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Abstract

Rationale: There are limited therapeutic options for patients with
coronavirus disease (COVID-19)-related acute respiratory distress
syndrome with inflammation-mediated lung injury. Mesenchymal
stromal cells offer promise as immunomodulatory agents.

Objectives: Evaluation of efficacy and safety of allogeneic
mesenchymal cells in mechanically-ventilated patients with
moderate or severe COVID-19–induced respiratory failure.

Methods: Patients were randomized to two infusions of 2 million
cells/kg or sham infusions, in addition to the standard of care. We
hypothesized that cell therapy would be superior to sham control
for the primary endpoint of 30-day mortality. The key secondary
endpoint was ventilator-free survival within 60 days, accounting
for deaths and withdrawals in a ranked analysis.

Measurements and Main Results: At the third interim
analysis, the data and safety monitoring board recommended that

the trial halt enrollment as the prespecified mortality reduction
from 40% to 23% was unlikely to be achieved (n= 222 out of
planned 300). Thirty-day mortality was 37.5% (42/112) in cell
recipients versus 42.7% (47/110) in control patients (relative risk [RR],
0.88; 95% confidence interval, 0.64–1.21; P=0.43). There were no
significant differences in days alive off ventilation within 60 days
(median rank, 117.3 [interquartile range, 60.0–169.5] in cell patients
and 102.0 [interquartile range, 54.0–162.5] in control subjects; higher
is better). Resolution or improvement of acute respiratory distress
syndrome at 30 days was observed in 51/104 (49.0%) cell recipients
and 46/106 (43.4%) control patients (odds ratio, 1.36; 95% confidence
interval, 0.57–3.21). There were no infusion-related toxicities and
overall serious adverse events over 30 days were similar.

Conclusions: Mesenchymal cells, while safe, did not improve 30-day
survival or 60-day ventilator-free days in patients with moderate and/or
severe COVID-19–related acute respiratory distress syndrome.
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survival; stem cells
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Although there have been advances in the
treatment of hospitalized patients with
coronavirus disease (COVID-19), a
therapeutic gap persists for patients with acute
respiratory distress syndrome (ARDS)
secondary to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)
infection. SARS-CoV-2 directly infects
epithelial cells and immune cells in the lung,
leading to direct cytotoxic effects and lung
injury with secondary inflammation (1).
As the disease process progresses to
respiratory failure, many patients develop a
hyperinflammatory state characterized by
increased concentrations of inflammatory
mediators, including cytokines and
chemokines such as IL-2, tumor necrosis
factor, andmacrophage chemoattractant
protein, as well as elevated inflammatory
biomarkers, including C-reactive
protein (CRP) and ferritin (2). The
hyperinflammatory state associated with
COVID-19 has drawn comparisons with
cytokine release syndrome, graft-versus-host
disease, and hemophagocytic
lymphohistiocytosis (1).

It has become increasingly clear that
ARDS-relatedmortality in patients with
COVID-19 is associated with increasing age
and the accompanying dysregulated
inflammatory response. Consequently,
it has been postulated that targeted
immunomodulationmaymollify or reverse
the hyperinflammatory state associated with
COVID-19 and reduce ARDS-related
mortality (3). Indeed, dexamethasone has
been shown to reducemortality in patients
with hypoxemia hospitalized with COVID-19
receivingmechanical ventilation or oxygen

(4, 5). However, other single-target
immunomodulatory agents have demonstrated
onlymixed results (6, 7), accentuating the need
to evaluate cellular-based therapies, whichmay
havemultiple targets.

Preclinical and early clinical data have
shown that mesenchymal stromal cells
(MSCs) may improve lung injury and
associated inflammation through a variety of
mechanisms, ranging from paracrine
secretion of antiinflammatory cytokines
and growth factors to production of
antimicrobial peptides and restoration of
epithelial bioenergetics through the transfer
of mitochondria (8, 9). Adult-derived
expandedMSCs have benefits in pediatric
steroid-refractory acute graft-vs-host disease
(SR-aGVHD) (10) and preclinical models of
acute lung injury (11). MSCs have
demonstrated safety in phase I/IIa trials of
ARDS (12, 13). A small study of
nonmechanically ventilated patients with
COVID-19 pneumonia reported rapid
recovery and improved inflammatory
markers after treatment with MSCs (14).
These data led to the design of a trial
evaluating MSCs (using a lower dose of
remestemcel-L than has been used clinically
in pediatric SR-aGVHD) in patients with
COVID-19–induced moderate or severe
ARDS, the results of which are reported here.

Trial Registration: ClinicalTrials.gov
(NCT04371393).

