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Abstract: Cellular memory is a controversial concept representing the ability of cells to “write and
memorize” stressful experiences via epigenetic operators. The progressive course of chronic, non-
communicable diseases such as type 2 diabetes mellitus, cancer, and arteriosclerosis, is likely driven
through an abnormal epigenetic reprogramming, fostering the hypothesis of a cellular pathologic
memory. Accordingly, cultured diabetic and cancer patient-derived cells recall behavioral traits
as when in the donor’s organism irrespective to culture time and conditions. Here, we analyze
the data of studies conducted by our group and led by a cascade of hypothesis, in which we
aimed to validate the hypothetical existence and transmissibility of a cellular pathologic memory in
diabetes, arteriosclerotic peripheral arterial disease, and cancer. These experiments were based on
the administration to otherwise healthy animals of cell-free filtrates prepared from human pathologic
tissue samples representative of each disease condition. The administration of each pathologic tissue
homogenate consistently induced the faithful recapitulation of: (1) Diabetic archetypical changes
in cutaneous arterioles and nerves. (2) Non-thrombotic arteriosclerotic thickening, collagenous
arterial encroachment, aberrant angiogenesis, and vascular remodeling. (3) Pre-malignant and
malignant epithelial and mesenchymal tumors in different organs; all evocative of the donor’s tissue
histopathology and with no barriers for interspecies transmission. We hypothesize that homogenates
contain pathologic tissue memory codes represented in soluble drivers that “infiltrate” host’s animal
cells, and ultimately impose their phenotypic signatures. The identification and validation of the
actors in behind may pave the way for future therapies.

Keywords: metabolic memory; diabetes; microangiopathy; arteriosclerosis; vascular remodeling;
cellular memory; cancer; epigenetics

1. Introduction

Seminal evidence from more than 50 years ago showed that the ability to “learn and
memorize” external signals is not an exclusive function of the central nervous system
cells. The 1960s first saw experiments exemplifying that invertebrate organisms such as
planarians are able to learn a task and transmit these memories to regenerating descendants
following decapitation [1,2]. It was likely the prime evidence on the existence of what it is
known today as “cellular memory”, an ancestral and evolutionarily conserved ability of
non-neuronal cells to retain and use information [3–5]. This faculty allows the cell to “learn
and recall” the experience of a primary insult, and assist in rapid cellular adaptation and
survival if the same stressor subsequently appears [6].

The process of irreversible epigenetic imprinting on embryo stem cells to safeguard a
lifetime differentiation program [7,8], and the ability of immune cells to remember a broad
repertoire of antigenic challenges, are perhaps the most renowned examples of memory
by non-neuronal cells in vertebrate organisms [9]. Other forms of cellular memory have
been successively discovered in recent years: (1) fibroblasts’ topographic differentiation
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memory [10], (2) muscle cells mass memory [11,12], (3) skin inflammation memory [13],
and (4) respiratory allergy inflammatory memory [14].

These fascinating events are founded and directed by a particular epigenetic code
that in a simplified manner appears operated through three major processes: DNA/RNA
methylation, post-translational modifications of histone proteins, and non-coding RNA
modifications [15,16]. The long time preservation of a certain epigenetic writing, translates
in the cellular ability to retain phenotypic and behavioral traits, typical of the donor organ-
ism from which they originated. This concept explains, for instance, why cultured cells
irrespective to the number of passages and culturing conditions, preserve representative
qualities of the donors’ pathology, as it is the case for fibroblasts and endothelial cells
derived from diabetic subjects [17–21].

Diabetes, arteriosclerosis, and cancer are among the most prevalent chronic non-
communicable diseases (NCD), representing leading causes of global morbidity and mortal-
ity [22]. The fact that these NCD are characterized by an undefined etiology, a long, silent
and insidious latency period, and lack of definitive cure, explains the escalating number of
associated deaths [23,24]. Epigenetic studies focusing diabetes, arteriosclerosis, and cancer;
reveal the crucial role of a de novo established, abnormal, epigenetic reprogramming,
originating a sort of “pathologic cellular memory”, implicated in the onset of a clinical
phenotype, disease complications progression, and an individual’s clinical course [25–27].

