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If there are no carryover effects, AB/BA crossover designs are more efficient than parallel (A/B) and extended parallel (AA/BB)
group designs. &is study extends these results in that (a) optimal instead of equal treatment allocation is examined, (b) allowance
for treatment-dependent outcome variances is made, and (c) next to treatment effects, also treatment by period interaction effects
are examined. Starting from a linear mixed model analysis, the optimal allocation requires knowledge on intraclass correlations in
A and B, which typically is rather vague. To solve this, maximin versions of the designs are derived, which guarantee a power level
across plausible ranges of the intraclass correlations at the lowest research costs. For the treatment effect, an extensive numerical
evaluation shows that if the treatment costs of A and B are equal, or if the sum of the costs of one treatment and measurement per
person is less than the remaining subject-specific costs (e.g., recruitment costs), the maximin crossover design is most efficient for
ranges of intraclass correlations starting at 0.15 or higher. For other cost scenarios, the maximin parallel or extended parallel
design can also become most efficient. For the treatment by period interaction, the maximin AA/BB design can be proven to be the
most efficient. A simulation study supports these asymptotic results for small samples.

1. Introduction

&e standard design of a randomized clinical trial is the
parallel group design: subjects are randomly assigned to
one of two treatments, say A or B. An alternative, well-
known design is the AB/BA crossover trial in which
subjects receive both treatments, A and B, but the se-
quencing of the treatments is opposite for two randomly
allocated groups [1, 2]. An AB/BA crossover trial is con-
sidered most suited when examining treatments for
chronic or ongoing diseases, such as rheumatism, chronic
obstructive pulmonary disease, or (frequent) heartburn. In
these cases, there is no real possibility that the disease gets
cured, and the aim is to moderate the effects of the disease
[2]. A third design that we will consider involves treatment
sequences AA and BB. &is design extends the parallel
design across two treatment periods, allows for testing
treatment by time interaction effects, and is a realistic
alternative for the AB/BA design in case the treatment
regime should continue.

If the outcome variable is continuous and (approxi-
mately) normally distributed, the data can be analyzed
by mixed effects regression [3]. Of primary interest is testing
the treatment effect of, for instance, a new medication for
chronic obstructive pulmonary disease. A relevant issue
then is which design is the most efficient in estimating the
treatment effect, thereby yielding maximum power for
testing this effect. Such optimality has already been exam-
ined when comparing crossover and parallel designs [2] and
when comparing all three designs introduced before [4, 5]. If
there are no carryover effects and no dropouts, the sample
sizes are equal and equally allocated to the treatments, an
AB/BA design yields more efficient estimates of the treat-
ment effect than a parallel and extended parallel design and
consequently, will yield more power to test this effect.

&e present study extends results on the relative efficiencies
of these designs in that (a) optimal instead of equal treatment
allocation is examined, (b) allowance is made for treatment-
dependent outcome variances, and (c) next to treatment ef-
fects, also treatment by period interaction effects are examined.
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Outcome variances may differ between treatments [6, 7]. &is
also is to be expected if treatments differ in terms of their
effectiveness. Furthermore, since research costs and outcome
variances may differ between treatments, equal allocation to
treatments may not be the most efficient.&e issue then is how
to allocate subjects to treatments such that a design’s efficiency
is optimized, and how different designs relate in terms of
efficiency under such optimal allocation. Optimal allocation
requires a priori knowledge on parameters of the analysis
model, that is, intraclass correlations for the mixed effects
model that we consider. Since this knowledge typically is rather
vague, optimal allocations and corresponding efficiencies for
maximin versions of the (extended) parallel design and
crossover design will be derived. &ese maximin designs
guarantee a power level across plausible ranges of the intraclass
correlations at the lowest research costs.

In designs where treatments are successively given to the
same group of subjects, carryover may occur. For the AB/BA
trial, it may be that, in the AB sequence treatment, A still has
an effect on the outcome, when B has been given and the
second measurement is done. When in the BA sequence, the
effect of B is present, once A has been administered and this
effect differs from the carryover effect for the AB sequence,
differential carryover occurs. &e present study assumes that
differential carryover can be safely excluded or is negligible
and that this effect does not need to be estimated in ana-
lyzing the data.

