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Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and
reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly
understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and
rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1) chemical interaction
between drugs, (2) protein interactions between drugs’ targets, and (3) target enrichment of KEGG pathways. A benchmark
dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination
was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including
MinimumRedundancyMaximumRelevance and Incremental Feature Selection, were adopted to extract the key features. Random
forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best
prediction result were selected.These important features may help to gain insights into the mechanisms of drug combinations, and
the proposed prediction model could become a useful tool for screening possible drug combinations.

1. Introduction

During the past decade, much effort has been spent on drug
discovery, but the rate of new drug approvals is rather low.
One of the reasons is that many of the human diseases are so
complex withmultiple targets that it is very difficult to design
a single drug to hit all the targets. Since single targeted drugs
can not treat these diseases very effectively [1], employing
multiple targeted drugs is a favorable way, by which multiple
target genes/proteins can be modulated simultaneously. It
is already evidenced that drug combinations can improve
therapeutic efficacy in many cases [2]. In addition, drug
combinations may reduce toxicity and side effects that single

targeted drugs may cause. Therefore, drug combinatorial
therapy is considered to be effective in treating multifactorial
complex diseases.

Drug combinations are becoming more and more pop-
ular nowadays, and they have been mainly discovered by
experiments or clinical experience. On one hand, the molec-
ularmechanisms of current drug combinations have not been
clearly delineated; on the other, there are a myriad of possible
drug combinations. Therefore, it is impractical to screen
all possible combinations by conventional experiments or
empirical rules. Computational methods may provide some
valuable information and help to solve the problem. In recent
years, some computational methods have been proposed to
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predict drug combinations [3–9]. However, these methods
have not answered the question of which factors or features
are more important for the determination of drug combi-
nations, when it is essential to know which features and
why they are able to distinguish good combinations from
undesired ones. We propose a method here to identify the
characteristic features of effective drug combinations, then
analyze them and use them to predict novel combinations.

Drugs are combined according to their essential prop-
erties [10, 11]. In view of this, we considered the following
three different kinds of properties: (1) chemical interactions
between drugs in the combination [12], (2) protein interac-
tions between the targets of drugs [13], and (3) target enrich-
ment of KEGG pathways [14].These properties were encoded
into numeric digits, by which each drug combination was
represented by a numeric vector. Feature selection methods,
including minimum redundancy maximum relevance [15]
and incremental feature selection, were adopted to extract
key features. Random forest [16] was adopted as the clas-
sification model with its performance evaluated by 5-fold
cross-validation. As a result, 55 key features, including one
feature from chemical interaction, two features from protein
interaction, and others from target enrichment of pathways,
were identified and deemed as the most important features
for the determination of effective drug combinations.

2. Materials and Methods

2.1. Benchmark Dataset. We retrieved all pairwise drug com-
binations from Zhao et al.’s study [8], which were parsed
from FDA orange book [17], which lists approved drug
products on the basis of safety and effectiveness by the Food
and Drug Administration (FDA). The data in this book
has been used as the object of study or reference in some
studies [8, 18–21]. If the target information of any drug in
the combination was not available, the combination it was
involved in was excluded. As a result, 121 drug combinations
were retrieved. These combinations were termed as “positive
combinations”. Totally, 169 drugs were collected from the
positive combinations, which were used to investigate drug
combinations in this study.

There are 14,196 possible combinations among 169 drugs,
where 121 combinations were solidly effective. For the other
14,075 combinations, their effects in treating diseases are not
clear and which were assumed to be junk combinations.
Among them we randomly selected 605 combinations as
“negative combinations,” 5 times as many as the positive
ones.The codes of positive and negative combinations can be
found in Supplementary Material I (Supplementary Material
available online at http://dx.doi.org/10.1155/2013/723780).

2.2. Drug Targets. It has been shown that the targets of agents
are an important factor for the formation of effective drug
combinations [9]. In this study, this information was also
employed to construct classification features. The targets of
169 drugs were compiled from three drug target databases
including KEGG (ftp://ftp.genome.jp/pub/kegg/medicus/
drug/) [22], DrugBank [23], andTherapeutic Target Database

(TTD) [24]. For each drug, the union of the targets from
the three databases was regarded as the final target set.
The codes of 169 drugs and their targets were available in
Supplementary Material II.