Diabetes is likely the most convincing scenario to illustrate how a trivial exogenous
factor such as the level of blood glucose may reshape the epigenetic landscape and ulti-
mately build a pathologic memory [28,29]. The existence of this hyperglycemia-mediated
metabolic stress memory explains why prior hyperglycemic exposure is not “forgotten”
with time and successive cell generations [30,31].

Epigenetic drivers appear to integrate the sensory and signaling network of endothelial
cells, which allows for the control of cardiovascular functions [32]. Endothelial epigenetic
operators serve as mechano-transducers in reception, transmission, and integration of
atheroprotective and atherogenic hemodynamic forces. Overall, epigenetic alterations play
a critical role in arteriosclerosis [16,33,34]. Furthermore, recent doctrines in malignant trans-
formation also include the participation of epigenetic derangements along with genomic
mutations, as determinants of canonical carcinogenesis stages as initiation, progression,
metastasis, immortality, and autonomy [35]. Phenomena such as histone modifications,
nucleosome remodeling, DNA methylation, and miRNA-mediated gene expression control
are dynamic writers of the cancer epigenetic code that in concert with the cluster of gene
mutations dictate and perpetuate the malignant phenotype [36–38].

We have recently investigated the existence of a hypothetical cellular pathologic mem-
ory, its interspecies transmissibility from human to rodent, and the imprinting generated in
the recipient animal’s tissues. In essence, the consequences of the administration to rodents
of simple, crude, cells-free filtrates, derived from human archetypal pathologic tissue sam-
ples of type-2 diabetes, arteriosclerosis, and cancer were examined. Here, we describe and
discuss in narrative styles the group of these unprecedented findings, and hypothesize on
their underlying operators. All the figures and data presented here derive from our studies
and are extensively described in the original research articles here discussed.

These studies reinforce the notion on the existence and transmissibility of a patho-
logic memory encrypted in diseased tissues of humans affected by three different non-
communicable diseases. The eventual identification of the drivers and mechanisms op-
erating behind the reproduction in otherwise healthy animals of the histological traits of
the pathologic human donor may entail a far-reaching futuristic impact over the control of
these diseases.

2. Metabolic Memory Is Transferable and Induces the Recapitulation of
Histopathologic Hallmarks in Normal Rats

Years ago, we observed that diabetic granulation tissue arterioles somehow “inherit”
and recapitulate in a period of a few days, a collection of histopathological hallmarks of
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chronic evolution that typically characterize diabetic microangiopathy [39]. This obser-
vation suggested the existence of an aberrant angiogenesis program in diabetes, which
was possibly geared by epigenetic drivers, and that ultimately lined up with the con-
ceptual essence of metabolic memory [40,41]. We, therefore, hypothesized that cells of
budding vessel and those recruited endothelial progenitor cells were somehow stamped
by a pathologic angiogenesis code, which could be transferred as a soluble signal, and
ultimately, impose a diabetic donor’s imprinting on the tissues of a normal host animal.
As mentioned, these ideas were undertaken through cell-free homogenates elaborated
from fragments of granulation tissue of an ischemic diabetic foot wound, popliteal artery,
and peroneal nerve samples—all derived from patients with type 2 diabetes following
lower extremity amputations. Post-mammoplasty exuberant granulation tissue and post-
traumatic amputation-tissue samples from normal, healthy donors acted as controls of the
human-to-rat xenotransplant. All the experiments commented on here used total protein
concentration as an arbitrary unit for the material administration dose criteria. Accordingly,
different experiments were conducted in which full-thickness wounds were intralesionally
infiltrated with cell-free filtrates derived from lower limb ischemic wounds-granulation
tissue, non-thrombotic arteriosclerotic popliteal samples, and peroneal nerve. Within seven
days of the animal wounds’ exposure to diabetic homogenates, typical histopathological
changes of microangiopathy (Figure 1) and neuropathy were generated on the background
of healthy recipient rats [42]. In essence, the arterioles of the rats’ wounds mirrored the
broad constellation of arterial histopathological changes detected in the soft peripheral
tissues of the diabetics’ lower limbs. Considering the crucial pathogenic relevance of ad-
vanced glycation end products (AGE) and their receptor (RAGE) interaction in a variety of
pathological processes spanning from inflammation and oxidative stress to tumorigenesis,
irreversible diabetic complications, and vascular remodeling [43–45], we examined the
capacity of glycated bovine serum albumin (BSA) to trigger arterial thickening or any other
abnormal change. Glycated BSA perturbed the healing trajectory, promoted inflammation,
and recreated diabetic neuropathy, but it did not result in arteriolar thickening despite the
high concentration of AGE (683.8 ng/mg). We, therefore, share the notion that factor(s)
other than acute glucotoxic reactants are factual drivers of the observed vascular remodel-
ing. Immunohistochemistry experiments showed that the recipient animal’s granulation
tissue had reproduced the immunoexpression phenotypic pattern of the donor for all the
pathogenically relevant markers studied [42].