&e paper is structured as follows. Section 2 will present
the linear mixed model for analyzing data from each of the
three designs. Section 3 will introduce the efficiency criterion
and will provide asymptotic expressions for this criterion in
the case of maximum likelihood estimation of the treatment
effect. Starting from a flexible cost function, optimal allo-
cations to treatments will be derived as well as resulting
design efficiencies. Since the efficiencies depend on the
intraclass correlations and knowledge on these parameters is
often limited, in Section 4, we will derive maximin designs.
Section 5 will show to what extent the asymptotic efficiencies
translate into desired power levels for small sample sizes.
Section 6 will give an application of the results, and Section 7
will discuss some issues for further research.

2. Linear Mixed Effects Models

In the case of a parallel design, an extended parallel design,
and a crossover design, the subjects are randomly allocated
to one of the two arms. In a parallel design to treatment A or
treatment B, in an extended parallel design, they are allo-
cated to treatment sequence AA or BB, and in a crossover
trial to treatment sequence AB or BA. We consider
a quantitative outcome variable, denoted as yij for person j
(j � 1, . . . , N) at measurement occasion i, and assume yij is
(approximately) normally distributed.

For a parallel design and outcome variances that differ
between treatments A and B, simple linear regression with
heterogeneous variances may be an adequate tool for data
analysis:

yij � β0 + β1treatij + δAij 1− treatij􏼐 􏼑 + δBijtreatij, (1)

where treatment is coded 0 for persons having treatment A
and coded 1 for persons having treatment B, and δAij and δBij
are normally distributed, with mean 0 and variances σ2A and
σ2B, respectively.&e random terms δAij and δ

B
ij can be thought

of as consisting of a random person (between-subject)
effect, u0j, and a treatment-dependent random error
(within-subject) effect, εAij and εBij. In formula, δAij � u0j + εAij,
and δBij � u0j + εBij. &ese two sources of random variation
cannot be separated in a single-period parallel trial.

For a crossover AB/BA design and an extended, two-
period, parallel AA/BB design, however, the variances of u0j

and of εAij and εBij can be identified. &e linear regression
model can then be extended with a random intercept as well
as a fixed effect of time, yielding the following mixed effects
model:

yij � β0 + β1treatij + β2timeij + uoj + εAij 1− treatij􏼐 􏼑

+ εBijtreatij.
(2)

In (2), time is coded 0 for observations at the first
measurement and coded 1 for observations at the second
measurement. &e random terms u0j, εAij, and εBij are in-
dependently normally distributed, with mean 0 and vari-
ances σ20, σ

2
εA, and σ2εB, respectively. &eir relation with the

variances in (1) is σ2A � σ20 + σ2εA for treatment A and σ2B �

σ20 + σ2εB for treatment B.
In the case we want to examine whether there is an

interaction between treatment and period, the model in (2)
is extended as follows:

yij � β0 + β1treatij + β2timeij + β3treatij × timeij + uoj

+ εAij 1− treatij􏼐 􏼑 + εBijtreatij,

(3)

where β3 represents the treatment by period interaction effect.
&e parameters in (1)–(3) can be estimated through maxi-
mum likelihood (ML). In what follows, we are interested in
optimally estimating β1 in (1) and (2), which will be denoted
as βtreat, and in optimally estimating β3 in (3), which will be
denoted as βtreat×time. A relevant concept is the intraclass
correlation, which is between-subject variation on the out-
come as compared to the total outcome variation. For the
models in (2) and (3),this can be expressed as ρA � σ20/(σ

2
0 +

σ2εA) and ρB � σ20/(σ
2
0 + σ2εB) for treatments A and B, re-

spectively.&e larger the person (between-subject) variance as
compared to the error (within-subject) variance, the larger the
intraclass correlations. Note that we assume a common be-
tween-subject variance, but allow for treatment-dependent
within-subject variances, leading to treatment-dependent
within-subject correlations. We also define a variance ratio
ϕ � (σ20 + σ2εA)/(σ20 + σ2εB) � σ2A/σ2B, which can be expressed
as a ratio of the intraclass correlations, ϕ � ρB/ρA.