2.3. Chemical-Chemical and Protein-Protein Interactions. It is
based on the drugs and their targets to determine whether
two drugs should be combined in usage. Thus, the interac-
tions among drugs and among their targets are important for
the determination of drug combinations. Here, the informa-
tion of chemical-chemical interactions and protein-protein
interactions were retrieved from Search Tool for Interactions
of Chemicals (STITCH) [12] and Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) [13], respectively, as
the resources of gaining the classification features.

2.3.1. Chemical-Chemical Interactions. The information of
chemical-chemical interactions was downloaded from
STITCH (http://stitch.embl.de/, “chemical chemical.links.
detailed.v3.0.tsv.gz”) [12]. Each interaction consists of two
chemicals and five scores entitled “similarity,” “experimental,”
“database,” “textmining,” and “combined score,” respectively.
The score of “similarity” was obtained by combining
open-source Chemistry Development Kit [25] to calculate
chemical fingerprints and Tanimoto 2D chemical similarity
scores [26, 27] between each pair of chemicals. The score
of “experiment” was calculated according to the chemical’s
activities from MeSH pharmacological actions and NCI60
screens. The score of “Database” was calculated by the
chemical reactions contained in pathway databases. The
score of “textmining” was computed based on a cooccurrence
scheme and a natural language processing (NLP) approach
[28, 29]. The score of “combined score” was obtained by
combining all of the information that was used to calculate
the aforementioned four scores.Thus, the interactivity of two
chemicals was determined by the last score. Since a larger
score means that the corresponding chemicals can interact
with high likelihood, the score is called confidence score in
this study. For any two compounds 𝑑

1
and 𝑑

2
, the confidence

score of the interaction between them was denoted by
𝑄
𝑐
(𝑑
1
, 𝑑
2
). Particularly, if the interaction between 𝑑

1
and

𝑑
2
is not available in STITCH, the confidence score of the

interaction was set to zero, that is, 𝑄
𝑐
(𝑑
1
, 𝑑
2
) = 0.

2.3.2. Protein-Protein Interactions. The file containing the
information of protein-protein interactions was retrieved
from STRING (http://string.embl.de/) [13]. The interactions
in STRING include both physical and functional interac-
tions. Like the chemical-chemical interaction in STITCH,
each protein-protein interaction in STRING was labeled
by a score integrating the information from experimental
repositories, computational prediction methods, and public
text collections [13]. Since the value of the score indicates the
likelihood of occurrence of the interaction, it is also termed as
confidence score. Here, let 𝑄

𝑝
(𝑝
1
, 𝑝
2
) denote the interaction

confidence score of the proteins 𝑝
1
and 𝑝

2
. If 𝑄
𝑝
(𝑝
1
, 𝑝
2
) > 0,

we consider that proteins 𝑝
1
and 𝑝

2
are interactive proteins.
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Likewise,𝑄
𝑝
(𝑝
1
, 𝑝
2
)was set to zero if the interaction between

𝑝
1
and 𝑝

2
is not available in STRING.

2.4. Features of Drug Combinations. One of the most impor-
tant steps of constructing a classification model is to encode
each term by its essential properties.The definition of various
features is described as follows, which can be deemed as
important for the determination of drug combinations. For
clarity, each drug combination was denoted by D = (𝑑

1
, 𝑑
2
),

where 𝑑
1
and 𝑑

2
are two drugs in the combination D,

respectively.
We considered three aspects of drug combination: (1)

chemical interaction between drugs, (2) protein interactions
between drugs’ targets, and (3) target enrichment of KEGG
pathways. They reflect different levels of the drug-target
relationship. The chemical interactions between drugs can
indicate whether or not the drugs have antagonism. The
protein interactions between drugs’ targets and the KEGG
enrichment scores of drugs’ targets represent the biological
functions that the drugs can perturb.

2.4.1. Chemical Interaction. Two drugs forming a solid com-
bination are more likely to have similar properties. Hence,
the interactive chemicals defined in Section 2.3 can share
similar biological functions [30, 31] with high probability.
Accordingly, the interaction confidence score of two drugs in
the combinationD, that is, 𝑄

𝑐
(𝑑
1
, 𝑑
2
), was taken as a feature.