Methods

Study Design and Participants
This randomized, parallel, sham infusion-
controlled trial evaluating MSCs in patients

At a Glance Commentary

Scientific Knowledge on the
Subject: Coronavirus disease
(COVID-19)-induced acute respiratory
distress syndrome (ARDS) remains a
highly lethal and morbid condition
with limited therapeutic options. Pre-
and early clinical data have shown that
mesenchymal stromal cells (MSCs)
may improve lung injury and
associated inflammation through a
variety of mechanisms, including
immune modulation, alveolar fluid
clearance, bacterial clearance, regulation
of pulmonary vascular endothelial
permeability, and suppression
of apoptosis.

What This Study Adds to the
Field: In our trial, MSC therapy,
compared with sham control, in patients
with moderate to severe COVID-
19–related ARDS did not produce the
hypothesized reduction in 30-day
mortality. During the pandemic, new
insights have emerged into the existence
of different inflammatory subtypes and
the importance of age within the overall
COVID-19–related ARDS population
that might underlie a differential
response to such immunomodulatory
therapy. Future clinical trials are needed
to identify the potential benefits of
MSCs and differential dosing on the
basis of immune status and age in
susceptible phenotypes.
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with SARS-CoV-2–related ARDS was
conducted under an investigational new
drug application. A coordinating center,
independent event adjudication committee,
and data and safety monitoring board
oversaw trial progress. A central institutional
review board approved the protocol, and
informed consent was obtained from all
patients or their legally authorized
representatives.

The target population was adults with
SARS-CoV-2, confirmed by real-time
reverse transcription PCR assay, who
required mechanical ventilation for
moderate or severe ARDS (modified Berlin
criteria) (15). Patients needed to have
bilateral opacities on a chest radiograph or
computerized tomographic scan, respiratory
failure not fully explained by cardiac failure
or fluid overload, and moderate to severe
impairment of oxygenation assessed by
the PaO2

/FIO2
ratio. The severity of ARDS

was defined as moderate if PaO2
/FIO2

was
.100 mmHg and<200 mmHg and severe
if PaO2

/FIO2
was<100 mmHg, both with

ventilator settings that included positive
end-expiratory pressure>5 cmH2O. In
addition, patients were required to have a
CRP concentration.4 mg/dl, an Acute
Physiology and Chronic Health Evaluation
(APACHE) score greater than 5, and
creatinine clearance>30 ml/min.

Patients were excluded if they were
receiving extracorporeal membrane
oxygenation, had evidence of bacterial
pneumonia, were massively obese (body
mass index above 55), had untreated HIV,
malignancy within 12 months of active
treatment, or elevated liver function tests
(LFTs) (greater than 83 the upper limit of
normal). In addition, patients were excluded
if they had been intubated for more than
72 hours at the time of randomization or
had a prior history of respiratory disease
requiring supplemental oxygen.

Randomization and Masking
Patients were randomized in a 1:1 ratio using
a web-based system, and randomization
was stratified by clinical center and ARDS
severity. A random permuted block design
with block sizes of two and four was used.
Patients and investigators were blinded,
except for the site’s research pharmacist and
one unblinded trial statistician. The infusion
bags were masked to their content by the
research pharmacist.

Procedures
Patients were randomized to receive
intravenous infusion ofMSCs (remestemcel-L)
plus standard of care versus placebo
(PlasmaLyte) plus standard of care. Patients
received two infusions of the study product
during the first week, with the second infusion
4 days after the first infusion (61 d). TheMSC
dose was 23 106MSC/kg of body weight. This
dose regimen was adapted from that used in
patients with SR-aGVHD inwhich 23 106

MSC/kg of body weight were infused twice
weekly for 4 weeks; both aGVHD and
COVID-19 ARDS have in common excessive
T-cell proliferation and infiltration
accompanied by damage to gut and
pulmonary epithelial surfaces (10). The
rationale for using a shorter dosing period with
COVID-19–related ARDSwas on the basis of
a pilot trial that used this dosing regimen in a
series of 11 adult patients with COVID-19 with
moderate to severe ARDS onmechanical
ventilation, 9 of whomwere extubated and
discharged from the ICUwithin 28 days of
MSC initiation (16). In this trial, theMSCs
were cryopreserved and stored at or below
2135�C in liquid nitrogen vapor phase until
use. It was held at distribution centers until
requested by a treating hospital and
transported to the hospital in controlled vapor
shippers on a just-in-time basis to ensure the
quality of the product at the time of treatment.
The viability of the batches administered in the
trial ranged from 78% to 93%. See the
Appendix in the data supplement for
manufacturing and cell viability.

The protocol included guidelines for
SARS-CoV-2 ARDSmanagement, such as
ventilator settings, proning, sedation,
pain management, and concomitant
medications, including the use of off-label or
investigational antiviral agents and
investigational anti–IL-6 agents. The use of
dexamethasone and remdesivir became the
standard of care during the trial.

