthrin, but not to per-
methrin directly. Interestingly, permethrin was
significantly linked to both terbufos and bifenthrin
(Fig. 1e, Table 4).
Connectivity among chemicals appeared to be modu-

lated by the intensity of their elicited transcriptomic re-
sponses, which are dependent on chemical dose,
treatment duration, fish tissue type, and life stage. When
only fathead minnow treatments with multiple doses of
the same tissue type were considered, the nodes of the
same chemical but with various doses were scattered
throughout the network, with different numbers of
neighbors (directly connected nodes) at different con-
nectivity strength (Fig. 2). For a given node, the number
of its neighbors measures its connectivity in a network.
For instance, the two nodes representing two independ-
ent but concurrent bifenthrin exposure experiments with
larvae (BIF_0.148ugL, BIF_0.593ugL) had 7 and 4 neigh-
bors respectively, as determined by Cytoscape. Their
closest neighbors by connectivity score, bifenthrin
(BIF_0.15ugL, 7.2) and trilostane (TRI_1500ugL, 4.8) re-
spectively, were also different. In other words, depending
on dosage, the network neighborhood of a chemical
could be altered to some extent. Similar observations
were also made in other conditions such as bisphenol A
with ovary (BPA_0.01ugL, BPA_0.1ugL, BPA_1.0ugL,
BPA_10ugL, and BPA_100ugL; 9, 4, 7, 9, 11 neighbors),
DES with liver (DES_1ngL, DES_10ngL, DES_100ngL;
10, 8, and 47 neighbors), and fadrozole with ovary
(FAD_3ugL, FAD_5ugL, FAD_30ugL, FAD_50ugL; 8, 10,
8, 11 neighbors).

Discussion
Fish Cmap provides a data-driven approach for applying
transcriptome profiling technology to the assessment of
exposure, relative toxicity, and grouping of chemicals.
The findings in this study have demonstrated the effect-
iveness of this approach to make connections among
chemical conditions associated with a query signature
and a set of ROGLs from independent experiments,
especially when both are from the same microarray
platform/species. Like any other query-database applica-
tions, its power is a function of coverage: the more
chemical/biological conditions ROGLs in a database are
linked to, the more likely a query signature will make an
informative connection. Along with the rapid increase of
transcriptomics data in public repositories and the
expansion of this fish reference database in the future,
fish Cmap should find increasing applications in
ecotoxicology.
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The performance of fish Cmap ultimately depends on
MOAs/toxicity pathways shared among chemicals. For a
given query signature and its target ROGLs, the con-
nectivity strength is determined by both the direction in
change (up, + or down, −) and ranking in magnitude of
the selected DEGs therein (typically 10 to 100). In the
current study, the direction of DEGs was considered in
both signatures and ROGLs, but the ranking was consid-
ered only in ROGLs. In this configuration, a connectivity
score is maximized when the signs of DEGs in a query
signature perfectly match their counterparts in the target
ROGLs, and these DEGs are ranked high in the latter
[24]. Arguably, the direction of change of a DEG and its
relative rank are not as sensitive as magnitude to extra-
neous factors such as exposure intensity (chemical dos-
age and duration) and “random” noise (natural variation;

Wang et al. [16]), thus are more reflective of the under-
lying chemical MOA. In theory, a treatment condition
must be of sufficient intensity to have a significant im-
pact on fish transcriptome and enable subsequent Cmap.
The relationship between connectivity strength and the
magnitude of treatment effect as indicated by DEGs was
examined in the current study by several measures of in-
dividual chemical conditions: relative transcriptome im-
pact (RTI, the percentage of a transcriptome determined
as DEGs), the average LogFC in absolute values over all
DEGs, and total number of DEGs. There were no clear
relationships for connectivity score (normalized to signa-
ture size), RTI, and average LogFC (Additional file 6:
Figure S3A, S3B, S3C) among 106 chemical conditions
with a RTI ≥ 0.001. However, a further examination
within FHM 15K, which has 13 signatures each