2.4.2. Protein Interaction. Since drugs take their effects by
hitting some target proteins, the target proteins of two drugs
are related to each other in a special way [9]. In addition, the
interactive proteins defined in Section 2.3 always share sim-
ilar functions [32, 33]. Thus, it is a reasonable scheme using
the information of the protein-protein interactions retrieved
from STRING to indicate the special relationship between
drug target proteins. For drug combination D = (𝑑

1
, 𝑑
2
),

their targets were formulated as 𝑇(𝑑
1
) = {𝑇

1

1
, 𝑇
2

1
, . . . , 𝑇

𝑛

1
}

and 𝑇(𝑑
2
) = {𝑇

1

2
, 𝑇
2

2
, . . . , 𝑇

𝑚

2
}, respectively. We defined the

following two kinds of features to describe their relationship.

(1) Protein interactions between the target groups: for
any protein 𝑇

𝑖

1
in 𝑇(𝑑

1
) and any protein 𝑇

𝑗

2
in 𝑇(𝑑

2
),

their interaction confidence score can be obtained
from STRING [13] (see Section 2.3). The maximum
and mean values of these scores were formulated as
follows:

Max {𝑄
𝑝
(𝑇
𝑖

1
, 𝑇
𝑗

2
) : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ,

Mean {𝑄
𝑝
(𝑇
𝑖

1
, 𝑇
𝑗

2
) : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ,

(1)

which were taken as features.
(2) Protein interactions inside the target groups: for drug

𝑑
𝑖
, we can obtain two values V1

𝑖
and V2

𝑖
, where V1

𝑖

and V2
𝑖
are the maximum value and mean value of

interaction confidence scores between target proteins
in 𝑇(𝑑

𝑖
), respectively. Since there is no order in the

information for a drug combination, (𝑑
1
, 𝑑
2
) and

(𝑑
2
, 𝑑
1
) are equivalent. In view of this, we refined V1

1
,

V2
1
, V1
2
, and V2

2
as follows:

V1
1
+ V1
2
, V2
1
+ V2
2
,

V1
1
− V1
2


,

V2
1
− V2
2


, (2)

which were also taken as features in the study.

2.4.3. Target Enrichment for KEGG Pathway. The target
proteins of a drug are distributed in many pathways, that is, a
single drug may belong to multiple pathways and modulate
their functions. To partially account for this effect, we
employed the pathways inKEGG [22] andKEGGenrichment
score [14, 34, 35] to quantify the relation between drugs and
pathways in KEGG. For drug 𝑑

𝑖
and KEGG pathway 𝑃

𝑗
,

the KEGG enrichment score is defined as the −log
10

of the
hypergeometric test 𝑝 value of gene set 𝐺

𝑖
, which includes

targets of drug 𝑑
𝑖
and their direct neighbors in STRING

network. It can be calculated as follows:

Score𝑗
𝑖
= −log

10
(

𝑛

∑

𝑘=𝑚

(𝑀
𝑘
) (
𝑁−𝑀

𝑛−𝑘
)

(𝑁
𝑛
)

) , (3)

where 𝑁 is the number of genes in human, 𝑀 is the number
of genes annotated to the KEGG pathway 𝑃

𝑗
, 𝑛 is the number

of genes in gene set 𝐺
𝑖
, and 𝑚 is the number of genes both in

gene set𝐺
𝑖
and in KEGG pathway 𝑃

𝑗
. The KEGG enrichment

scores can measure the biological functions of the genes.
The higher enrichment score indicates that this gene is more
likely to have this function.Unlike traditional binary function
annotation in which if it is annotated, it is one; otherwise, it
is zero, the KEGG enrichment gives a probability of this gene
that has this function by considering its microenvironment
on the protein-protein interaction network. If drug targets
are more represented in one pathway, the enrichment score
of this pathway will be greater. There were 229 KEGG
enrichment scores for each drug 𝑑

𝑖
(𝑖 = 1, 2) in a drug

combination D denoted by 𝑒
1

𝑖
, 𝑒
2

𝑖
, . . . , 𝑒

229

𝑖
(𝑖 = 1, 2). Similar

to the features of protein interactions, 458 features can be
derived from these enrichment scores as follows:

