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Abstract: To understand a structural basis for the fitness cost of the A1408G antibiotic-resistance
mutation in the ribosomal A-site RNA, we have determined crystal structures of its A1408C and
A1408U lethal mutants, and made comparison with previously solved structures of the wild type and
the antibiotic-resistant mutant. The A-site RNA containing an asymmetric internal loop functions
as a molecular switch to discriminate a single cognate tRNA from several near-cognate tRNAs
by its conformational ON/OFF switching. Overall structures of the “off” states of the A1408C/U
lethal mutants are very similar to those of the wild type and the A1408G antibiotic-resistant mutant.
However, significant differences are found in local base stacking interactions including the functionally
important A1492 and A1493 residues. In the wild type and the A1408G antibiotic-resistant mutant “off”
states, both adenines are exposed to the solvent region. On the other hand, one of the corresponding
adenines of the lethal A1408C/U mutants stay deeply inside their A-site helices by forming a
purine-pyrimidine AoC or A-U base pair and is sandwiched between the upper and lower bases.
Therefore, the ON/OFF switching might unfavorably occur in the lethal mutants compared to the
wild type and the A1408G antibiotic-resistant mutant. It is probable that bacteria manage to acquire
antibiotic resistance without losing the function of the A-site molecular switch by mutating the
position 1408 only from A to G, but not to pyrimidine base C or U.
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1. Introduction

The aminoacyl-tRNA decoding site (A site) is one of the active sites of the ribosome where
a single cognate tRNA is accurately discriminated from several near-cognate tRNAs [1–4]. In the
decoding process, an RNA internal loop (Figure 1) composed of fifteen nucleotide residues functions
as a molecular switch by changing its conformation between “off” and “on” states. Crystallographic
studies of several ribosomal particles [5–22] as well as RNA fragments containing the A-site molecular
switches [23–30] have revealed the molecular mechanism of the decoding process at atomic level,
especially in the case of bacteria. Two consecutive adenines A1492 and A1493 in the asymmetric
internal loop are the most important residues for the function of the molecular switch. In the absence
of aminoacyl-tRNA, these two adenines can take various conformations, which are called as “off”
states where both of or one of two adenines stay inside the A-site helix and form a base pair with the
1408 residue on the opposite strand. Once an aminoacyl-tRNA is delivered to and occupies the A site,
the RNA molecular switch changes its conformation to a unique “on” state, in which two adenines
A1492 and A1493 fully bulge out from the A-site helix, protrude toward the mRNA-tRNA complex
and recognize the first two base pairs of the codon-anticodon mini-helix through A-minor motifs to
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check their geometries. If these base pairs are of the canonical Watson–Crick type, the aminoacyl-tRNA
is recognized as the cognate one and can be accommodated by the ribosome. These two functional
adenine residues are universally conserved as expected from their biological significances [31]. On the
other hand, the 1408 residue on the opposite strand of the A-site internal loop must be a purine,
but varies across the different organisms and organelles. For example, it is adenine in prokaryotes,
mitochondria and chloroplasts, and is mostly guanine in eukaryotic cytoplasm [31].
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Figure 1. Secondary structures of the RNA duplexes used in our present and previous 
crystallographic studies. The two bacterial A-site molecular switches are boxed. A uracil residue at 
position 11 is replaced by a 5-bromouracil in bromine-derivatives. Two adenine residues A1492 and 
A1493 that recognize the codon-anticodon helix are colored in blue and red, respectively. 

Figure 1. Secondary structures of the RNA duplexes used in our present and previous crystallographic
studies. The two bacterial A-site molecular switches are boxed. A uracil residue at position 11 is
replaced by a 5-bromouracil in bromine-derivatives. Two adenine residues A1492 and A1493 that
recognize the codon-anticodon helix are colored in blue and red, respectively.