Outcomes
Patients were followed for 12 months after
randomization. The primary endpoint was a
reduction in all-cause mortality within
30 days after randomization. The key
secondary endpoint was days alive off
mechanical ventilation within 60 days after
randomization. Secondary endpoints
included mortality at 7, 14, 60, and 90
days and 12 months, resolution and/or
improvement of ARDS, and clinical
improvement at Days 7, 14, 21, and 30 after
randomization. ARDS resolution or

improvement was defined as being alive with
a decrease in ARDS scale severity. Clinical
improvement was defined as discharge or an
improvement by two points on a seven-point
ordinal scale that ranged from one (death) to
seven (nonhospitalized status with the
resumption of normal activities).

Total and ICU length of stay (LOS) after
randomization for the index hospitalization,
readmissions, and the total number of days in
hospital within 60 days after randomization
were assessed. Secondary safety endpoints
included any infusion-related toxicity
(hypersensitivity reaction within 2 h of
administration) and the incidence of
serious adverse events within 30 days after
randomization. Pulmonary symptoms and
vital status were assessed at 6 and 12 months.

Statistical Analysis
The trial was designed early in the pandemic
when 30-day mortality for patients with
ARDS was between 40% and 60% (17). The
sample size was on the basis of a relatively
high treatment effect because we needed a
trial that could be accomplished in a tractable
period of time, given the desperate need for
new therapies for this high-mortality
condition and the limited availability of cell
products at the time. In addition, before the
start of enrollment, the design was further
modified from a phase II trial with a one-
sided test of the primary endpoint to a phase
II/III design with a two-sided test to facilitate
registration and a more expeditious route to
bring the therapy to patients, if efficacious.
A sample size of 150 patients in each group
ensured approximately 84% power to detect
a difference of 17% from an assumed control
rate of 40% mortality by 30 days after
randomization using a two-sided, 0.05-level
test of independent proportions. Three
interim analyses for stopping accrual early
for efficacy or futility when 30%, 45%, and
60% of patients had reached the primary
endpoint were prespecified using Bayesian
predictive probabilities (more detail on
assumptions and operating characteristics
are provided in the Supplemental Appendix).

The primary efficacy analysis compared
the proportion of patients who died by 30 days
after randomization between groups using a
two-sided, 0.05-level test for independent
proportions. Missing values because of early
withdrawal were imputed as deaths. The key
secondary efficacy endpoint was assessed using
a two-sided, 0.05-levelWilcoxon rank-sum
test. Patients surviving to Day 60 were ranked
according to their number of ventilator-free
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days. Patients who withdrew or had an
unknown extubation date were assigned ranks
lower than the lowest observed rank, in order
on the basis of the proportion of known days
alive assessed for intubation and free from
mechanical ventilation. Patients who died
before Day 60 were assigned the lowest ranks,
in order on the basis of the time of death.
Differences in rank between groups were
assessed using the Hodges-Lehmann estimate
of location shift (18).

Survival at 7 and 14 days after
randomization was assessed as above.
Survival (60 and 90 d and 12 mo) was

estimated using the Kaplan-Meier method,
and comparisons were made with the
log-rank test. Clinical improvement and
resolution and/or improvement in ARDS
were assessed using mixed effect logistic
regression. LOS during the index
hospitalization (including ICU d) and LOS
through Day 60, including readmission days,
were compared usingWilcoxon rank-sum
tests. Deaths, withdrawals, and patients with
incomplete data were ranked according to
the worst-rank method described above.
Group differences in readmission rates
through Day 60 and serious adverse event

rates through Day 30 were evaluated using
Poisson regression with robust variance
estimation.

Subgroup analyses of the primary
endpoint in key clinical subgroups were
prespecified when the number of
patients in the strata was at least 20.
With the exception of ARDS severity,
for which a formal interaction test was
prespecified, subgroup analyses are
descriptive and presented as relative
risks with 95% confidence intervals (CIs).