𝑒
1

1
+ 𝑒
1

2
, 𝑒
2

1
+ 𝑒
2

2
, . . . , 𝑒

229

1
+ 𝑒
229

2
, (4)


𝑒
1

1
− 𝑒
1

2


,

𝑒
2

1
− 𝑒
2

2


, . . . ,


𝑒
229

1
− 𝑒
229

2


. (5)

In summary, there were one feature from chemical
interaction, six features from protein interaction, and 458
features from target enrichment, totally (1 + 6 + 458) = 465

features. Thus, each drug combination can be represented by
a vector in a 465 D (dimensional) space, that is, each feature
is deemed as a dimension.

2.5. Random Forest. Random forest, developed by Breiman
[16], is an ensemble classifier integrating multiple decision
trees. The procedure of constructing each decision tree is
briefly described as follows.

(I) Let 𝑁 be the number of training samples. We ran-
domly take𝑁 samples from the training samples, but
with replacement from the original data, to construct
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the decision tree, while the rest of the samples are used
to evaluate the error of the tree by predicting their
classes.

(II) Let 𝑀 be the total number of features. 𝑚 is a positive
integer that is much less than 𝑀. When constructing
the tree, 𝑚 features are selected randomly from 𝑀

features at each node, and the most optimized split
on these 𝑚 features is utilized to split the node.

(III) Each tree is fully grown without pruning.

For a query sample, each decision tree would make a
prediction and the overall prediction is decided by voting.

Weka 3.6.4 [36] is a software collecting various state-of-
art machine learning algorithms. Random forest is imple-
mented by a classifier named RandomForest in Weka, which
was adopted as the classification model and run with its
default parameters in the study. In its default configuration,
each random forest consists of 10 decision trees, and 𝑚 in
step (II) is set to [log

2
𝑀 + 1], that is, 𝑚 = [log

2
𝑀 + 1].

For a query drug combination, each of 10 decision trees
would give its prediction (“positive” or “negative”). Then, the
final predicted result is the class (“positive” or “negative”)
obtaining a majority vote.

2.6. Accuracy Measurement. For a two-class classification
problem, there are four entries in the confusion matrix: TP,
TN, FP, and FN, where TP represents true positives, TN
true negatives, FP false positives, and FN false negatives [37,
38]. Based on these values, the prediction accuracy (ACC),
specificity (SP), sensitivity (SN), Matthews’s correlation coef-
ficient (MCC) [39], and Area Under ROC curve (AUC)
score [40] are often used to evaluate the performance of the
classification model. They can be calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
,

SP =
TN

TN + FP
,

SN =
TP

TP + FN
,

MCC =
TP ⋅ TN − FP ⋅ FN

√(TN + FN) ⋅ (TN + FP) ⋅ (TP + FN) ⋅ (TP + FP)
.

(6)

MCC is ameasure of the quality of classifiers on thewhole and
is deemed to be a balanced measure even if the classes are of
very different sizes. Thus, it has been widely used to evaluate
the quality of classifiers proposed in many studies [14, 37,
41–44]. AUC score is another measurement to evaluate the
performance of the classification model on the whole other
than MCC. It is the normalized area under the ROC curve,
which is plotted in the coordinate system with sensitivity as
Y-axis and 1 − specificity (calculated by FP/(FP + TN)) as X-
axis under various classification thresholds. In this study, we
selected MCC to measure the performance of the method on
the whole, while AUC score was also provided for reference.

2.7. 5-Fold Cross-Validation. 5-fold cross-validation is often
used to evaluate the performance of various classification
models [45]. In 5-fold cross-validation, the original dataset is
equally separated into five portions at random. Each portion
is used as testing data in turn and the remaining 4 portions
are used as training data. Thus, each datum is tested exactly
once since each portion is tested exactly once during the
procedure. In the study, 5-fold cross-validation was adopted
to evaluate the model presented.