3. Optimal Allocations and Corresponding
Design Efficiencies

Let Var(􏽢βx ∣ξ) denote the variance of the estimator of the
treatment effect β1 in (1) or (2) or the variance of the
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treatment by the period interaction effect β3 in (3), given
a design ξ. &e efficiency of an estimator of βx is defined
as the inverse of its variance, that is, (Var(􏽢βx ∣ξ))−1. In the
sequel, we will consider the efficiency of one design, ξ1,
versus another design, ξ2, which is defined as
Var(􏽢βx ∣ξ2)/Var(􏽢βx ∣ξ1) and denoted as the relative effi-
ciency. Since no closed-form expressions are available for the
variances of the maximum likelihood (ML) estimator, as-
ymptotic variances of the ML estimator were derived
(Appendices A.1 and A.2).

&e optimal allocation to treatments minimizes the
variance of the estimator of βtreat in (1) or (2) and of βtreat×time
in (3), given a fixed research budget. Note that changing the
coding of the treatment factor or the time factor in (1)–(3),
for instance into 1 versus −1 instead of 1 versus 0, will not
affect the optimal allocation. Such a change of coding leads
to a linear transformation of βtreat or βtreat×time, and this will
change the variance of their estimators only by a multipli-
cative constant. &is implies that allocations that minimize
the variance of the estimators do not depend on the coding
of treatment and time.

To derive the optimal allocations under a budget re-
striction, we need to define a budget function. Let the costs
involved with each subject in the parallel design be csp euros,
in an extended parallel design be csep euros, and in
a crossover design be csc euros. &ese costs may represent
financial rewards given to subjects for participating in the
trial but also the (average) costs of recruiting a subject.
Furthermore, for treatments A and B there are, for each
subject, costs cA and cB, respectively, and each measurement
may involve ct euros. Finally, attached to each treatment
sequence, there may be administration costs cts.

In the case of allocation proportions pA for treatment A
and pB � 1− pA for treatment B in a parallel design having np
subjects, the following budget C∗ is required:

C
∗

� 2cts + np csp + ct􏼐 􏼑 + pAnpcA + 1−pA( 􏼁npcB. (4)

For the designs that we consider, this budget function
can be reparametrized such that it is the same as the cost
function given by Yuan and Zhou [8], thereby generalizing
the cost function proposed by Brown [9] and Berger and
Wong [4].

For an AB/BA crossover design, involving nc subjects
and allocation proportions pAB for treatment sequence AB
and pBA � 1− pAB for treatment sequence BA, noting that
each subject receives both treatment A and B and is mea-
sured twice, the following budget is required:

C
∗

� 2cts + nccsc + nccA + nccB + 2ncct. (5)

Finally, the required budget for an AA/BB design, in-
volving nep subjects, with allocation proportions pAA and
pBB � 1− pAA for the treatment sequences AA and BB, re-
spectively, is as follows:

C
∗

� 2cts + nepcsep + 2neppAAcA + 2nep 1−pAA( 􏼁cB

+ 2nepct.
(6)

Note that, for the functions in (4)–(6), the budget may
simply be the total number of observations involved in

a study, by setting ct � 1 and the other costs to 0. It can also
represent the total number of subjects involved, by setting
csp � csep � csc � 1 and the remaining costs to 0.

In what follows, we will assume that the subject-specific
costs of the two-period designs are the same; that is,
csep � csc � cs_2p. Since subjects in these designs receive two
treatments and a washout period may be involved, these
costs are very likely larger than those of a parallel design. We
also assume that the subject-specific costs for the two-period
designs will not exceed 2 times the subject-specific costs
for the parallel design, so that csp≤ cs_2p≤ 2csp. Finally, since
each design involves two treatment sequences, the admin-
istration costs are the same for each of the three designs
considered, and thus, the budgets that are available for
remaining costs are identical; that is, the budget C� C∗ − 2cst
is the same for each design.