A single chromosomal mutation at position 1408 of the bacterial 16S rRNA from A to G is the most
prevalent antibiotic-resistant mutation found in clinical isolates [32–41]. The A1408G mutation confers
high-level resistance against aminoglycosides with an ammonium group at position 6′ on ring I [42–47],
and its structural basis has recently been revealed by our X-ray analyses; ring I with 6′-NH3

+ can make
a pseudo pair with A1408 of the wild type but cannot make the identical pseudo pair with G1408 of
the antibiotic-resistant mutant due to repulsive force between 6′-NH3

+ of ring I and N1-H and N2-H
of G1408 [29]. In general, the antibiotic resistance is strongly associated with the fitness cost, which is
observed as a reduced growth rate in the absence of antibiotics [48]. However, it was confirmed by
Böttger and coworkers that the generation time is almost the same for the wild type (2.98 ± 0.06 h) and
the A1408G antibiotic-resistant mutant (3.15 ± 0.06 h) strains of Mycobacterium smegmatis grown in
broth culture [49], indicating that the A1408G antibiotic-resistant mutation does not affect the fitness of
bacteria so much [49,50]. In our previous X-ray analyses, we have confirmed that the structures of the
“off” and “on” states of the A1408G antibiotic-resistant mutant A site are very similar to those of the
wild type A site. Therefore, it would appear that the A1408G antibiotic-resistant mutation does not
disturb the function of the A-site molecular switch [29]. Now, an important question arises; why must
the 1408 residue be a purine? Neither prokaryotic nor eukaryotic organisms have a pyrimidine at the
position [31]. In fact, the A1408C and A1408U mutations are lethal to bacteria [49]. Another mutation
experiment revealed that A1408U mutation significantly decreases protein expression [51]. Herein,
we have performed X-ray analyses of RNA fragments containing the lethal-mutant A sites to see
whether these mutations disturb the function of the RNA molecular switch.
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2. Results and Discussion

2.1. Structures of the A1408C Lethal Mutant A Site and Its Comparison with the Wild Type and the A1408G
Antibiotic-Resistant Mutant

For the A1408C lethal mutant A site, two types of crystals, A1408C-Br/geneticin and A1408C-Br,
were obtained in the presence and absence of aminoglycoside geneticin, respectively (Figure 2). In each
crystal, one RNA duplex is in the asymmetric unit, meaning that a total of four A-site switches
are observed. In the absence of aminoglycoside, two A-site molecular switches take different “off”
conformations (Figure 2b), one with bulged-in A1492 and A1493 (the “off” state form 1, hereafter;
Figure 3a) and one with bulged-out A1492 and bulged-in A1493 (the “off” state form 2, hereafter;
Figure 4a). In the presence of geneticin, the two A-site molecular switches are stabilized in the “on”
state conformation with bulged-out adenines A1492 and A1493 (Figures 2b and 5a).
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In the “off” state form 1 (Figure 3a), the bulged-in A1493 forms a base pair with C1408 and
stacks below G1494. The other bulged-in adenine A1492 does not make base pair in the A-site helix
but stacks between A1493 and G1491. As a result, a stacking column G1494-A1493-A1492-G1491
is observed in the A-site helix. The “off” state form 1 is similar to the wild type “off” state with
bulged-in A1492 and A1493 determined by our group (Figure 3 and Figure S1) [28]. In both cases,
the bulged-in A1493 residue forms a base pair with the C/A1408 residue through only one hydrogen
bond, N6A1493-H...O2C1408 or N6A1493-H...N1A1408. The C1′-C1′ distances are 10.8 Å for the AoC base
pair and 12.5 Å for the AoA base pair, respectively. Therefore, the A1493 residue is inserted more
deeply into the A-site helix in the A1408C lethal mutant than in the wild type. Difference is found
also in the conformation of the other bulged-in adenine. In the A1408C lethal mutant, A1492 is deeply
inserted into the A-site helix and sandwiched between A1493 and G1491, and is thereby involved in
a long staking column from G1497 to C1490. In the wild type, however, the corresponding adenine
residue A1492 is not inserted into the A-site helix, just stacks under A1493 and is partly exposed to the
solvent region at the other side, so that two stacking columns from G1497 to A1492 and from G1491
to C1490 are formed. The distance between C1′ atoms of A1492 and C/A1408 are 12.5 and 14.5 Å,
respectively. In consequence, the ribose rings of the A1492 and A1493 residues, which are fitted into
the regular A-form helix in the A1408C lethal mutant “off” state form 1, are partly protruded from the
A-site helix in the wild type “off” state.