2.8. Minimum Redundancy Maximum Relevance (mRMR).
As described in Section 2.4, each drug combination was
represented by various features. However, not all features
contribute to the classification. In view of this, it is necessary
to employ feature selection techniques to analyze these
features and extract the useful ones. Minimum redundancy
maximum relevance was proposed by Peng et al. [15], and it
is deemed as an outstandingmethod for extracting important
information from complicated systems [46–49], which was
also adopted in the study.We could obtain two lists bymRMR
program: MaxRel features list and mRMR features list, where
the MaxRel features list sorts the features according to the
criterion that features contributing more to the classification
will have higher ranks, while mRMR features list is produced
according to the criteria of both MaxRel and minimum
redundancy, which ensures that a feature having minimum
redundancy among the already selected features and giving
the most contribution to the classification will tend to have a
higher rank.TheMaxRel features list and mRMR features list
were formulated as follows:

MaxRel features list : 𝐹
𝑀

= [𝑓
𝑀

1
, 𝑓
𝑀

2
, . . . , 𝑓

𝑀

𝑁
] ,

mRMR features list : 𝐹
𝑚

= [𝑓
𝑚

1
, 𝑓
𝑚

2
, . . . , 𝑓

𝑚

𝑁
] ,

(7)

where𝑁 represents the total number of features. For detailed
description of mRMRmethod and its analysis, please refer to
Peng et al.’s paper [15].

2.9. Incremental Feature Selection (IFS). Based on mRMR
features list 𝐹

𝑚
= [𝑓

𝑚

1
, 𝑓
𝑚

2
, . . . , 𝑓

𝑚

𝑁
], incremental feature

selection was performed as follows:

(I) construct 𝑁 feature subsets, in a way that the 𝑖th fea-
ture subset is defined as 𝐹

𝑖

𝑚
= [𝑓
𝑚

1
, 𝑓
𝑚

2
, . . . , 𝑓

𝑚

𝑖
] (1 ≤

𝑖 ≤ 𝑁);
(II) for each 𝑖 (1 ≤ 𝑖 ≤ 𝑁), execute RandomForest in

Weka using features in 𝐹
𝑖

𝑚
, respectively, evaluated by

5-fold cross-validation, thereby obtaining ACC, SP,
SN,MCC, andAUCscores as described in Section 2.6;

(III) plot an IFS curve with MCC value as its Y-axis and
the superscript 𝑖 of 𝐹𝑖

𝑚
as its X-axis.

3. Results and Discussion

3.1. mRMR Results. The mRMR program was downloaded
from the website http://research.janelia.org/peng/proj/
mRMR/ and it was executed with its default parameters.

http://research.janelia.org/peng/proj/mRMR/
http://research.janelia.org/peng/proj/mRMR/
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As described in Section 2.8, we can obtain two feature lists:
MaxRel features list and mRMR features list (available as
SupplementaryMaterial III).The ranks of features inMaxRel
features list reflect their contribution to classification.
Here, we investigated the first 10 features in this list (see
the first table in Supplementary Material III for details).
The first feature (“F1”) is the interaction confidence score
of 𝑑
1
and 𝑑

2
in the combination D = (𝑑

1
, 𝑑
2
) and the

second feature (“F2”) is the maximum confidence score
between the targets of drug 𝑑

1
and 𝑑

2
, indicating that the

interactions of drugs and their targets are key factors for the
determination of drug combinations.The later one is partially
consistent with the previous results [9]. The remaining 8
features are related to the following seven pathways: (I)
hsa04964 (“Proximal tubule bicarbonate reclamation”), (II)
hsa00052 (“galactose metabolism”), (III) hsa04970 (“salivary
secretion”), (IV) hsa00910 (“nitrogen metabolism”), (V)
hsa05215 (“prostate cancer”), (VI) hsa05130 (“pathogenic
Escherichia coli infection”), and (VII) hsa00520 (“amino
sugar and nucleotide sugar metabolism”), where pathway
hsa00910 (“nitrogen metabolism”) involved two features,
while the others involved one feature.