Safety endpoints (infusional toxicities
and serious adverse events) were assessed in

Assessed for eligibility (n = 1,727)

Analyzed (n = 110)
Excluded from analysis (n = 0)

Allocation

Analysis

Follow-Up

Enrollment

Excluded (n = 1,504)
Not meeting inclusion criteria
  (n = 1,341)* 
Declined to participate (n = 77)
Other reasons (n = 86)

�

�
�

Allocated to MSC (n = 113)
Received allocated intervention (n = 110)
Did not receive allocated intervention (n = 3)

Subject withdrawn (n = 1)
Invalid consent (n = 1)
Study product infusion halted with
stopping of enrollment (n = 1)  

�
�
�
�

�

Death (n = 58)†

Discontinued intervention (n = 2)‡

Family/LAR refusal (n = 1)
Study product infusion halted with
stopping of enrollment (n = 1)  

Discontinued study (n = 6)
Subject withdrawn (n = 3)
Subject lost to follow-up (n = 2)
Invalid consent (n = 1)

�
�

�
�

�

Analyzed (n = 112)
Excluded from analysis (n = 1)

Invalid consent (n = 1)�

�

Allocated to Placebo (n = 110)
Received allocated intervention (n = 107)
Did not receive allocated intervention
  (n = 3) 

Subject died (n = 1)
Family/LAR refusal (n = 1)
Clinical team refusal (n = 1)

�
�

�
�
�

Death (n = 60)†

Discontinued intervention (n = 5)‡

Family/LAR refusal (n = 1)
Study product infusion halted with
stopping of enrollment (n = 4)

Discontinued study (n = 3)
Subject withdrawn (n = 1)
Subject lost to follow-up (n = 2)

�
�

�
�

�

Randomized (n = 223)

Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram. *The most common reasons for not meeting inclusion/exclusion
criteria included not having moderate and/or severe acute respiratory distress syndrome or requiring mechanical ventilator support (n=533)
and intubation greater than 72 hours (n=208). †Three subjects discontinued intervention because of death (MSC=1 and placebo=2).
‡Discontinued intervention means the second infusion was not administered. LAR= legally authorized representative; MSC=mesenchymal
stromal cell.
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all randomized subjects who received any
amount of study product. All other endpoints
were evaluated in the intent-to-treat
population. There was no formal correction

of the type I error rate for multiple testing, as
prespecified. As such, point estimates of
treatment effects for secondary endpoints
are presented with 95% CIs that have not

been adjusted for multiplicity. Analyses were
conducted using SAS version 9.4 (SAS
Institute, Inc.).

Results

Patients
FromApril 30 to December 14, 2020, 223
patients were randomized across 20 U.S. sites
(Figure 1). At the third interim analysis,
randomization, but not follow-up, was halted
by the data safety monitoring board because
of a low predicted probability of observing
any benefit of MSCs for the primary
endpoint. The final analysis included 222
randomized patients (112 in the MSC and
110 in the control group). One patient was
excluded from the study because the
patient’s spokesperson, who signed the
consent, was determined not to be a legally
authorized representative. The mean age
was 61.86 13.0 years in the MSC group and
59.66 13.8 years in the control group, with
approximately 30% of patients categorized
with severe ARDS (Table 1). Concomitant
therapies included remdesivir in two-thirds
of patients, corticosteroids in over 80% of
patients, and anticoagulation in over 90% of
patients at the time of enrollment. Median
CRP was 13.0 in MSC recipients and 15.2 in
control patients. AmongMSC recipients,
107 (95.5%) received both infusions,
3 (2.7%) received only the first infusion, and
2 (1.8%) received no infusion. In the control
group, 100 (90.9%) patients received both
infusions, 7 (6.4%) received only one
infusion, and 3 (2.7%) received none
(Table E1 in the supplemental appendix).

Mortality
At 30 days after randomization, 42 (37.5%)
patients withMSC compared with
47 (42.7%) control patients had died (relative
risk (RR), 0.88; 95% CI, 0.64–1.21; P=0.43)
(Table 2). OneMSC patient withdrew
before infusion and was imputed as a death.
Figure 2A depicts survival at 60 and 90 days
(hazard ratio, 0.89; 95% CI, 0.62–1.28).

Days Alive off Mechanical
Ventilatory Support
At 60 days, the number of patients alive free
from ventilator support was 49/110 (44.5%) in
theMSC and 47/110 (42.7%) in the control
group. Among survivors, themedian days on
the ventilator within 60 days was 13.5 (IQR,
7.5–35) inMSC and 14.5 (interquartile range
(IQR), 9–37) in control patients. In a ranked

Table 1. Patient Characteristics at Baseline

Patient Characteristic MSC (n=112) Placebo (n=110)

Age (yr), mean6SD 61.86 13.0 59.6613.8
,45, n (%) 12/112 (10.7) 15/110 (13.6)
45–65, n (%) 46/112 (41.1) 52/110 (47.3)
.65, n (%) 54/112 (48.2) 43/110 (39.1)

Female, n (%) 33/112 (29.5) 35/110 (31.8)
Race, n (%)
White 46/112 (41.1) 53/110 (48.2)
Black 21/112 (18.8) 15/110 (13.6)
Other* 45/112 (40.2) 42/110 (38.2)