3.1. Treatment Effect. For treatment effect estimation, the
optimal allocations to the treatment sequences are derived in
Appendix B. &e optimal allocations and corresponding
(asymptotic) variances of the treatment effect estimators are
shown in the second and third column of Table 1, respectively.
&e optimal allocation ratios of the parallel and the extended
parallel design depend on the costs and intraclass correlations:
the more the expensive treatment A (or the cheaper treatment
B) and the larger the intraclass correlation in treatment A (or
the smaller the intraclass correlation in treatment B), themore
the subjects have to be assigned to treatment B. &e optimal
allocation ratio for a crossover design is 1, which may be
expected, since both groups receive both treatment A and B.

3.2. Treatment by Period Interaction Effect. In the case the
treatment by period interaction effect is of primary interest,
the optimal allocations can be derived along lines similar to
the derivations for the treatment effect (Appendix B). &e
allocations and corresponding optimal variances are dis-
played in Table 1. Note that, similar to treatment effect
estimation, the allocation ratio for a crossover design is 1,
whereas the allocation ratio for an extended parallel design
depends on the treatment costs and intraclass correlations,
such that more persons are allocated to treatment sequence
AA if the intraclass correlation of A decreases, the intraclass
correlation of B increases, the costs of treatment A decrease,
or the costs of treatment B increase.

4. Maximin Designs

Choosing the optimal allocation requires knowledge on the
intraclass correlations ρA and ρB (remember that the vari-
ance ratio ϕ is fixed if ρA and ρB are given). Commonly, there
is only limited knowledge on these parameters. A possible
solution is the maximin strategy [4], consisting of 2 steps: (1)
for each design determine the minimum efficiency of
the effect estimator across the plausible ranges for the
intraclass correlations ρA and ρB and (2) choose that design
which maximizes this minimum efficiency. Such a design
optimizes a worst case scenario and is called a maximin
design. &e maximin strategy implies choosing the design
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that minimizes the maximum variance of the estimator of
the effect of interest. In determining sample sizes, choosing
values for the intraclass correlations ρA and ρB within their
plausible ranges (and thus a variance ratio ϕ within its
plausible range) for which the variance is maximum will
guarantee the desired power level also for all other values of
these parameters. Moreover, the maximin design guarantees
this power level at the lowest research costs. In what follows,
we will refer to ranges of ρA and ρB that have lower bounds
ρLA and ρLB and upper bounds ρUA and ρUB , respectively.

4.1. Treatment Effect. From the asymptotic variances in Ta-
ble 1, one can derive for which values of ρA and ρB (and thus
for which value of the variance ratio ϕ), the variance of the
treatment effect estimator is maximized. &ese derivations are
given in Appendix C. &e maximin parameter values and
corresponding variances for the treatment effect estimator
under optimal allocation to the treatments are shown in Ta-
ble 2. &e corresponding optimal allocations for the maximin
designs are obtained by substituting the maximin parameter
values of Table 2 into the allocation ratios as given in Table 1.

If for a parallel design the maximin value for the vari-
ance ratio ϕ∗ � (cA + ct + csp)/(cB + ct + csp) is within the
plausible range for ϕ, that is, [ρLB/ρ

U
A , ρUB /ρ

L
A] and cs_2p≤ 2csp,

then a parallel design is always less efficient than a maximin
crossover design. If for an extended parallel design the
maximin value for one of the intraclass correlations is within
the plausible range for the corresponding intraclass corre-
lation, then also this design is less efficient than a maximin
crossover design. For other scenarios, the relations between
the maximin designs are more complicated, depending on
the ranges for ρA and ρB, the costs of treatments, subject
recruitment, and measurement.