3.2. IFS Results. Shown in Figure 1 is the IFS curve withMCC
value, predicted by RandomForest in Weka and evaluated
by 5-fold cross-validation, which takes MCC as its Y-axis
and the number of features participating in the classification
model as its X-axis. For the detailed IFS data, please refer to
Supplementary Material IV. It is observed that the highest
MCC value is 0.6731, obtained when the first 55 features
were used in the mRMR features list (see the second table
in Supplementary Material III for details). The prediction
accuracy (ACC), specificity (SP), and sensitivity (SN) are
0.9146, 0.9669, and 0.6529, respectively. Furthermore, AUC
score obtained by the classification model using these 55
features was 0.8803, indicating that this model has good
discriminating power for drug combinations. Its related
ROC curve is shown in Figure 2. These 55 features were
deemed as the optimal features for the determination of drug
combinations, composing the optimal feature set OS, that
is, OS = 𝐹

55

𝑚
. In OS, three features were from chemical

and protein interactions. In details, besides “F1” and “F2” in
Section 3.1, “F3”, with the rank of 25 inOS, is the mean value
of confidence scores between the targets of drug 𝑑

1
and the

targets of 𝑑
2
. The rest 52 features were related to 50 pathways

(see Table 1 for details), where the pathway hsa04964 (“prox-
imal tubule bicarbonate reclamation”) and hsa05020 (“prion
diseases”) involved two features, respectively, while the other
pathways involved exactly one feature. Among the 52 features,
36 were obtained by (5), while the rest 16 by (4) (cf. Table 1).
It is clear that the features obtained by (5), measuring the
difference of enrichment scores, were better discriminators
than those obtained by (4), measuring the sum of enrichment
scores. It is suggested that in a drug combination, the targets
of two drugs should relate to each other in a special way.

3.3. Analysis of Optimal Features. First, we find that there are
8 mRMR features among the top ten features in the MaxRel

55,0.673124
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Figure 1: The IFS curve. The X-axis represents the number of fea-
tures participating in the classification model.The Y-axis represents
the Matthews’s correlation coefficient (MCC) value evaluated by the
classification model and 5-fold cross-validation. The highest MCC
value of IFS is 0.6731 using 55 features.
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Figure 2: ROC curve. The curve was obtained by the classification
model using first 55 features in mRMR features list. The X-axis and
Y-axis of each point in the curve represent the 1 − specificity and
sensitivity, respectively, under a certain classification threshold.

list mentioned in Section 3.1. It is suggested that these 8
features are particularly good at distinguishing drug pairs.

It is not surprising that the first feature is “F1” (Supple-
mentary Material III), which is the confidence score of inter-
action between two drugs. The key assumption underlying
most drug prediction algorithms is that similar drugs have a
tendency to share similar targets [50].This has been observed
due to chemical similarity [26, 51]. In addition, it has been
proved that interactive chemicals are more likely to share
similar biological functions [30, 31].

The second optimal feature is the absolute difference
in the value of two drugs’ enrichment score in prostate
cancer pathway (“abs(hsa05215 1-hsa05215 2),” refer to Sup-
plementary Material III). The prostate cancer pathway is
mainly characterized by key molecular changes in prostate
cancer cells including cell cycle, carcinogen defenses, cell
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Table 1: The 48 pathways related to features in the optimal feature set.