Fig. 2 A network view of chemical-chemical connectivity based on fish samples profiled on FHM 15K. Only treatments with multiple doses are
included. Each treatment condition containing the information of both dosage and tissue type is represented as a node. Two nodes are connected by
an edge weighted by their connectivity score. A shorter, darker, and wider edge between two nodes denote a higher connectivity score. All
connections shown are statistically significant. Tissue types and gender: T, testis; O, ovary; B, brain; Lr, liver; lv, larvae; M, male
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containing less than 10 probes, revealed that connectiv-
ity scores (un-normalized) tended to increase as a func-
tion of total number of DEGs (Additional file 7: Table
S4). All 11 unsuccessful queries (measured by p-value of
0.0076 in top five hits) occurred in conditions in which
each had less than 100 DEGs in total. On the other
hand, many chemical conditions with very few detect-
able DEGs were actually still able to yield informative
ROGLs to allow appropriate connections with relevant
query signatures. These pieces of evidence thus reinforce
the importance of DEGs’ directions of change and rank-
ings to chemical connectivity in comparison to their
LogFC, and the importance of guarding against false
positives when a treatment condition has only minimal
effects. Furthermore, Cmap connectivity should, in
theory, be largely driven by chemical MOAs because
both signatures and ROGLs were generated within the
same tissue type between a treatment condition and
corresponding experimental controls. Indeed, Cmap
performed very well in connecting query signatures to
their target ROGLs, especially within platforms/species.
These connections were often made across experimental
origins, chemical classes, complexity of exposures, and
tissue types. As illustrated by fish samples from ZF 21K,
when the connections of associated chemicals and tissue
types were visualized simultaneously in a network, many
nodes were distributed based on chemical conditions,
not tissue types (Additional file 5: Figure S2A, S2B).
However, it is evident that, in some cases, tissue type did
contribute significantly to chemical connectivity. Such a
confounding effect is probably a function of chemical,
dosage, and tissue type.
Besides making a greater amount of public fish tran-

scriptomic data available for Cmap, the primary signifi-
cance in attempting interspecific Cmap lies in the
prospect of extrapolating chemical toxicity across fish spe-
cies. This is critical because it is impossible to test the
toxicity of all chemicals of possible concern in all fish spe-
cies. There are two potential limiting factors affecting the
success of inter-specific (inter-platform) Cmap. One is
genome annotation and probe mapping to identify ortho-
logous/equivalent probes. The other is the conservation of
toxicity pathways/MOAs between species. Given a very
small number of conditions common across platforms
and species in this study, it is difficult to assess Cmap per-
formance across platforms/species reliably. However, gen-
erally low percentages of cross-mapped probes (62 % of
ZF 21K vs 37 % of ZF 43K; 43 % of ZF 21K vs 45 % of
FHM 15K; 38 % of ZF 43K vs 65 % of FHM 15K) suggest
that a substantial loss of information was probably respon-
sible in part for the relatively poor performance in the pre-
liminary Cmap across platforms/species. With the
relatively recent divergence between zebrafish and fathead
minnow [15], broad conservation of molecular pathways

among animal species [32–38], and high degree of gen-
ome conservation even between zebrafish and human
[39], it seems reasonable to hypothesize that toxicity path-
ways are well conserved between these two small fish spe-
cies. Indeed, a recent study of their transcriptomes
provided strong evidence in this regard [16]. If this is the
case, conservation of toxicity pathways should not be the
primary issue in the performance of interspecific Cmap in
the current study.
In addition to being able to connect the same chemicals