A systematic numerical evaluation was done to examine
under what conditions the crossover design is the best choice
in terms of efficiency. For ρA and ρB, we consider ranges of

width 0.10 (small), 0.30 (medium), and 0.60 (large).&e lower
bounds were {0.01, 0.05, 0.10, 0.15, 0.20, . . .}, where the
largest possible lower bound was determined by the width of
the range under consideration. For instance, if the range is
0.30 (medium), the largest lower bound for the intraclass
correlation is 0.70. All combinations of small, medium, and
large ranges for ρA and ρB were considered. &e values of the
variance ratio ϕ thus considered vary from 1/100 to 100. Since
in most crossover trials, the intraclass correlation exceeds 0.30
[1–3, 10, 11], ranges with lower bounds of 0.30 or higher are
empirically most relevant.&e empirical evidence on the costs
cA, cB, ct, csp, and cs_2p is scarce, and we thus choose costs
covering a wide range of scenarios. Let CRA � (cA+ ct)/csp,
CRB � (cB + ct)/csp, and CRp � cs_2p/csp (note that the relative
efficiencies of the maximin designs depend only on these cost
ratios). CRA and CRB take on the values 100, 20, 10, 1, 0.1,
0.05, and 0.01. For CRp, we consider 1 and 2.

If the costs of treatments are identical between the
treatment arms, that is, CRA �CRB, for most scenarios
examined, the crossover maximin design turns out to be
most efficient. For CRp � 1 and CRA �CRB≤ 1, the crossover
design always is the most efficient. For CRp � 1 and
CRA �CRB> 1, or CRp � 2, only if the lower bound of one of
the intraclass correlations is 0.05 or lower and the ranges of
the intraclass correlations do not overlap, the parallel design
can become most efficient. Since in most empirical studies
the intraclass correlations will exceed 0.05, this implies that,
for equal costs of treatments, the crossover maximin design
will almost always be the most efficient design.

In the case the treatment costs differ and CRA≤ 1 and
CRB≤ 1, only in the case the lower bound of one of the
intraclass correlations is 0.10 or smaller, the parallel or the
extended parallel maximin design can become most efficient.
&e extended parallel design can only becomemost efficient if
CRp� 1. Hence, in all scenarios with unequal treatment costs
and CRA≤ 1 and CRB≤ 1, for intraclass correlations of 0.15 or
higher, the maximin crossover design is most efficient.

Table 1: Optimal allocation ratios and corresponding variances of the ML estimator of the treatment effect and the treatment by period
interaction for different designs under heterogeneity of outcome variances and costs.

Treatment effect
Design Allocation ratio (n1/n2) Var(􏽢βtreat)
Crossover
design 1 (cA + cB + 2ct + cs_2p)(1− ((2ρAρB)/(ρA + ρB)))σ2y/C

Parallel
design

�������������������������������
(ρB/ρA)((cB + ct + csp)/(cA + ct + csp))

􏽱 (
������������������������
(cA + ct + csp)(ρB/(ρA + ρB))

􏽱

+
������������������������
(cB + ct + csp)(ρA/(ρA + ρB))

􏽱
)2(σ2y/C)

Extended
parallel design

��������������������������������������������������������
(ρB(1 + ρA)/(ρA(1 + ρB))) × ((2(cB + ct) + cs_2p)/(2(cA + ct) + cs_2p))

􏽱 (
������������������������������������
( 2(cA + ct) + cs_2p􏼁((ρB(1 + ρA))/(ρA + ρB))

􏽱
+

������������������������������������
(2(cB + ct) + cs_2p)((ρA(1 + ρB))/(ρA + ρB))

􏽱
􏼁
2σ2y/(2C)

Treatment by period interaction
Design Allocation ratio (n1/n2) Var(􏽢βtreat×time)

Crossover
design 1 4(cA + cB + 2ct + cs_2p)(1 + 2ρAρB/(ρA + ρB))(σ2y/C)

Extended
parallel design

�������������������������������������������������������
(ρB(1− ρA)/(ρA(1− ρB))) × (2(cB + ct) + cs_2p)/(2(cA + ct) + cs_2p)

􏽱 2(
������������������������������������
(2(cA + ct) + cs_2p)((ρB(1− ρA))/(ρA + ρB))

􏽱
+

������������������������������������
(2(cB + ct) + cs_2p)((ρA(1− ρB))/(ρA + ρB))

􏽱
)2(σ2y/C)