Index Pathway ID and name The rank of related features (+/−)a

1 hsa05215 prostate cancer 2 (−)
2 hsa04964 proximal tubule bicarbonate reclamation 3 (+), 48 (−)
3 hsa00140 steroid hormone biosynthesis 5 (−)
4 hsa04145 phagosome 6 (+)
5 hsa05150 staphylococcus aureus infection 7 (−)
6 hsa04973 carbohydrate digestion and absorption 8 (−)
7 hsa04340 hedgehog signaling pathway 9 (−)
8 hsa00052 galactose metabolism 10 (+)
9 hsa04310 wnt signaling pathway 11 (−)
10 hsa00531 glycosaminoglycan degradation 12 (+)
11 hsa04972 pancreatic secretion 13 (+)
12 hsa04976 bile secretion 14 (−)
13 hsa03018 rNA degradation 15 (−)
14 hsa04744 phototransduction 16 (−)
15 hsa04977 vitamin digestion and absorption 17 (−)
16 hsa04330 notch signaling pathway 18 (−)
17 hsa00430 taurine and hypotaurine metabolism 19 (−)
18 hsa05130 pathogenic Escherichia coli infection 20 (−)
19 hsa00920 sulfur metabolism 21 (+)
20 hsa00785 lipoic acid metabolism 22 (−)
21 hsa05020 prion diseases 23 (+), 54 (−)
22 hsa00511 other glycan degradation 24 (+)
23 hsa04320 dorso-ventral axis formation 26 (−)
24 hsa00520 amino sugar and nucleotide sugar metabolism 27 (−)
25 hsa00310 lysine degradation 28 (−)
26 hsa00270 cysteine and methionine metabolism 29 (−)
27 hsa04115 p53 signaling pathway 30 (−)
28 hsa04966 collecting duct acid secretion 31 (+)
29 hsa00830 retinol metabolism 32 (−)
30 hsa00910 nitrogen metabolism 33 (−)
31 hsa05217 basal cell carcinoma 34 (−)
32 hsa05010 alzheimer’s disease 35 (−)
33 hsa04150 mTOR signaling pathway 36 (−)
34 hsa00532 glycosaminoglycan biosynthesis chondroitin sulfate 37 (+)
35 hsa04514 cell adhesion molecules (CAMs) 38 (−)
36 hsa04975 fat digestion and absorption 39 (−)
37 hsa05110 vibrio cholerae infection 40 (+)
38 hsa05416 viral myocarditis 41 (−)
39 hsa05012 parkinson’s disease 42 (−)
40 hsa04614 renin-angiotensin system 43 (−)
41 hsa04130 SNARE interactions in vesicular transport 44 (+)
42 hsa00480 glutathione metabolism 45 (+)
43 hsa05211 renal cell carcinoma 46 (+)
44 hsa05322 systemic lupus erythematosus 47 (−)
45 hsa04120 ubiquitin mediated proteolysis 49 (+)
46 hsa00780 biotin metabolism 50 (+)
47 hsa00630 glyoxylate and dicarboxylate metabolism 51 (−)
48 hsa00510 n-glycan biosynthesis 52 (−)
49 hsa00061 fatty acid biosynthesis 53 (−)
50 hsa00232 caffeine metabolism 55 (−)
a: “+” and “−” in this column indicate that the feature is related to the pathways obtained by (4) and (5), respectively. For example, the feature in the first row
with “−” was calculated as abs(hsa05215 1-hsa05215 2).
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adhesion, migration and growth, and androgens [52], which
are involved in numerous cancers. Therefore, lots of antineo-
plastic drugs are designed targeting genes in this pathway.
In the study of Wedel et al. [53], they proposed a triple
drug combination including RAD001, AEE788, and VPA,
which represented a stronger anticancer effect than any single
drug. Notably, cyclin B, cdk1, 2, and 4 were reduced, since
strong antitumor properties related to adhesion dynamics
and cell growth became visible. Therefore, this triple drug
combination might possess the potential in the treatment of
advanced prostate cancer as well as other cancers [53]. In
addition, it has been reported that drug combination can
extend life for men with prostate cancer [54]. Furthermore,
Danquah et al. have revealed that a treatment strategy
with novel drug combination is a promising approach to
treat androgen-independent prostate cancer [55]. Overall,
the genes in prostate cancer pathway may provide clues
for antineoplastic drugs design and application of drug
combinations.

Drug combination approaches are especially applicable
to cancer treatment. On one hand, most tumors depend on
more than one signaling pathways for their growth, survival,
invasion, and metastasis; on the other, multiple cell signaling
pathways may control a single step of tumorigenesis. Thus,
efficacious and durable responses in cancer may require a
combined usage of conventional single-targeted agents [56].
Moreover, cells may develop drug-resistant mutations to a
single-targeted agent and most cancers have four to seven
independent mutations [57]. The chance of overcoming such
resistance can be significantly increased by using agent or
drug that inhibits multiple pathways or their combination
[58–60].