underlying a query signature and its target ROGLs, Cmap
also provided novel insights into some seemingly different
chemicals that may possess similar MOAs. For those stud-
ies based on ZF 21K, Cmap grouped several well-
characterized HPG-active toxicants together (Fig. 1a) [18],
and further differentiated them into two sub-groups
(Fig. 1b). One subgroup consisted of EE2 and fadrozole
only; the other included vinclozolin, ketoconazole, fluta-
mide, trilostane, fipronil, muscimol, and prochloraz. Tren-
bolone appeared to be an intermediate between the two
subgroups. These clustering patterns did not correlate
with extraneous factors such as tissue type or lab origins
of data. For example, four different research groups pro-
duced data behind these nodes: oxygen, haloperidol and
10 other HPG-active toxicants; tetrachlorodibenzo-p-
dioxin (TCDD); TCDD, tert-butylhydroquinone; dinitro-
phenol, dimethoxybenzene, and azinphosmethyl. Rather,
the distribution patterns of these chemicals are more in
line with their MOAs, some of which involve multiple
MIEs. As an aromatase inhibitor, fadrozole blocks the
transformation of testosterone to E2, the primary en-
dogenous ligand for the estrogen receptor (ER), so it is
reasonable that EE2 and fadrozole would cluster together.
Further, since testosterone is a ligand for the androgen re-
ceptor (AR), it is quite conceivable to envision the same
genes being activated by EE2, fadrozole, and trenbolone, a
synthetic AR agonist [40, 41]. A similar argument could
also be invoked to explain the shared MOAs of vinclozo-
lin, flutamide, ketozonazole, and to a lesser extent, pro-
chloraz, because of their common impact again on AR
and aromatase: vinclozolin, flutamide, prochloraz are all
AR antagonists, while ketoconazole and prochloraz are
both aromatase inhibitors [18]. Note that fadrozole also
shared strong connectivity with ketoconazole and pro-
chloraz. There are other examples, as well, of the Cmap
analysis highlighting chemicals that impact the same mo-
lecular target. For example, although fipronil and musci-
mol have opposite effects on gamma-aminobutyric acid
(GABA) receptor, one being an antagonist while the other
an agonist, they are identified as substantially similar. Be-
tween muscimol (MUS_500ugL_femaleBrain) as a signa-
ture and fipronil (FIP_5ugL_femaleOvary) as ROGLs, they
reached a high connectivity score of 16.8 (ranged 2.5-23.6
in ZF 21K), with the corresponding average LogFC of only
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0.42 and 0.33. In other words, these DEGs changed largely
in the same direction and ranked high in both muscimol
and fipronil-treated fish, despite the differences in tissue
being examined.
Novel insights on chemical MOAs were gained as well

from studies based on ZF 43K and FHM 15K. For ZF
43K-based studies, chemicals acting as AR antagonists,
prochloraz and flutamide, had MOAs similar to those of
ER agonists, E2 and EE2 (Fig. 1c, d), suggesting that, at
some level, anti-androgens and ER agonists are some-
what functionally equivalent biologically. Indeed, bisphe-
nol A, a compound known to exhibit both estrogenic
and anti-androgenic effects [42, 43], showed substantial
connectivity with prochloraz (score 12.0), flutamide
(10.8), EE2 (8.9), and E2 (6.8). The strength of these con-
nections represents 37-65 % of the maximum connectiv-
ity score observed in the ZF 43K-based studies. Linuron,
a phenylurea herbicide and a confirmed anti-androgen
[44], also formed strong connections to prochloraz and
flutamide. Methylparaben, a common preservative in
cosmetic products, has been shown to possess both es-
trogenic and anti-androgenic activities [45].
For FHM 15K-based studies (Fig. 1e, f ), Cmap demon-

strated its effectiveness in discriminating chemical expo-
sures across a range of complexities. For single chemical
exposures, strong connectivity was found among several
MOA-based classes of chemicals including ER agonists
(EE2, E2, DES), neuro-toxins (bifenthrin, permethrin,
cypermethrin, esfenvalerate, terbufos), and inhibitors of
steroidgenic enzymes 3β-HSD and aromatase (trilostane,
fadrozole). Phenanthrene, a PAH, was also linked to
DES, suggesting its possible estrogenicity.
Also notable is the fact that when a chemical condition