Note. n1: sample size for A (parallel design), AB (crossover design), or AA (extended parallel design) sequence; n2: sample size for B (parallel design), BA
(crossover design), or BB (extended parallel design) sequence; σ2y � σ2A + σ2B.
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In the case the treatment costs differ and CRA> 1 or
CRB > 1, the maximin crossover design is less often most
efficient. For these cost scenarios, also for ranges of
intraclass correlations exceeding 0.15, the maximin parallel
and extended parallel design may become more efficient.
&is especially occurs if the costs of treatment A and lower
bound of the range of ρA are both larger (or smaller) than
the costs of treatment B and lower bound of ρB, re-
spectively. &e efficiency improvement is large if treatment
A is much more expensive than treatment B and if the costs
of treatments and measurements are large compared to the
subject-related costs. &is is illustrated in Figure 1. &e top
row shows that if the costs of treatment A are larger than
the costs of treatment B and the lower bound of ρA is larger
than the lower bound of ρB, a parallel design is most ef-
ficient, even up to an upper bound 1 of ρB if CRA � 100. As
can also be seen, the upper bound of ρA is not very relevant
in terms of the relative efficiencies. &e left plot of the
middle row of Figure 1 shows that if the lower bounds of ρA
and ρB are equal, then for almost all upper bounds of ρB, the
crossover design is most efficient. Again, as can be seen in
the rightmost plot of the middle row, if the lower bound of
ρA is higher than the lower bound of ρB, then for higher
upper bounds of ρB, the parallel design is most efficient but
to a lesser extent as compared to a smaller lower bound of
ρB. As is evident from the four subplots in the top and
middle row, when increasing the ratio CRA/CRB, the
crossover design becomes less efficient as compared to the
other two designs. &e subplots of the bottom row fur-
thermore show that the crossover design also becomes less

efficient compared to the other designs if CRA and CRB
increase while the ratio CRA/CRB remains constant. &is
illustrates that the efficiency of the other designs relative to
the crossover design becomes larger if the costs of treat-
ments and measurements are large compared to the sub-
ject-related costs. However, to summarize, if the treatment
costs differ and CRA> 1 or CRB > 1, no simple rules of the
thumb emerge and the most solid way to choose the most
efficient design is just to calculate the maximin variances as
given in Table 2.

Finally, if CRp � 2, the maximin parallel design is con-
sistently more efficient than the maximin extended parallel
design (as is illustrated in Figure 1). If CRp � 1, the maximin
extended parallel design can also become more efficient than
the maximin parallel design.

4.2. Treatment by Period Interaction Effect. &e maximin
parameter values and corresponding variances of the esti-
mator of the treatment by period interaction effect are
shown in Table 3. &e derivations of these results can be
done along lines similar to the derivations for the treatment
effect estimator (Appendix C).&e optimal allocation for the
extended parallel design is obtained by substituting the
maximin parameter values in the expression for the allo-
cation ratio in Table 1. For a crossover design, the allocation
ratio is 1. &e maximin efficiency of an extended parallel
design is always higher than that of a crossover design if the
maximin value ρ∗A is within the plausible range for ρA. &is
follows from

TABLE 2: Values for the parameters and variances of the treatment effect estimator for each of the maximin designs.

Design Maximin parameter values Var(􏽢βtreat) for the maximin design

Crossover design ρLA, ρLB (cA + cB + 2ct + cs_2p)(1− 2ρLAρLB/(ρLA + ρLB))(σ2y/C)

Parallel design

If (ρLB/ρ
U
A)≤ (cA + ct + csp)/(cB + ct + csp)≤ (ρUB /ρ

L
A),

choose (ρB/ρA) � (cA + ct + csp)/(cB + ct + csp)
(cA + cB + 2(ct + csp))(σ2y/C)

If (cA + ct + csp)/(cB + ct + csp)> (ρUB /ρ
L
A), then ρLA and ρUB

(
������������������������
(cA + ct + csp)(ρUB /(ρLA + ρUB ))

􏽱

+
������������������������
(cB + ct + csp)(ρLA/(ρLA + ρUB ))

􏽱
)2(σ2y/C)