Figure 1. Rats’ arteriolar thickening after exposure to diabetic tissue cell-free filtrate. (A) Image
showing luminal collapse of arterioles derived from the granulation tissue of a diabetic donor
exhibiting intima hyperplasia, media layer thickening, hypercellularity, and concentric collagen of
hyaline aspect. H/E. Magnification ×20. (B) Rat’s arteriolar walls thickening with luminal collapse
in which intima and media layers appear hyperplastic with hypercellularity and fused as a result
of infiltrated diabetic tissues homogenate. H/E. Magnification ×40. (C) Concentric adventitial
collagen accumulation and hypercellularity around an arteriole in a rat treated with diabetic tissues
homogenate. H/E. Magnification ×20.
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3. Cell-Free Filtrates (CFF) from Non-Diabetic Arteriosclerotic Samples Induce the
Recapitulation of Arteriolar Pathology in Host Animals

Encouraged by the hypothetical existence of a “vascular memory” aside from the
canonic concept of diabetic’s endothelial memory, we examined the potential pathologi-
cal significance of administering a cell-free filtrate obtained from non-diabetic amputee
patients, affected by critical limb ischemia using the same experimental protocol as for
diabetics’ study. It was again observed that in a 7-day administration period, the human
arteriosclerotic-derived filtrate induced the recapitulation of angiogenic and arterial anoma-
lies within the host rat-granulation tissue. Interestingly, these rats reproduced the donor’s
occlusion pattern characterized by the projection and luminal encroachment of collagen
bundles and the presence of fusiform, fibroblast-like cells, apparently replacing endothelial
cells [46]. This observation may represent an endothelial-to-mesenchyme reprogramming
process [47] (Figure 2). The so-called “aberrant angiogenesis” was also observed, in which
muscle myofibrils are replaced by vascular-like channels that may contain an endothelial
collar, so that one tissue lineage is substituted by an unrelated one (not shown) [48]. Further-
more, as described for the diabetes study, immunohistochemistry experiments confirmed
that the arteriosclerotic material recipient rats entirely recreated the immunoexpression
pattern of vascular critical markers found in the pathologic donor samples [46].