In the “off” state form 2 (Figure 4a), the bulged-in A1493 forms a base pair with C1408. Since the
neighboring A1492 residue fully bulges out from the A-site helix, the A1493 residue is intercalated
between G1494 and G1491. The “off” state form 2 is similar to the wild type “off” state with bulged-out
A1492 and bulged-in A1493 solved by our group (Figure 4 and Figure S2) [28]. In both A sites, A1492
bulges out from the A-site helix toward the solvent region where aminoacyl-tRNAs are delivered.
In the A1408C lethal mutant, the bulged-in A1493 residue forms a base pair with C1408 through
two hydrogen bonds N6A1493-H...N3C1408 and N1A1493-H...O2C1408. For making the base pair, the N1
atom of A1493 has to be protonated. In fact, the A+oC base pair is often observed in the 16S and 23S
ribosomal RNAs [52,53], where RNA strands with acidic phosphate groups are compactly folded and
packed. The C1′-C1′ distance of the A+oC base pair is 10.1 Å, which is slightly shorter than that of
the canonical Watson–Crick base pairs (10.7 Å in average) [54]. The corresponding residue A1493
in the wild type “off” state forms a pair with A1408 through N6A1493-H...N1A1408 with the C1′-C1′

distance of 12.5 Å. Since A1493 of the A1408C lethal mutant is inserted more deeply into the A-site
helix, the residue is intercalated between G1494 and G1491 and involved in a long stacking column.
On the other hand, the A1493 residue of the wild type stacks only with G1494 and is partly exposed to
the solvent region at the other side.

The “on” state of the A1408C lethal mutant is identical to that of the wild type as observed, for
example, in the 70S ribosome structure solved by Ramakrishnan and coworkers [12], and also to that
of the A1408G antibiotic-resistant mutant solved by our group [29] (Figure 5 and Figure S3). In the
“on” state, both A1492 and A1493 largely bulge out from the A-site helix to recognize the mRNA-tRNA
mini-helix, but make no intra-molecular interactions.

These observations suggest that the “off” state conformations are strongly correlated with the
fact that the A1408C mutation is lethal to bacteria. The wild type A-site molecular switch can easily
change its conformation from the “off” to “on” states, since the A1492 and A1493 residues essential
for the decoding are partly exposed to the solvent region even in the “off” states. On the other hand,
the corresponding adenine residues of the A1408C lethal mutant are stabilized in the long base-stacking
column, and the ON/OFF switching might unfavorably occur in the lethal mutant compared to the
wild type.
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2.2. Structures of the A1408U Lethal Mutant A Site and Its Comparison with the Wild Type and the A1408G
Antibiotic-Resistant Mutant

For the A1408U lethal mutant A site, two different crystals, A1408U/geneticin and A1408U-Br,
were obtained in the presence and absence of geneticin, respectively (Figure 6). In the A1408U/geneticin
crystal, one RNA duplex is observed in the asymmetric unit, but electron density of geneticin is not
observed. In the A1408U-Br crystal, two RNA duplexes are in the asymmetric unit. Therefore, a total
of six A-site molecular switches are obtained from the two crystals. Interestingly, all these six A-site
internal loops take an identical “off” state conformation with bulged-in A1492 and bulged-out A1493
(Figure 7a and Figure S4). The “off” state is similar to the wild type “off” state with bulged-in A1492
and bulged-out A1493 as solved by Hermann and coworkers [24] (Figure 7 and Figure S5). In addition,
the “off” state is also similar to the A1408G antibiotic-resistant mutant “off” state determined by our
group (Figure 7 and Figure S5) [29]. In these A sites, A1493 fully bulges out from the A-site helix and
points toward the solvent region where aminoacyl-tRNAs are delivered. In the A1408U lethal mutant,
the bulged-in A1492 residue forms a canonical Watson–Crick A-U base pair with U1408. The C1′-C1′