The third critical feature for drug combination deter-
mination is the sum of enrichment score of two drugs
in proximal tubule bicarbonate reclamation pathway
(“hsa04964 1+hsa04964 2,” refer to Supplementary Material
III). It has been reported that primary porcine proximal
tubular cells play an important role in transepithelial drug
transport in human kidney [61]. Many genes in this pathway
have been proved to be related to drug response, drug
toxicity, and drug transport. CA4 (carbonic anhydrase IV)
is a member of carbonic anhydrases (CAs) family, which is
a group of universally expressed metalloenzymes related to
multiple pathological and physiological processes, such as
lipogenesis, gluconeogenesis, tumorigenicity, ureagenesis,
and the virulence and growth of various pathogens [62].
Apart from the already known roles of CA inhibitors (CAIs)
as antiglaucoma and diuretics drugs, CAIs could also
possess the potential to be novel anticancer, anti-infective,
and antiobesity drugs [62]. PCK1 (phosphoenolpyruvate
carboxykinase 1) is a key control point during the regulation
of gluconeogenesis. It has been shown that PCK1 is
involved in the processes of small molecule biochemistry,
carbohydrate metabolism,molecular transport, and response
to drugs including 5-tert-butyl-3H-1,2-dithiole-3-thione
(TBD), 3H-1,2-dithiole-3-thione (D3T), and its analogues
4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (OLT) [63].
MDH1 (malate dehydrogenase 1) in this pathway has been
reported to be relevant with drug toxicity [64, 65]. Another

gene in this pathway worth mentioning is AQP1 (Aquaporin-
1), which was highly expressed in endothelial cell membranes
and involved in water transfer across or into these cells. It
has been reported that AQP1 plays a role in response to
acetazolamide [66] and drug transport [67, 68]. In addition,
ATP1B1 (Na(+)-K(+) ATPaseB1) in this pathway has also
been revealed to be related to drug response in breast cancer
cell lines [69].

The fourth feature in the optimal feature set is “F2”,
which is the maximum confidence score between targets of
two drugs in a drug combination. Since drugs sharing the
same targets usually have similar pharmacology, they are
likely to be replaceable with each other when combined with
another drug for similar purposes [8]. In general, drugs are
combined according to the mechanisms of action, which
is characterized by the properties of drugs including their
pharmacology and targets [10, 11]. Therefore, drugs in a drug
combination have a high tendency to target the same proteins
or similar pharmacology [70].

Besides the top four optimal features, there are several
other critical pathways in the optimal feature set. It has
been shown that the steroid hormone biosynthesis pathway
(hsa00140) can act as a target for endocrine-disrupting
chemicals [71], and inhibitors of steroidal cytochrome
P450 enzymes have the potential to be targets for drug
development [72]. Staphylococcus aureus infection pathway
(hsa05150) has been shown to be related to drug resistance
[73, 74]. A large amount of studies have shown that the
hedgehog signaling pathway (hsa04340) has the potential to
be a target for anticancer drug discovery [75]. In addition, the
inhibition of hedgehog signaling can enhance the delivery of
chemotherapy in a mouse model of pancreatic cancer [76].
Furthermore, hedgehog signaling can regulate the drug sensi-
tivity by targeting ABC transporters in epithelial ovarian can-
cer (EOC) [77]. It has been proposed that glycosaminoglycan
degradation pathway (hsa00531) has significant therapeutic
value in cancer [78]. Because dysregulated glycosaminogly-
can degradation plays an important role in tumorigenesis,
targeting glycosaminoglycan-degrading enzymes is a promis-
ing anticancer strategy. Dysregulated expression of gly-
cosaminoglycans is ubiquitous in cancer and has been shown
to associate with clinical prognosis in several malignant neo-
plasms. Recently, research on the biological functions of these
molecules in tumor angiogenesis, tumor metastasis, and can-
cer biology has facilitated the development of drugs targeting
them. In addition, glycosaminoglycans are utilized as tumor-
specific targeting vehicles and delivery for chemotherapeutics
and toxins. Animal studies aswell as clinical trials have shown
the clinical relevance of glycosaminoglycan-based drugs and
the utility of glycosaminoglycans as therapeutic targets [78].
Another noteworthy pathway is carbohydrate digestion and
absorption pathway (hsa04973). Genes in this pathway have
been widely used as antidiabetic drugs target [79, 80].

4. Conclusions

In this study, we analyzed molecular mechanisms of drug
combinations by extracting certain kinds of features from
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each combination. After adopting Minimum Redundancy
Maximum Relevance and Incremental Feature Selection as
the feature selection techniques and random forest as the
classification model, 55 optimal features were obtained,
with which the classification model achieved the best per-
formance. The results show that the chemical interaction
between drugs in the combination and protein interactions
between their targets are important for the determination
of drug combinations. In addition, some KEGG pathways
important for screening drug combinations are also high-
lighted. We hope that this contribution may help to screen
new drug combinations.
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