If (cA + ct + csp)/(cB + ct + csp)< (ρLB/ρ
U
A), then ρUA and ρLB

(
������������������������
(cA + ct + csp)(ρLB/(ρUA + ρLB))

􏽱

+
������������������������
(cB + ct + csp)(ρUA/(ρUA + ρLB))

􏽱
)2(σ2y/C)

Extended
parallel design

If (1/ρUA) + 1≤ ((λ(1− ρUB )2)/((1 + ρUB )ρUB ))≤ (1/ρLA) + 1,

then ρ∗A � (ρUB (1 + ρUB ))/(λ(1− ρUB )2 − ρUB (1 + ρUB )), ρUB

(cA + cB((1 + ρUB )/(1− ρUB ))

+((2ct + cs_2p)/(1− ρUB )))(σ2y/C)

else if (1/ρUB ) + 1≤ (((1− ρUA)2)/(λ(1 + ρUA)ρUA))≤ (1/ρLB) + 1,

then ρUA , ρ∗B � (λρUA(1 + ρUA))/((1− ρUA)2 − λρUA(1 + ρUA)),

(cA((1 + ρUA)/(1− ρUA)) + cB + ((2ct +

cs_2p)/(1− ρUA)))(σ2y/C)

else if (λ(1− ρUB )2)/((1 + ρUB )ρUB )< (1/ρUA) + 1,

and (1− ρUA)2/(λ(1 + ρUA)ρUA)< (1/ρUB ) + 1, then ρUA , ρUB

(
�����������������������������������
(2(cA + ct) + cs_2p)(ρUB (1 + ρUA)/(ρUA + ρUB ))

􏽱
+

�����������������������������������
(2(cB + ct) + cs_2p)(ρUA(1 + ρUB )/(ρUA + ρUB ))

􏽱
)2(σ2y/(2C))

else if ((λ(1− ρUB )2)/((1 + ρUB )ρUB ))< (1/ρUA) + 1, then ρUA , ρLB
(

�����������������������������������
(2(cA + ct) + cs_2p)(ρLB(1 + ρUA)/(ρUA + ρLB))

􏽱
+

����������������������������������
(2(cB + ct) + cs_2p)(ρUA(1 + ρLB)/(ρUA + ρLB))

􏽱
)2(σ2y/(2C))

else ρLA, ρUB
(

�����������������������������������
(2(cA + ct) + cs_2p)(ρUB (1 + ρLA)/(ρLA + ρUB ))

􏽱
+

�����������������������������������
(2(cB + ct) + cs_2p)(ρLA(1 + ρUB )/(ρLA + ρUB ))

􏽱
)2(σ2y/(2C))

Note. σ2y � σ2A + σ2B; λ � (2cA + 2ct + cs_2p)/(2cB + 2ct + cs_2p).
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Figure 1: Relative efficiency for the treatment estimator of the AB/BA design versus the A/B and AA/BB designs as a function of the ranges
for the intraclass correlations in treatment A (lower bound� ρLA, upper bound� ρUA) and B (lower bound� ρLB, upper bound� ρUB ), in case of
minimizing the research costs.
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4 cA 1 + ρLB( 􏼁 + cB 1− ρLB( 􏼁 + 2ct + cs_2p􏼐 􏼑

1 + ρLB( 􏼁

σ2y
C

􏼠 􏼡

≤ 4 cA + cB + 2ct + cs_2p􏼐 􏼑
σ2y
C

􏼠 􏼡,

(7)

where the right-hand side of the inequality in turn is smaller
than the variance of a maximin crossover design (Table 3).
&e higher maximin efficiency of the extended parallel
design can also be shown to hold if the maximin value ρ∗B is
within the plausible range for ρB. Furthermore, if the var-
iance maximizing values ρ∗Aand ρ∗B are outside the plausible
ranges for ρA and ρB, respectively, then values for ρA and ρB
that coincide with one of the borders of their corresponding
ranges should be chosen as values that maximize the vari-
ance. But in that case, even smaller variances result for the
extended parallel design.