has little detectable transcriptomic effect perhaps due to
issues such as effective dosage, sample size, and statistical
stringency, its ROGLs still could be informative and cap-
able of connecting with appropriate query signatures. This
was the case in a mixture of permethrin and terbufos,
where, in the absence of its own signature and a sizeable
signature from permethrin alone, its ROGLs could still
connect with bifenthrin and terbufos. And so did the
ROGLs from permethrin. Other than both being neuro-
toxins but with different MIEs, bifenthrin and terbufos are
not known to share any other mechanisms underlying their
connectivity. Perhaps a more striking revelation came from
male fathead minnow liver samples exposed to the efflu-
ents near several WWTPs in Minnesota, which contained
a complex array of chemicals including several known es-
trogens, PAHs, and a neuro-toxin [30, 31]. In spite of being
located in very different ecological environment (non-agri-
cultural, agricultural, urban), the effluents of these plants
were remarkably similar to one another as measured by
their common impact on fish transcriptomes. Quite pos-
sibly, the main drivers behind such a similarity include

PAHs, natural and synthetic ER agonists, as well as other
pollutants, rather than agricultural chemicals. There was,
in fact, substantial connectivity between the effluent sam-
ples and several single chemical studies with known PAHs
(maximum score 10.5) and estrogens (maximum score of
9.4) as compared to the observed score range of 2.6 to 19.9
for FHM 15K (Fig. 1e, f). These same effluents, however,
had hardly any effect on the ovaries of female fish samples
treated in the same study; some of their representative
nodes present in the network were widely scattered. Thus,
across the research based on the three platforms, ZF 21K,
ZF 43K, and FHM 15K, Cmap has demonstrated its effect-
iveness in not only connecting the same chemical condi-
tions underlying query signatures and ROGLs, but also
establishing novel connectivity among seemingly different
chemicals based on shared MOAs.
Connectivity among chemicals is a function of their

shared transcriptomic profiles, which in turn are likely
modulated by the dose and duration of a treatment on the
targeted fish tissue at a given life stage. Conceivably, a
varying number of genes and pathways could become per-
turbed by the same chemical under different conditions,
leading to a different degree of overlap among MOAs.
This hypothesis is supported by the findings in the current
study, where the same chemical tested at multiple doses
had different number of neighbors in a network of chemi-
cals. Similar observations of dose-dependent, differential
transcriptomic responses were also reported recently for
chemicals in human cell cultures and fish [46, 47]. Such a
dependency between chemical dose and transcriptomic
response have both scientific and practical implications
for applying Cmap in ecotoxicology. Scientifically, a chem-
ical MOA could then be considered as consisting of both
core and peripheral toxicity pathways, which may be de-
fined by their responsiveness as a function of exposure in-
tensity (dosage and duration), the specificity to a given
chemical or tissue type, or the importance to the integrity
of their larger biological network. The earliest responders
at the lowest exposure intensity may not be necessarily
those most critical to an organism’s biological integrity. A
better delineation of toxicity pathways in this regard
should help to inform the assessment of relative toxicity
among chemicals and their risks to ecosystems. For more
practical application of Cmap in exposure assessment,
however, those chemical-specific, earliest responsive path-
ways at the lowest exposure intensity are likely to be diag-
nostically useful in biomonitoring.

Conclusions
In summary, fish Cmap built on a very large collection
of public and private GEPs from zebrafish and fathead
minnow performed well in this study, particularly when
conducted within the same platforms/species. When a
query signature from samples of interest was made
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against a reference database of ROGLs, informative con-
nections were established at high success rates when
both shared the same chemical conditions. In other
words, Cmap provides an easily scalable framework
for a simple query signature selected from DEGs to
function as an exposure biomarker, without going
through a typical time-consuming process of devel-
opment and validation. More importantly, as demon-
strated in this study, a large reference database of
ROGLs also enables a query signature to cross inter-
rogate other chemical conditions with overlapping
MOAs, leading to novel groupings and subgroupings
of seemingly unrelated chemicals at a finer reso-
lution. By this approach, for example, the estrogenic
and PAH identities of largely uncharacterized water
samples near several WWTPs were confirmed, sug-
gesting its future potential in real world applications.
For toxicity extrapolation across fish species, how-
ever, a sufficient number of GEPs linked to chemical
conditions common to multiple fish species are
needed in the future in order to conduct a more
thorough feasibility study of interspecific Cmap.
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