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Abstract: A facile and sustainable electrochemical umpolung of bromide ion protocol was developed
under mild reaction conditions. Transition metal catalysts and exogenous chemical oxidants were
obviated for the bromination of C–H bond. Notably, graphite rod, which is commercially available at
supermarkets and is inexpensive, was employed as the electrode material. This operationally easy
and environmentally friendly approach accomplished the synthesis of 3-bromoindole in excellent
yield and regioselectivity.

Keywords: umpolung; C–H functionalization; electrochemical organic synthesis; anodic oxidation;
sustainable chemistry

1. Introduction

Umpolung or polarity inversion, one of the attractive techniques, is a fundamental concept that
was first introduced by Seebach and Corey in the 1970s [1–3]. It has been widely used in organic
synthesis as it can alter the reactivity of a specific functional group for a desirable reaction that would
otherwise not be possible [4–19]. Under the concept, two nucleophiles can couple with each other
(Scheme 1). Many functional groups, for instance, cyanides, N-heterocyclic carbenes (NHC), thiamine
pyrophosphates (TPP) as well as dithiane moieties, have been treated as the mediators and/or catalysts
for umpolung transformation [4–19].
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Halogen ions, especially bromide ions, are typical nucleophiles, which are frequently used for 
nucleophilic substitution and addition. In order to achieve the umpolung of bromide to bromo-based 
electrophiles, strong chemical oxidants are regularly required [20–28]. However, based on the 
intrinsic disadvantages of chemical oxidants, such as toxicity, environmental pollution, explosion 
risk, and economic costs, there is a growing need for green and sustainable approaches for the 
umpolung of bromides. Electrochemistry represents one of the most sustainable ways because only 
clean electrons are involved in the process [29–48]. In line with this strategy, in 2015, Bell and Wang 
reported that bromide ion can be electro-oxidized with observation current and potential oscillations 
[49]. Xu et al. and Yu et al. described electrochemical oxidation of bromide on platinum electrodes in 

Scheme 1. Umpolung concept for coupling two nucleophiles.

Halogen ions, especially bromide ions, are typical nucleophiles, which are frequently used for
nucleophilic substitution and addition. In order to achieve the umpolung of bromide to bromo-based
electrophiles, strong chemical oxidants are regularly required [20–28]. However, based on the intrinsic
disadvantages of chemical oxidants, such as toxicity, environmental pollution, explosion risk, and
economic costs, there is a growing need for green and sustainable approaches for the umpolung of
bromides. Electrochemistry represents one of the most sustainable ways because only clean electrons
are involved in the process [29–48]. In line with this strategy, in 2015, Bell and Wang reported that
bromide ion can be electro-oxidized with observation current and potential oscillations [49]. Xu et al.
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and Yu et al. described electrochemical oxidation of bromide on platinum electrodes in aqueous
acidic solution and ionic liquid, respectively [50–52]. Some new materials have also been exploited
as electrodes for the electro-oxidation of bromides [53,54]. Inspired by these elegant discoveries, we
envisioned that umpolung of bromide can be achieved by electrochemical strategy.

Aromatic bromides are an important class of compounds, which are commonly utilized as the
coupling partner in transition-metal-catalyzed cross-coupling reactions [55–67]. Thus, the development
of a synthetic method of arylbromides has attracted tremendous efforts [68–82]. Among them, much
progress has been made on palladium-catalyzed regioselective bromination of C–H bonds using
different agents. Sanford and co-workers elegantly delineated Pd-catalyzed C–H bromination of
benzoquinoline with N-bromosuccinimide (NBS) as the brominating reagent [83–85]. Wan et al.
and Jia et al. unraveled that copper halides can be treated as brominating agents in Pd-catalyzed
bromination of arenes [86,87]. Notably, stoichiometric chemical oxidants are indispensable in the
abovementioned Pd-catalyzed C–H bromination reactions. Moreover, electrophilic bromination
of indoles has also been developed with sodium bromide (NaBr) or potassium bromide (KBr) as
bromiding agents, which were mediated by strong chemical oxidants [88,89]. Interestingly, NBS was
straightforwardly utilized for the electrophilic bromination under ultraviolet UV irradiation [90].
However, the high cost and the toxicity of chemical oxidants is associated with heavy pollution to
the environment, making them a major concern for the synthetic industry. In order to overcome the
disadvantages inherent in chemical oxidants, Kakiuchi and co-workers elegantly substantiated the
Pd-catalyzed bromination of arylpyridine with hydrogen bromide via electrochemical oxidation [91].
Compared with regular palladium-catalyzed C–H bromination, many advances were achieved for
this electrochemical protocol. However, the involvement of corrosive acid (HBr) and noble metal as
the catalyst was the main drawback. Herein, we report on an electrochemical transition-metal-free
C–H bromination with bromide salts as the source under mild conditions with inexpensive electrode
materials that are commercially available in supermarkets. [92]