Ethnicity, Hispanic or Latino, n (%) 41/112 (36.6) 47/110 (42.7)
BMI, n (%)
,30 47/112 (42.0) 38/110 (34.5)
30–40 49/112 (43.8) 48/110 (43.6)
⩾40 16/112 (14.3) 24/110 (21.8)

Coexisting illness, n (%)
Hypertension 65/110 (59.1) 63/107 (58.9)
Diabetes mellitus 46/109 (42.2) 42/107 (39.3)
Renal disease 14/109 (12.8) 13/107 (12.1)
Prior pulmonary disease 18/109 (16.5) 15/106 (14.2)
Heart failure 6/109 (5.5) 4/108 (3.7)
Cancer 12/109 (11.0) 11/106 (10.4)
History of smoking/e-cigarette/

vaping
35/101 (34.7) 31/101 (30.7)

COVID-19 medications, n (%)
Remdesivir 76/112 (67.9) 74/110 (67.3)
Convalescent plasma 25/112 (22.3) 30/110 (27.3)
IL-6 inhibitor 6/112 (5.4) 5/110 (4.5)
Glucocorticoid 92/112 (82.1) 96/110 (87.3)

Adjunctive medications, n (%)
Antibiotics 92/112 (82.1) 83/110 (75.5)
Anticoagulation 103/112 (92.0) 106/110 (96.4)
Antiplatelets 22/112 (19.6) 20/110 (18.2)
ACE inhibitor or ARB 4/112 (3.6) 1/110 (0.9)
Neuromuscular blockade or

paralytic
75/112 (67.0) 71/110 (64.5)

Pulmonary vasodilators 16/112 (14.3) 15/110 (13.6)
Disease severity, n (%)
Moderate 79/112 (70.5) 76/110 (69.1)
Severe 33/112 (29.5) 34/110 (30.9)

SOFA score, n (%) 6.66 2.1 6.761.9
D on ventilation before

randomization, median (IQR)
1.0 (1.0–2.0) 1.0 (1.0–2.0)

Use of prone ventilation, n (%) 47/112 (42.0) 50/110 (45.5)
Labs, median (IQR)
C-Reactive protein, mg/dl 13.0 (6.6–21.5) 15.2 (8.8–22.3)
IL-6, pg/ml 58.2 (23.2–248.9) 56.0 (22.1–205.2)
IL-8, pg/ml 22.4 (16.5–36.5) 24.9 (14.5–33.6)
Creatinine, mg/dl 0.9 (0.7–1.3) 1.0 (0.7–1.4)
Blood urea nitrogen, mg/dl 26.0 (19.0–37.0) 28.0 (21.0–40.0)
Lymphocytes, % 7.0 (4.5–9.8) 5.5 (3.7–9.5)
Neutrophil–lymphocyte ratio, % 12.1 (8.5–19.3) 15.3 (8.6–25.8)
Aspartate aminotransferase, U/L 38.0 (29.0–61.0) 32.0 (26.0–52.5)
Alanine aminotransferase, U/L 30.0 (21.5–46.0) 33.0 (22.0–55.0)

Definition of abbreviations: ACE=angiotensin-converting-enzyme; ARB=angiotensin receptor
blocker; BMI=body mass index; COVID-19=coronavirus disease; IQR= interquartile range;
MSC=mesenchymal stromal cell; SOFA=Sequential Organ Failure Assessment.
Categorical measures are presented as number/number observed (%), and continuous
measures are presented as median (IQR) or mean6SD.
*“Other” race includes seven unknowns in the MSC group and six in the placebo group.
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analysis incorporating deaths and withdrawals,
there were no significant between-group
differences in days alive without ventilator
support (Figures 2B and 2C).

Clinical Improvement and Resolution/
Improvement of ARDS
At 30 days, 37/111 (33.3%) MSC patients and
34/110 (30.9%) control patients showed a
two-point improvement from baseline on the
seven-point ordinal scale or were discharged
alive (OR, 1.17; 95% CI, 0.42–3.22) (Figure E1A,
supplemental appendix). Resolution or
improvement of ARDS at 30 days was

observed in 51/104 (49.0%) MSC recipients
and 46/106 (43.4%) in control patients
(OR, 1.36; 95% CI, 0.57–3.21) (Figure E1B,
supplemental appendix).

Adverse Events and Hospitalizations
There was no between-group difference
in serious adverse events over 30 days
(Table 2). No infusion-related toxicity
events were observed during the course of
the study. In a ranked analysis, there was
no difference between groups in the index
LOS or ICU days (Figures E2 and E3,
supplemental appendix). Among survivors,

median LOS was 25 days (IQR, 15–43) in
the MSC group versus 26 days (IQR, 19–47)
in the control group, with median ICU days
of 18 (IQR, 11–30) and 21 (IQR, 12–36),
respectively. There was no between-group
difference in readmissions (Table 2) or
the expanded total LOS through 60 days
(Figure E4, supplemental appendix).