distance of the base pair is 11.1 Å. The corresponding residue A1492 in the wild type “off” state forms
a pair with A1408 through N1A1492...H-N6A1408 with the C1′-C1′ distance of 12.3 Å. In the A1408G
antibiotic-resistant mutant “off” state, a cis Watson–Crick A1492oG1408 base pair is formed through two
hydrogen bonds N6A1492-H...O6G1408 and N1A1492 . . . H-N1G1408 with the C1′-C1′ distance of 12.7 Å.
Since the A1492 residue of the A1408U lethal mutant forms the canonical Watson–Crick A-U base pair,
the residue is well fitted into the regular A-form helix and intercalated between G1494 and G1491.
On the other hand, the corresponding residues of the wild type and the A1408G antibiotic-resistant
mutant A sites stack only on G1491 and expose their base moieties to the solvent region at the other side.
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From these observations, it would appear that the bulged-in A1492 residue of the wild type
and the A1408G antibiotic-resistant mutant RNA molecular switches is likely to bulge out when the
aminoacyl-tRNA is delivered to the A site. It is consistent with the fact that the generation time is
almost the same for the wild type and the A1408G antibiotic-resistant mutant strains of M. smegmatis
grown in broth culture [49]. However, the A1408U lethal mutant A site prefers to take a single stable
“off” state where the A1492 residue is comfortably fitted into the A-site helix by forming the canonical
Watson–Crick base pair with U1408 and stacking interactions with G1494 and G1491. It can be expected
from the structural comparison that the ON/OFF switching of the A1408U lethal mutant A site might
be energetically unfavorable compared to that of the wild type and the A1408G antibiotic-resistant
mutant A sites.

2.3. Conclusions of Discussion

Bulges and internal loops are the most popular structural motifs observed in RNA molecules.
However, little is known about their sequence-dependent structural and dynamic features.
The ribosomal A-site internal loop composed of fifteen nucleotides including three highly-conserved
residues, A/G1408, A1492 and A1493, has a characteristic feature that dynamically changes its
conformation between the “off” (A1492 and/or A1493 are bulged in) and “on” (both A1492 and A1493
are fully bulged out) states, and functions as a molecular switch for discriminating a single cognate
tRNA from several near-cognate tRNAs. In our previous studies [25,28,29], we have shown how
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small differences of nucleotide sequences affect the dynamics of the A-site molecular switches. Herein,
we have further shown why the 1408 residue must be universally a purine. The 1408 residue strongly
affects not only the base pair formation but also the stacking manner of A1492 and A1493 on the
opposite strand. In the “off” state of the wild type and the A1408G antibiotic-resistant mutant A sites,
the bulged-in A1492 or A1493 residue forming a base pair with A/G1408 are partly exposed to and
are ready to bulge out toward the mRNA-tRNA helix for taking the “on” state. If the 1408 residue
is a pyrimidine as observed in the A1408C/U lethal mutants, the A-site internal loop may lose its
function as a molecular switch by taking the energetically stable “off” state where bulged-in A1492 or
A1493 stays deeply inside the A-site helix by forming the purine-pyrimidine base pair, AoC or A-U.
It is also important to note that the stability of the base pair between the residue at position 1408 and
A1492/A1493 residues is not a critical factor, since the number of hydrogen bonds observed in the base
pair is one or two in any case. It is probable that all organisms naturally select a purine at the position
1408, and bacteria can acquire antibiotic resistance without losing the function of the A-site molecular
switch by mutating position 1408 from A to G, but not to pyrimidine base C or U.

3. Materials and Methods

3.1. Sample Preparations and Crystallizations

RNA duplexes containing two bacterial A-site molecular switches with a single A1408C or
A1408U lethal point mutation were designed for the present crystallographic studies (Figure 1).
Such RNA fragments have been extensively used as successful models in a series of crystallographic
studies [23–29], since their crystal packing mimic highly-crowded environment of the A site in the
ribosome. These RNA oligomers (A1408C and A1408U, hereafter), and their bromine derivatives
for phase determinations (A1408C-Br and A1408U-Br, hereafter), were chemically synthesized by
Dharmacon (Boulder, CO, USA) and GeneDesign (Osaka, Japan), and then purified by denaturing 20%
polyacrylamide gel electrophoresis and C18 reversed-phase chromatography.