2. Results and Discussions

To prove the concept, we chose ubiquitous bromide salts, i.e., tetrabutylammonium bromide
(nBu4NBr) and/or ammonium bromide (NH4Br), as the bromide source as well as the supporting
electrolyte. In order to gain rational understanding of the oxidative process, cyclic voltammetric (CV)
experiments were conducted. As shown in Figure 1 (dark red line), the oxidative peak potential of Br−

appeared at 0.96 V and 1.22 V versus Ag/Ag+, which were assigned to the corresponding Br·/Br−

and Br+/Br· redox couple, respectively [5–7]. Indole, one of the electron-rich heterocyclics, displayed
a profound nucleophilicity, and its CV behavior was surveyed. Notably, the oxidative potential of
indole was observed at 1.39 V versus Ag/Ag+ (Figure 1, bright red line). Intriguingly, both the peak
potentials of Br− and indole unambiguously shifted and diminished to the positive side when equal
molar of substrates were added. This scenario can be explained by the hydrogen bonding between
the free N–H moiety of indole and the bromide anion (Figure 1, blue line). Interestingly, the addition
of equal molar of NH4Br to the mixture of nBu4NBr and indole resulted in a recovery of the intrinsic
peak potential (Figure 1, pink line).
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Figure 1. Cyclic voltammetry investigation of indole and bromide salts. Conditions: LiClO4 (0.1 M in 
MeCN) as background supporting electrolyte, glassy carbon as working electrode, Pt wire as counter 
electrode, Ag in AgNO3 (0.01 M)–LiClO4 (0.1 M) in MeCN as reference electrode, indole (0.1 M), 
nBu4NBr (0.1 M), and NH4Br (0.1 M). The scan rate is 100 mV/s. 

With the aim of confirming the existence of hydrogen bonding, infrared (IR) spectroscopy of 
indole and/or bromide sources was further performed. As shown in Figure 2, the characteristic 
wavenumber (approximately 3370 cm−1) of free indole (free N–H) shifted distinctly to a new broad 
peak around 3200 cm−1 when equal molar of nBu4NBr was added to the sample of indole. This 
phenomenon can again be attributed to the H-bonding interaction between the free N–H and the 
bromide anion. 
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Figure 2. Infrared spectroscopy studies of indole and bromide salts. 

With the understanding of electrochemical oxidative course, we carried out the reaction with 
indole 1 and nBu4NBr as well as NH4Br to testify the electrochemical umpolung of bromide. Initially, 
the procedure employed the mixture of nBu4NBr and NH4Br in order to interrupt the H-bonding with 
indole and was set up in 1,4-dioxane under a galvanostatic model. Unfortunately, trace of the desired 
product 2 was formed (Table 1, entry 1). However, when the reaction was run in tetrahydrofuran 
(THF), 39% of 2 was generated (Table 1, entry 2). Chlorine-containing solvents, such as 
dichloroethane (DCE), provided moderate efficiency (43% yield, Table 1, entry 3). Then, we screened 

Figure 1. Cyclic voltammetry investigation of indole and bromide salts. Conditions: LiClO4 (0.1 M in
MeCN) as background supporting electrolyte, glassy carbon as working electrode, Pt wire as counter
electrode, Ag in AgNO3 (0.01 M)–LiClO4 (0.1 M) in MeCN as reference electrode, indole (0.1 M),
nBu4NBr (0.1 M), and NH4Br (0.1 M). The scan rate is 100 mV/s.

With the aim of confirming the existence of hydrogen bonding, infrared (IR) spectroscopy of
indole and/or bromide sources was further performed. As shown in Figure 2, the characteristic
wavenumber (approximately 3370 cm−1) of free indole (free N–H) shifted distinctly to a new broad
peak around 3200 cm−1 when equal molar of nBu4NBr was added to the sample of indole. This
phenomenon can again be attributed to the H-bonding interaction between the free N–H and the
bromide anion.
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Figure 2. Infrared spectroscopy studies of indole and bromide salts.