Twelve-Month Mortality and
Pulmonary Symptoms
At 12 months, mortality remained similar
between groups (hazard ratio, 0.91; 95% CI,
0.63–1.30) (Figure E5, supplemental

Table 2. Mortality, Hospitalizations, and Adverse Events

MSC
(n=112)

Placebo
(n=110)

Mortality* n (%) n (%) Relative Risk (95% CI)
Primary endpoint, died by D 30 42 (37.5) 47 (42.7) 0.88 (0.64–1.21)
Died by D 7 6 (5.4) 5 (4.5) 1.18 (0.37–3.75)
Died by D 14 21 (18.8) 24 (21.8) 0.86 (0.51–1.45)

MSC†

(n=44; Patient D=1,604)
Placebo†

(n=47; Patient D=1,511)

Patients,
n (%)

Events (Rate
per 30 Pt D), n

Patients,
n (%)

Events (Rate
per 30 Pt D), n

Relative
Rate (95% CI)

Readmissions at 60 d 2 (4.5) 4 (0.075) 3 (6.4) 3 (0.060) 1.26 (0.22–7.29)
Serious AEs at 30 d MSC‡

(n=110; Patient
D=2,807)

Placebo‡

(n= 107; Patient
D=2,646)

Relative Rate
(95% CI)

Patients,
n (%)

Events (Rate
per 30 Pt D), n

Patients,
n (%)

Events (Rate
per 30 Pt D), n

Neoplasm/tumorigenesis 1 (0.9) 1 (0.011) 0 0 —
Cardiac arrhythmias, sustained ventricular

arrhythmia
1 (0.9) 1 (0.011) 1 (0.9) 1 (0.011) 0.94 (0.06–14.81)

Cardiac arrhythmias, sustained
supraventricular arrhythmia

14 (12.7) 14 (0.150) 6 (5.6) 6 (0.068) 2.20 (0.86–5.60)

Cardiac arrhythmias, type not specified 1 (0.9) 1 (0.011) 0 0 —
Deterioration of respiratory status 31 (28.2) 31 (0.331) 26 (24.3) 30 (0.340) 0.97 (0.62–1.53)
Hepatic dysfunction 2 (1.8) 2 (0.021) 1 (0.9) 1 (0.011) 1.89 (0.17–20.63)
Major infection, localized 16 (14.5) 18 (0.192) 21 (19.6) 21 (0.238) 0.81 (0.44–1.50)
Major Infection, sepsis 16 (14.5) 17 (0.182) 17 (15.9) 18 (0.204) 0.89 (0.46–1.72)
Multisystem organ failure 2 (1.8) 2 (0.021) 4 (3.7) 4 (0.045) 0.47 (0.09–2.56)
Myocardial infarction 0 0 2 (1.9) 2 (0.023) —
Pleural effusion 1 (0.9) 1 (0.011) 3 (2.8) 4 (0.045) 0.24 (0.02–2.30)
Psychiatric episode 1 (0.9) 1 (0.011) 0 0 —
Renal dysfunction, acute renal dysfunction 26 (23.6) 26 (0.278) 25 (23.4) 26 (0.295) 0.94 (0.57–1.57)
Thromboembolic event, ischemic stroke 2 (1.8) 2 (0.021) 1 (0.9) 1 (0.011) 1.89 (0.17–20.63)
Thromboembolic event, systemic

thromboembolism
1 (0.9) 1 (0.011) 2 (1.9) 2 (0.023) 0.47 (0.04–5.11)

Thromboembolic event, venous
thromboembolism

7 (6.4) 7 (0.075) 3 (2.8) 3 (0.034) 2.20 (0.59–8.22)

Vasodilatory state 7 (6.4) 7 (0.075) 8 (7.5) 8 (0.091) 0.82 (0.31–2.21)
Other AE 19 (17.3) 28 (0.299) 15 (14.0) 18 (0.204) 1.47 (0.72–2.99)
Pneumothorax 6 (5.5) 7 (0.075) 6 (5.6) 8 (0.091) 0.82 (0.26–2.65)
All serious AEs 68 (61.8) 167 (1.785) 70 (65.4) 153 (1.735) 1.03 (0.75–1.41)