Crystallizations were performed in both the absence and presence of aminoglycoside geneticin
(also known as G418). By analogy with our previous crystallographic studies of the bacterial
wild type and the A1408G antibiotic-resistant mutant A sites [28,29], it can be expected that the
lethal mutant A-site molecular switches may take the “off” state conformations in the absence of
aminoglycoside. On the other hand, geneticin possessing strong affinities to both the wild type and
the A1408G antibiotic-resistant mutant A sites [45] may have a potential to bind to and stabilize
the “on” state of the lethal mutant switches in a similar way. Prior to crystallizations, 2 mM RNA
solutions containing 100 mM sodium cacodylate (pH 7.0) were mixed with the same volume of 4
mM geneticin sulfate solution or distilled water. Crystallizations were performed by the hanging-
and sitting-drop vapor diffusion methods at 293 K. Crystallization droplets were prepared by mixing
1 µL of RNA solutions and 1 µL of crystallization solutions containing 50 mM sodium cacodylate
(pH 7.0), 1–10 mM spermine tetrahydrochloride, 10–300 mM monovalent or divalent cation chloride,
1%–10% (v/v) 2-methyl-2,4-pentanediol or polyethylene glycol 3350, and were equilibrated against
250 µL of reservoir solution containing 40% (v/v) 2-methyl-2,4-pentanediol or polyethylene glycol
3350. For the A1408C lethal mutant, rhomboid-shaped crystals and polycrystals were obtained in
conditions with and without geneticin (crystal codes: A1408C-Br/geneticin, A1408C-Br), respectively
(Table S1). A polycrystal of A1408C-Br was crashed with an ultrafine needle to obtain small pieces of
single crystals. For the A1408U lethal mutant, cubic- and rod-shaped single crystals were obtained
in conditions with and without geneticin (crystal codes: A1408U/geneticin, A1408U), respectively
(Table S2). The A1408C-Br/geneticin, A1408C-Br and A1408U/geneticin crystals obtained in conditions
containing 2-methyl-2,4-pentandiol were picked up with CryoLoops (Hampton Research, Aliso Viejo,
CA, USA) and directly flash-cooled in liquid nitrogen before X-ray experiments. The A1408U crystal
obtained in a condition containing polyethylene glycol 3350 was picked up with CryoLoop, transferred
to a droplet of 40% 2-methyl-2,4-pentandiol (cryoprotectant), and then flash-cooled in liquid nitrogen.
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3.2. Data Collections, Structure Determinations and Refinements

X-ray data of the four crystals were collected at 100 K with synchrotron radiation at the BL-5A
and BL-17A beamlines of the Photon Factory (Tsukuba, Japan). For the phase determination with the
multiple anomalous diffraction (MAD) method, the X-ray datasets of the A1408C-Br/geneticin and
A1408C-Br crystals were taken with four different wavelengths. The datasets were processed and
scaled with the program Crystalclear (Rigaku Americas, The Woodlands, TX, USA). The intensity data
were further converted to structure-factor amplitudes using the program TRUNCATE from the CCP4
suite [55]. The statistics of data collections are summarized in Table S3.

Initial phases of the A1408C-Br/geneticin and A1408C-Br crystals were estimated by the MAD
method using the program AutoSol from the Phenix suite [56–58] with figure-of-merit of 0.41 and
0.83, respectively. The molecular structures of A1408C-Br/geneticin and A1408C-Br were constructed
with the program COOT [59,60]. Initial phases of the A1408U/geneticin and A1408U-Br crystals
were determined by the molecular replacement method with the program AutoMR from the Phenix
suite [56,61] using an originally constructed model of the A-form RNA duplex as a probe, and then
construction of their molecular structures were completed by using the program COOT.

The atomic parameters of each structure were refined with the program CNS [62,63] through a
combination of simulated-annealing, crystallographic conjugate gradient minimization refinements
and B-factor refinements. The statistics of structure refinements are summarized in Table S1. Molecular
drawings were made using the program PyMOL [64]. The atomic coordinates and experimental data
of the A1408C-Br/geneticin, A1408C-Br, A1408U/geneticin and A1408U crystals have been deposited in
the Protein Data Bank (PDB) with the ID codes 4P3S, 4P3T, 4P43 and 4P3U, respectively.

Supplementary Materials: The following are available online, Supplementary Materials containing Tables S1–S3
and Figures S1–S5.
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