With the understanding of electrochemical oxidative course, we carried out the reaction with
indole 1 and nBu4NBr as well as NH4Br to testify the electrochemical umpolung of bromide. Initially,
the procedure employed the mixture of nBu4NBr and NH4Br in order to interrupt the H-bonding with
indole and was set up in 1,4-dioxane under a galvanostatic model. Unfortunately, trace of the desired
product 2 was formed (Table 1, entry 1). However, when the reaction was run in tetrahydrofuran
(THF), 39% of 2 was generated (Table 1, entry 2). Chlorine-containing solvents, such as dichloroethane
(DCE), provided moderate efficiency (43% yield, Table 1, entry 3). Then, we screened the aprotic polar
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media, for instance, dimethylforamide (DMF), dimethyl sulfoxide (DMSO), and ethyl acetate, in which
25% to 58% of the final product was isolated (Table 1, entries 4–6). The ethanol as medium resulted in
20% yield (Table 1, entry 7). Satisfyingly, when the reaction was set up in acetonitrile (MeCN), excellent
efficiency was observed (81% yield, Table 1, entry 8). Notably, this transformation was sensitive to
water as the yield decreased sharply in the presence of water (Table 1, entry 11). Interestingly, this
protocol worked smoothly when the amount of bromide salts was reduced, whereas no significant
enhanced performance was detected when the quantity of bromide anion was increased (Table 1, entry
12 vs. 15). It should be noted that this approach almost shut down when only NH4Br was applied as
the bromide source because of the poor solubility (Table 1, entry 16). In addition, diminished yield was
observed with only nBu4NBr as the nucleophile (Table 1, entry 17), presumably due to the slowdown
in the cathodic reduction of proton to hydrogen. This was the case in the absence of NH4Br (Table 1,
entries 9–10). Increasing or decreasing the current value and displacement of the graphite rod with
platinum plate led to diminished yields.

Table 1. Reaction optimization. a.
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nBu4NBr/NH4Br 

(2 equiv.-2 equiv.) DMSO 2 mA 54 

6 
nBu4NBr/NH4Br 

(2 equiv.-2 equiv.) EtOAc 2 mA 58 

7 
nBu4NBr/NH4Br 

(2 equiv.-2 equiv.) EtOH 2 mA 20 

8 
nBu4NBr/NH4Br 

(2 equiv.-2 equiv.) MeCN 2 mA 81 

9 
nBu4NBr/NaBr 

(2 equiv.-2 equiv.) MeCN 2 mA 60 

10 
nBu4NBr/KBr 

(2 equiv.-2 equiv.) MeCN 2 mA 28 

11 
nBu4NBr/NH4Br 

(2 equiv.-2 equiv.) 
MeCN/H2O 
(10-2 mL) 2 mA 12 

12 
nBu4NBr/NH4Br 

(1 equiv.-1 equiv.) MeCN 2 mA 80 

Entry Bromide Source Solvent Constant Current Yield (%)

1 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) 1,4-dioxane 2 mA <5

2 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) THF 2 mA 39

3 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) DCE 2 mA 43

4 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) DMF 2 mA 25

5 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) DMSO 2 mA 54

6 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) EtOAc 2 mA 58

7 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) EtOH 2 mA 20

8 nBu4NBr/NH4Br
(2 equiv.-2 equiv.) MeCN 2 mA 81

9 nBu4NBr/NaBr
(2 equiv.-2 equiv.) MeCN 2 mA 60

10 nBu4NBr/KBr
(2 equiv.-2 equiv.) MeCN 2 mA 28

11 nBu4NBr/NH4Br
(2 equiv.-2 equiv.)