Figure 2. Rats’ arteriolar remodeling after exposure to non-diabetic arteriosclerotic arterial tissue.
(A) Human donor arteriole with an active process of intimal hyperplasia, subendothelial infiltration,
luminal narrowing and concentric expansion of the media layer with large basophilic nuclei. H/E.
Magnification ×40. (B) Vascular response to human arteriosclerotic material in which a rat arteriole
exhibits wall thickening, abnormal cellular infiltration, and disorganization. There is an exaggerated
accumulation of collagen bundles. The lumen is obliterated. H/E. Magnification ×40. (C) Human donor
arteriole showing degenerative wall changes including accumulation of hyaline material and internal
tunica elastica fragmentation. Endothelial cells are hypertrophied and intermixed with fibroblast-like
cells that appear to emerge from the endothelial collar and make up a mesh-like structure that encroaches
into the lumen. H/E. Magnification ×40. (D) Rat’s arteriole with luminal invasion by protruding
fusiform-like cells that emerge from the endothelial side and project into the lumen, forming a trabecular
structure. The luminal mesh is infiltrated by round basophilic nuclei, suggestive of lymphocytes and
other of fibroblastic aspect. H/E. Magnification: ×40. Scale bar: 200 µm.
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4. Cell-Free Tumor Tissue Filtrate Transforms Cells and Is Carcinogenic in Nude Mice

A third line of experiments addressed the consequences of injecting healthy nude
mice with fresh human tumors cell-free filtrates, assuming the hypothetical transference of
a donor’s-derived carcinogenic memory, encrypted into malignant cells and represented
as soluble chemical signals. The study included a protocol examining the effects of CFF
administration derived from high-grade mammary ductal carcinomas for 6 and 12 consecu-
tive weeks in an increasing protein concentration/dose regimen of the tissue homogenate.
A second protocol evaluated the effects of administering a CFF derived from an anaplastic
pleomorphic sarcoma at a constant dose of 100 µg of protein for 32 consecutive days. At
this time point, half of the animals were destined to an early autopsy (N = 6/group), while
the other half were left to evolve untreated for other 35 days for a late autopsy (day 68) [49].

Six weeks of treatment with mammary tumor-derived material induced lung parenchy-
mal condensation, consisting of atypical adenomatous hyperplasia along with multifocal
nodules of solid adenocarcinomas. Figure 3 shows an exemplary nodule of a solid, poorly
differentiated adenocarcinoma, with expression of two well-validated malignancy markers.
Mice administered for 12 weeks exhibited a diseased-like behavior, whereas pathology
study revealed almost massive parenchymal condensation and alveolar lumen erasing due
to invasion of multinodular, solid, and lepidic growth adenocarcinomas. Immunohisto-
chemistry of malignant growth foci showed the overexpression of both EGF and VEGF
receptors, CEA, and other transformation markers such as c-Myc, TGF-α, and PCNA (not
shown).

Figure 3. Lung solid tumor nodule detected at the early autopsy time point. (A). Well-consolidated
tumor nodule with parietal, sub-pleural growth. The histological analysis identified poorly differ-
entiated epithelial cells with vacuolated cytoplasm, vesiculous nuclei and prominent nucleoli, (B).
This tumor was concluded as a poorly differentiated adenocarcinoma reactive to CEA and TTF-1,
(C,D) respectively. H/E. Magnifications: ×4 and ×40. Scale bar: 200 µm.
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Administration of the pleomorphic sarcoma homogenate for 32 days had a far more
acute and aggressive course in the mice. The animals developed lung parenchymal con-
solidation with foci of malignant, poorly differentiated cells, positive to oncofetal markers
and concluded as adenocarcinoma (not shown), and a subcutaneous nodule classified as a
poorly differentiated mesenchymal cells sarcoma-type tumor (Figure 4).

Figure 4. The mesenchymal cells tumor. This was a readily detected interscapular nodule during
necropsy. (A) Panoramic image (×4) demonstrating intense cellularity and local disorganization.
(B) Larger magnification (×40) reveals intense basophilic and pleomorphic nuclei, cells with embry-
onic aspect and giant multinucleated cells (arrowhead). H/E. Scale bar: 200 µm.

Animals that evolved treatment-free for other 35 days progressed to a broader inci-
dence and variety of tumors including lung solid adenocarcinomas (Figure 5), multiple foci
of epithelial tumors with glandular differentiation within the mediastinal adipose tissue,
and an undifferentiated thyroid tumor (not shown). Importantly, none of these alterations
were detected in the control group of mice treated with a healthy skin donor-derived ho-
mogenate. Conclusively, these experiments showed that it is possible to induce malignant
tumors in healthy animals in a short period of time, through the systemic administration of
malignant human neoplasias-derived cell-free filtrates.