Definition of abbreviations: AE=adverse event; CI =confidence interval; MSC=mesenchymal stromal cell.
*Per protocol, one patient in the MSC arm who withdrew before 30 days was imputed as a death.
†A total of 129 patients was excluded from readmission analyses (66 in the MSC group and 63 in the placebo group) because they died during
the index admission or were not discharged by Day 60. Two additional patients (both in the MSC arm) are excluded for early withdrawal or
unavailable index hospitalization discharge data.
‡Safety endpoints are analyzed using the safety population, which is defined as all randomized subjects who received any amount of study product.
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appendix) and relatively unchanged from
mortality at 90 days. By 12 months, the
incidence of asthma, chronic obstructive
pulmonary disease, emphysema, and
pulmonary fibrosis was low across both
groups (Table E2, supplemental appendix).
At 12 months, none of the survivors was
supported with invasive or noninvasive
mechanical ventilation. At this time point,
the use of supplementary oxygen was greater
in the MSC group, but the numbers are
small, and the confidence interval spans
one (7/46 [15.2%] vs. 2/47 [4.3%]; RR, 3.58;
95% CI, 0.78–16.32) (Table E3, supplemental
appendix).

Subgroups
In a subgroup analysis stratified by ARDS
severity, the RR of 30-day death with MSCs
compared with sham control was 0.87 (95%
CI, 0.57–1.31) in patients with moderate
ARDS and 0.91 (95% CI, 0.55–1.50) in those
with severe ARDS. Figure 3 depicts

descriptive prespecified subgroup analyses,
such as age, ethnicity, and diabetes, of the
primary endpoint (see Figure E6,
supplemental appendix, for a similar analysis
of 90-day mortality).

Discussion

Patients with COVID-19–related ARDS have
only a limited array of therapeutic options
and, as this trial demonstrates, continue to
experience very high mortality rates. This
need has galvanized an intensive search for
new candidate therapeutics andmotivated
the current effort to evaluate a fixedMSC
dosing regimen for this condition. This trial
that was halted at the third interim analysis
for futility showed no significant difference
in 30-day mortality with the use of MSCs
versus sham control nor days off mechanical
ventilation within 60 days of randomization.
In terms of safety, there were no infusion-

related toxicities or differences in serious
adverse events over 30 days after
randomization. Survival out to 12 months
was not different between theMSC and
sham control groups.

MSCs have potential therapeutic
applications for the treatment of ARDS
through a variety of mechanisms, including
immune modulation, alveolar fluid
clearance, bacterial clearance, regulation
of pulmonary vascular endothelial
permeability, and suppression of apoptosis
(1). Preclinical models of ARDS have
supported the safety and efficacy of MSC
therapy for the treatment of lung injury
(19–21); however, MSC therapy in patients
with ARDS remains investigational. Two
phase I trials have reported no safety
concerns in administeringMSCs to patients
with ARDS (13, 22). In a randomized trial
of 60 patients, Matthay and colleagues
concluded that administration of MSCs was
safe in patients with non–COVID-19–related
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Figure 2. Survival and key secondary endpoint. (A) Depicts survival by randomization group. The tick marks show the censoring of data.
(B) Depicts the distributions of rank by randomization group from the rank-based assessment of the key secondary endpoint, days alive,
and free of mechanical ventilation at Day 60. Higher ranks correspond to better outcomes (i.e., fewer d on mechanical ventilation),
and deaths were assigned the worst ranks in order of time of death. (C) Depicts the proportion of patients alive and off mechanical
ventilation, alive on mechanical ventilation, alive with unknown ventilation status, withdrawn, or died, by randomization group over each
study day from randomization through Day 60. CI = confidence interval; IQR= interquartile range; MSC=mesenchymal stromal cell.
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moderate to severe ARDS (12). Overall
28-day mortality did not differ significantly
between groups in that trial. However, those
results may have been affected by the poor
overall viability of MSCs used in that study
(36–85%). Preliminary observational studies
with MSCs in the setting of COVID-19
ARDS have demonstrated a signal of
therapeutic benefit (23, 24).

There are several potential explanations
for the results observed in this trial. These
include an incomplete knowledge of
COVID-19–related ARDS pathophysiology
and the rapid evolution of COVID-19–related
ventilatory and pharmacologic management
practices during the trial. A key exclusion
criterion concerned the duration of

mechanical ventilation (.72 h) before
enrollment. This stipulation was intended to
ensure the administration of MSCs during
the peak of the cytokine storm and before
the development of end-stage, irreversible
parenchymal lung damage. However, the
timing of endotracheal intubation in the
course of illness changed during trial
conduct. In the first fewmonths of the
pandemic, guidelines recommended
intubation and invasive mechanical
ventilation when oxygen requirements on
the nasal cannula reached 6 L/min (25).
This guidance was driven largely by concern
for aerosol generation with noninvasive
respiratory support and the risk of rapid
patient deterioration (26). As the COVID-19