MeCN/H2O
(10-2 mL) 2 mA 12

12 nBu4NBr/NH4Br
(1 equiv.-1 equiv.) MeCN 2 mA 80

13 nBu4NBr/NH4Br
(1 equiv.-1 equiv.) MeCN 2 mA 62 b

14 nBu4NBr/NH4Br/NaBr
(1 -0.5-0.5 equiv.) MeCN 2 mA 64

15 nBu4NBr/NH4Br
(4 equiv.-2 equiv.) MeCN 2 mA 82

16 NH4Br (2 equiv.) MeCN 2 mA <5

17 nBu4NBr (2 equiv.) MeCN 2 mA 15

a Reaction conditions: graphite rod anode and graphite rod cathode, indole 1 (0.2 mmol), bromide salts as indicated,
solvents (10 mL), 2 mA, air, 11.5 h, room temperature. b under O2.
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Next, we focused our attention on the substrate scope. We tested a wide range of indole
derivatives, as illustrated in Table 2. Good to excellent conversion of the corresponding starting
materials was observed, as indicated by gas chromatography–mass spectrometry (GC–MS) and
thin-layer chromatography (TLC). Surprisingly, we observed that most of the 3-bromoindole derivative
products were not stable and decomposed quickly at ambient temperature of 28 ◦C. Furthermore, the
titled products could only be stored for a few hours at 4 ◦C in the refrigerator.

Table 2. Testing of indole derivatives.
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Consecutive anodic oxidation of bromide ion provided bromine cation to furnish the umpolung step.
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releasing a proton. Cathodic evolution of hydrogen via reduction of proton served as the half-reaction.
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Scheme 2. Proposed mechanism for the umpolung coupling of two nucleophiles.

3. Experimental Section

General Information: Chemicals and solvents were purchased from commercial suppliers and
used as received. 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE II 400 (400 MHz)
spectrometer (Bruker, Switzerland). Chemical shifts were calibrated using residual undeuterated
solvent as an internal reference (CDCl3: 7.26 ppm 1H NMR, 77.0 ppm 13C NMR). The abbreviations
used for explaining the multiplicity were as follows: s = singlet, d = doublet, t = triplet, q = quartet,
m = multiplet, dd = doublet of doublet, brs = broad singlet. GC–MS spectra were recorded on Agilent
7890B-5977B (Agilent Technologies Inc., California, CA, USA). Both anode and cathode electrodes were
carbon rod electrodes (diameter 1.0 cm, length 10 cm). TLC employed 0.25-mm glass silica gel plates.
The developed chromatogram was analyzed by a UV lamp (254 nm). Flash chromatography columns
were packed with 200–300 mesh silica gel in petroleum (bp: 60–90 ◦C). Cyclic voltammograms were
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obtained on a CHI 760E potentiostat. IR spectra (CH Instruments Ins., Shanghai, China) were recorded
on a Nicolet10 spectrometer (CH Instruments Ins., Shanghai, China).

General Procedure for the Electrolysis: An oven-dried, 10 mL two-neck glass flask was equipped
with a magnetic stir bar. The substrate (0.20 mmol, 1 equiv.), nBu4NBr (0.20–0.80 mmol), NH4Br
(0.20–0.40 mmol), and CH3CN (10 mL) were combined and added. The flask was equipped with
carbon rod electrodes (diameter 1.0 cm, length 10 cm) as both the anode and the cathode. The reaction
was initiated at a constant current of 2 mA at room temperature. After complete consumption of the
starting material, the solvent was removed with a rotary evaporator. The residue was then subjected
to flash column chromatography on silica gel to afford the product.

Cyclic Voltammetry Studies: Cyclic voltammetric measurements were carried out in a 50 mL
glass vial at room temperature. A glassy carbon disk electrode (diameter is 3.0 mm) was used as the
working electrode, while a platinum plate electrode (1.0 × 1.0 cm2) was used as counter electrode.
The reference Ag/Ag+ electrode was made by immersing a sliver wire in a solution of AgNO3

(0.01 M)–LiClO4 (0.1 M) in MeCN and separated from the reaction by a salt bridge. The scan rate was
100 mV/s.

Characterization of 3-Bromo-1H-indole: Column chromatography was used for purification on
a silica gel column using petroleum ether:ethyl acetate = 10:1 as the eluent to give the product as a pale
white solid. The data were consistent with the authentic sample. 1H NMR (400 MHz, DMSO) δ11.41
(s, 1H), 7.48 (d, J = 2.7 Hz, 1H), 7.34–7.38 (m, 2H), 7.10–7.14 (m, 1H), 7.03–7.07 (m, 1H).

4. Conclusions

In summary, we developed a concise electrochemical umpolung of bromide ion under
mild conditions. The electrolysis utilized cheap electrode material in undivided cell, providing
3-bromoindole in excellent yield.
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