Figure 5. Autonomous growth of lung tumors. Mice treated with the sarcoma homogenate for 32 days
and left to evolve free-of-treatment for other 35 days, exhibited lungs parenchymal consolidated
areas (A–C) that were histologically concluded as poorly-differentiated adenocarcinomas. H/E.
Magnification: ×4 from (A–C) and ×40 for (D). Scale bar: 200 µm.
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5. Discussion

We have raised the hypothesis that cells contain a disease code memory, that it is simply
extractable, passively transferred from human to rodents, and that it ultimately induces
the recapitulation in the normal animals’ tissues phenotypic traits evocative of the donor’s
pathology. This is a novel and risky hypothesis as it presupposed that a simple cell-free
filtrate prepared from tissue fragments derived from non-communicable disease-affected
human donors could recapitulate in healthy animals specific attributes that characterize the
histology of the donor’s disease. The methodological bases of the experiments discussed
here expand on the elaboration and subsequent administration of crude, cell-free filtrates
from human pathologic tissue samples with normal sterile saline solution as vehicle with no
other chemical processing. This is a simple methodology first inaugurated by Peyton Rous
in the early years of the 20th century that have significantly contributed to the advancement
of experimental pathology [50]. Although cell-free filtrates have been instrumental for
the discovery of oncogenic retroviruses and indirectly of cancer-causing genes, the early
methodological approach of Ellermann, Rous, Olson, and others [51,52] does not appear
to have been progressively used, nor enriched along the years. Thus, to the best of our
knowledge, our studies appear to have been solely preceded by the classics of about a
century ago [53]. The fact that our cell-free filtrate involves three examples of chronic,
non-communicable diseases, justifies our efforts to discern the actual nature of the acting
operators.

All these experiments included concurrent control groups, based on the administra-
tion to rats and mice homogenates elaborated from healthy human tissue, mostly during
cosmetic surgery. Through these experiments, we investigated whether the pathologic
tissue-derived material from chronic NCD diseases could transform the recipient animal
tissues’ phenotype, and accordingly somehow recapitulate donor’s histopathological traits.
This experimental approach is based on two fundamental hypotheses: (1) mammals’ so-
matic cells are endowed with the ability of “learning and memorizing” their lifetime stress
biography, and (2) cell memory information is encrypted in a chemical code that is sol-
uble and transferable to other animal species via internalization by the recipient’s cells,
consequently acting as a priming factor to impose and recreate the donor’s pathologic
phenotype.

The first study demonstrated that diabetic tissues contain priming factors that may be
extracted from both peripheral (granulation tissue) and internal structures (arteries and
nerves), that they are apparently “up-taken” by host animal cells, and that the message
derived from these priming factors is able to disrupt the normal angiogenic process and the
arterial morphology, ultimately reproducing the histology of microangiopathy. Although
the mechanisms underlying diabetic metabolic memory and vascular complications remain
to be fully elucidated [20,54], this study, in addition to offering an unprecedented system to
recreate histological features of diabetic ulcers in a non-glucotoxic environment, incites to
consider that diabetic tissue damages can be induced by soluble circulating messengers,
and that vessels and nerve damages and other complications could possibly evolve in
shorter periods of time as it is contemporarily considered [19,55].

We believe that these messengers are of an epigenetic nature and belong to a large
diabetic secretome, which contributes to perpetuating multi-organ complications, and are
an active internal force toward cells senescence and ulcer recurrence [56,57].