pandemic progressed, concerns that
high-flow nasal cannula could result in the
dissemination of dangerous concentrations
of infected aerosols receded (27). Clinicians
also realized there were potential benefits to
deferring or delaying mechanical ventilation,
including avoidance of sedation, reduction
in the time patients are immobilized,
andminimization of patient–clinician
communication challenges. Within 2–3
months of study initiation, increasing
numbers of COVID-19 patients were
managed with noninvasive respiratory
support for days or weeks before intubation
(28). This change in ventilatory management
practices that affected a substantial number
of enrolled patients meant that those who
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Figure 3. Subgroup analyses of the primary endpoint. Subgroup analyses of the primary endpoint in key clinical subgroups were prespecified.
Per protocol, strata in which the number of patients assigned to a specific group is less than 20 were not considered. ARDS=acute respiratory
distress syndrome; BMI=body mass index; CI= confidence interval; DM=diabetes mellitus; MSC=mesenchymal stromal cell.
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failed noninvasive ventilation and eventually
required intubation may have progressed to
the point of inflammatory parenchymal lung
damage that was more developed and
possibly less modifiable by the time of
enrollment.

An additional factor to consider relates
to the potential heterogeneity of the patient
population enrolled. With regard to
non–COVID-19–induced ARDS, researchers
have described two distinct subphenotypes,
hyperinflammatory or reactive and
hypoinflammatory or uninflamed (29, 30).
These subphenotypes differ in biomarker
profiles, disease course, and, more
importantly, the response to ARDS
management strategies and outcomes. The
hyperinflammatory subphenotype is
characterized by increased concentrations of
proinflammatory biomarkers, including IL-6,
IL-8, and TNFR-1, decreased serum
bicarbonate concentrations, vasopressor
dependence, and the presence of sepsis (31).
This subphenotype is also associated with
higher mortality and fewer ventilator-free
and organ failure-free days compared with
the hypoinflammatory subphenotype (32).
Recently, an exploratory study showed
evidence that hyperinflammatory and
hypoinflammatory subphenotypes may exist
in COVID-19–induced ARDS (33). Chen
and colleagues showed a significant survival
benefit with corticosteroids in the
hyperinflammatory subphenotype but no
effect in the hypoinflammatory cohort (34).
The proportion of such distinct
subphenotypes among patients with
COVID-19 enrolled in this trial, and any
associated differential treatment effects may
have contributed to the neutral findings.
Serial inflammatory biomarkers were

collected during the study, and planned
analyses might help identify ARDS
subphenotypes among enrolled patients,
which require further study.

In defining these subphenotypes, age
may also play a role as reflected in the signal
of survival benefit seen in those under
65 years in the forest plot; see results section
and 90-day mortality in Appendix. The
absence of a signal in older patients is
consistent with the fact that they have a
longer duration of SARS-CoV-2 viral
clearance because of age-related maladaptive
immune responses that is associated with
higher degrees of inflammation in the lungs
(35–40). Consequently, it is possible that
higher or more prolonged dosing with MSC
would be required in older patients relative
to younger patients to achieve similar
survival benefits and may have affected the
results of this trial. Although the lower dose
may be sufficient in younger patients, future
studies should explore age-related dosing.

This trial has several limitations. Disease
management practices during the pandemic
changed rapidly, and the protocol could not
practically bemodified at the same pace.
Eligibility criteria reflected the state of clinical
knowledge at the time of protocol design and
did not account for prospective identification
of subphenotypes of patients, whichmay have
helped identify treatment responders.
Moreover, as the timing of intubation changed
from early in the cytokine storm to later in the
disease course, the use of days on a ventilator
as a marker of pulmonary parenchymal
disease became imperfect.We did not collect
information on the duration of noninvasive
respiratorymanagement before
randomization to characterize this population
further. Furthermore, the design of this phase

II/III trial was on the basis of the expectation
of a relatively highmortality reduction (similar
to the one subsequently found in the
Randomised Evaluation of COVID-19
Therapy [RECOVERY] trial) (4).Whereas a
smaller relativemortality reduction would
have been clinically meaningful, such a trial
would have required the enrollment of several
thousand patients, which would have been
challenging within the constraints of the
pandemic. Finally, because the trial was halted
early, our ability to detect differences in
secondary endpoints and subgroup analyses
was reduced. Given that ARDS is a highly
lethal disease withminimal treatment options,
the signals identified in this trial deserve
further exploration in future research.

Conclusions
In our trial, MSC therapy, compared with
sham control, in patients with moderate to
severe COVID-19–related ARDS did not
produce the hypothesized reduction in
30-day mortality or improve ventilator-free
days over 60 days after randomization.
During the pandemic, new insights emerged
into the existence of different inflammatory
subtypes and the importance of age within
the overall COVID-19–related ARDS
population, which might underlie a
differential response to immunomodulatory
therapy. Future research is needed to identify
the potential benefits of MSCs in susceptible
phenotypes.�
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