Having observed that beyond glucotoxicity, other unidentified factors seem to be in-
strumental for the acute onset of arteriolar thickening and a group of angiogenesis defects,
our second study addressed the consequences of the intralesional infiltration of arterial
tissue-derived homogenate from non-diabetic subjects, amputated due to chronic limb
ischemia. The experiments reproducibly showed the recapitulation of human donor’s
arteriosclerosis within the rats’ granulation tissue arterioles in a period of days. Of note,
rats’ arterioles faithfully recreated the luminal occlusion and the fibroblast-like cells en-
croachment, apparently secondary to reprogramming events of the endothelial collar, as
it was observed in the donors’ tissues. Since these endothelial cells’ phenotypic transfor-
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mation is entitled as an endothelial-to-mesenchymal transition (EndMT) process [47], the
hypothetical possibility exists that the transdifferentiation drivers involved were passively
transferred from the human arteriosclerotic vessel to the normal rat. Epigenetics promoters
of EndMT events and members of the transforming growth factor-β (TGF-β) family are
invoked as causal factors of the endothelial transdifferentiation process [58,59]. In support
of the notion that the pathologic human-derived homogenate locally interfered with the
rats’ tissues differentiation homeostasis, is the recapitulation of the “aberrant angiogen-
esis” within the rats skeletal muscle fibrils, which also represents a transdifferentiation
episode [48]. This study contributes to nurturing the hypothesis of an existing “pathologic
vascular memory” that surpasses the limits of the legendary “vascular glycemic memory”.
It was evidenced that non-diabetic diseased arteries include a surge of “priming factors”
that appear to be soluble, can be transferred, and impose the “damage phenotype” in naïve
recipient tissues [37]. Accordingly, and in terms of diabetes, we deem that these “vascular
memory factors” are circulating messengers that may contribute to arterial disease debut,
perpetuation, dissemination, and irreversibility [46].

Common for the two studies discussed so far is the fact that immunohistochemistry
experiments showed that animals receiving the pathologic tissue-filtrates authentically mir-
rored the immunoexpression pattern of the donor samples, in sharp contrast with control
animal groups. This includes over and sub-expression of biomarkers related to inflamma-
tion, as well as vascular physiology and pathology. We consequently hypothesize that the
recapitulation of the donor’s morphological traits in rats’ arterioles is the consequence of
the paracrine expression and production of pathologic vascular remodeling messengers
derived from the diseased human tissues. These vascular “remodelome” may entail tran-
scription factors, fragments of abnormally methylated DNA sequences, microRNAs, and
other epigenetic operators.

The fact that none of the described vascular changes were detected in animals treated
with healthy donor tissue homogenates supports the authenticity of the findings, and
the possibility that these alterations do not correspond to the host’s tissue reactivity to
human xenogeneic material. Common to these two studies is the interspecies transmission
of the pathologic code irrespective of the specific disease of the donors. We currently
ignore the actual nature of the drivers operating behind the recapitulation of the human
arterial pathological process in the otherwise normal rats. However, we think that these
recapitulation events are promoted by some form of horizontal interspecies genetic material
transmission that may include epigenetic drivers contained in the broad constellation of
cellular constituents within the cell-free filtrates used here.

Our third study discussed here [49] is, to our knowledge, the first demonstration of
malignant tumor development in otherwise healthy mice by the administration of simple,
aqueous homogenates derived from non-transmissible human tumors. Of note, and as
noted for the two previous studies here described, these pre-malignant and malignant
lesions were uniquely induced by the administration of the whole-tissue homogenates
using sterile physiologic saline solution. Consequently, these homogenates represent a
rich-in-content material and a vehicle for donor cells’ pathologic signatures. Overall, this
study suggests that malignant tissues are also endowed with a “malignant code” that can
be passively transferred to other host mammal cells, imposing its legacy, and ultimately
implementing a carcinogenesis process in vivo. According to our experimental pathology
data, these transferred “malignant signalers” not only disrupted cells proliferation control,
but also altered the differentiation program of normal, mature populations of epithelial
and mesenchymal cells in mice organs. The fact that the initial areas of alveolar atypical
adenomatous hyperplasia progressed to authentic, invasive, and metastatic tumors in the
case of lung adenocarcinomas induced by breast tumor homogenate, indicate the transit
through the lineal transformation phases of “initiation–promotion–progression”. All these
events evolved in short temporary windows, which leads to questions about what drivers
and forces could be propelling the rapid tumor growth. One of the most remarkable
demonstrations here is that when mice were treated with the sarcoma homogenate for a
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month and subsequently left inducer-free for other 35 days, there was an increase in the
number and variety of tumors and affected organs. This observation is compatible with
Hanahan and Weinberg’s tumors hallmarks that include tumor cells self-capability, irre-
versibility, and autonomous growth [60]. We, therefore, hypothesize that these emblematic
malignancy traits are genetically and/or epigenetically driven, and consequent to some
type of eukaryotic-to-eukaryotic horizontal transfer of genetic and/or epigenetic effectors.
This notion is somewhat supported by the presence of integral DNA and RNA molecules
in the tumor cell-free filtrates despite the mechanical processing of tissue disruption. Previ-
ous studies demonstrate that nucleic acids primarily packed into exosome vesicles play a
seminal role in most of the carcinogenesis stages [61,62]. Our tissue homogenates may also
contain some type of tumor or other pathologic tissue-derived extracellular vesicles, such
as exosomes [63], which are exemplary players in cell–cell communication by conveying
genetic and epigenetic messages [64]. The pathogenic engagement of exosomes in human
cancer is compelling given their ability to deliver DNA and RNA-tumorigenic signatures
that participate in malignant transformation [65,66]. To summarize, two different classes of
human malignant tumors-derived cell-free filtrates were proven to transform mice cells
and induce a carcinogenic effect. This neoplastic growth may reflect the influence exerted
by putative “malignancy messengers” contained in the human pathologic material that
incorporate into animal’s cells, and dominantly impose the donor’s abnormal phenotype
over the host’s permissive environment.

We have discussed here evidence of three in vivo studies based on the administration
of a homogenate from human pathologic tissue samples of type-2 diabetes, arteriosclerosis,
and cancer as illustrative of expanding, chronic, non-communicable diseases. Although we
have not elucidated the mechanisms behind these interesting findings, the replications in
normal animals of histopathological changes typical of the human diseased tissues support
our hypothesis on the existence of a transmissible “epigenetic cellular disease memory”.
In line with this, mounting data continue to support the idea that behind an intrauterine
harassment and the ensued inheritance of a pathologic trait, it is the protagonist role of
epigenetic mechanisms [67] that, under de novo rewritten abnormal signatures, represent
the epigenetic pathologic memory [68]. This memory ensures the transgenerational trans-
mission and phenotypic expression of the consequences of the suboptimal intrauterine
environments [69], providing the basis for the “developmental origins of health and dis-
ease” concept [68]. In agreement with the pathogenic role of metabolic memory for diabetic
complications onset and progression are the toxic consequences of the intrauterine-shaped
epigenetic memory by hyperglycemia, as a major driver of a constellation of successive
transgenerational alterations in descendants [68,70–72]. Unrelated to glucose metabolism
stands the experimental demonstration that in utero exposure to nicotine imposes per-
manent epigenetic programs that are transferred through the germline to subsequent
generations, leading to asthma predisposition [73]. The participation of epigenetic mem-
ory has also been invoked in the transgenerational transmission of behavioral alterations
following in utero immune activation, so that prenatal immune challenge may impair
cerebral activity across multiple generations [74]. In a similar manner, the transgenerational
inheritance of posttraumatic stress disorder effects has been documented in humans, which
ultimately emphasizes the critical role of epigenetic mechanisms in the complex interface
of environment and biology [75]. In conclusion, we deem that the disease-related epige-
netic fingerprints that make up the fundamentals of the “pathologic memory” are capable
of intraorganismal and transgenerational transmission, which leads us to reconsider the
concept of non-communicable diseases for those processes in which there is not a causal
living pathogen. Indeed, there is a long and winding road ahead.

We deem these studies to offer a useful experimental platform for translational medical
research for non-communicable diseases. The ultimate identification and pharmacologic
validation of these driving pathogenic players may reveal future preventive and therapeutic
alternatives.
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