4.3. Maximin Designs 2at Minimize the Number of Subjects
and Number of Measurements. As noted in Section 3, by
setting csp� csep� csc � 1 and the remaining costs to 0 in
(4)–(6), the budget is simply the total number of subjects
involved in a study, and by setting ct � 1 and the other costs to
0, the budget reduces to the total number of measurements
involved.When the budget is the total sample size and interest
is in estimating the treatment effect, it can be proven, based on
the formulas in Table 2, that a maximin crossover design
requires less subjects than a maximin parallel design. From an
extensive numerical evaluation analogous to the one of
Section 4.1, a maximin crossover design also appears to re-
quire less subjects than a maximin extended parallel design.

When minimizing the number of measurements, the
numerical evaluation shows again that the maximin cross-
over design is the best choice provided the lower bounds of
both intraclass correlations are 0.10 or higher. In other cases

also a maximin parallel design may minimize the total
number of measurements. Since in most crossover trials the
intraclass correlation exceeds 0.30 [1–3, 10, 11], in practice,
this implies that the maximin crossover trial also is the best
choice when minimizing the number of measurements.

In the case, interest is in the treatment by period in-
teraction, Section 4.2 showed a maximin extended parallel
design to be more efficient and thus also to require less
budget than a maximin crossover trial. In the special case
where the number of subjects or the total number of
measurements are minimized, the maximin extended par-
allel design will therefore also outperform the maximin
crossover design.

5. Monte Carlo Evaluation of the Power of
Maximin Designs

&e efficiencies as derived for the maximin designs are based
on the asymptotic variance of the ML estimator, Var(􏽢βx ∣ξ).
For sufficiently large numbers of subjects, the relation be-
tween the asymptotic variance of the ML estimator and the
power level 1− c to detect a treatment effect in a two-tailed
test with type I error rate α can be approximated as follows:

Var 􏽢βx ∣ξ􏼐 􏼑 �
βx

z1−α/2 + z1−c
􏼠 􏼡

2

, (8)

where z1−α/2 and z1−c are the 100 (1− α/2) and 100 (1− c)
percentiles of the standard normal distribution. For small
sample sizes calculated by (8), corrections are needed
[12, 13]. For each of the three designs, these corrections will
be applied. We will examine to what extent the differences
between designs in asymptotic efficiencies translate into
corresponding differences in power levels for small samples.
Also, when planning sample sizes based on the asymptotic

Table 3: Values for the parameters and variances of the treatment by period interaction effect estimator for each of the maximin designs.

Design Maximin parameter values Var(􏽢βtreat×time)

Crossover
design ρUA , ρUB

(4(cA + cB + 2ct + cs_2p)(1 + ((2ρUAρUB )/(ρUA +

ρUB ))))(σ2y/C)

Extended
parallel
design

If(1/ρUA)− 1≤ ((λ(1 + ρLB)2)/((1− ρLB)ρLB))≤ (1/ρLA)− 1,

then ρ∗A � (ρLB(1− ρLB))/(λ(1 + ρLB)2 + ρLB(1− ρLB)), ρLB,

((4(cA(1 + ρLB) + cB(1− ρLB) + 2ct + cs_2p))/(1 +

ρLB))(σ2y/C)

else if (1/ρUB )− 1≤ (((1 + ρLA)2)/(λ(1− ρLA)ρLA))≤ (1/ρLB)− 1,

then ρLA, ρ∗B � (λρLA(1− ρLA))/((1 + ρLA)2 + λρLA(1− ρLA)),

((4(cA(1− ρLA) + cB(1 + ρLA) + 2ct + cs_2p))/(1 +

ρLA))(σ2y/C)

else if (λ(1 + ρLB)2)/((1− ρLB)ρLB)> (1/ρLA)− 1
and (1 + ρLA)2/(λ(1− ρLA)ρLA)> (1/ρLB)− 1, then ρLA, ρLB

2(
�������������������������������������
((2(cA + ct) + cs_2p)((ρLB(1− ρLA))/(ρLA + ρLB)))

􏽱
+

�����������������������������������
((2(cB + ct) + cs_2p)(ρLA(1− ρLB)/(ρLA + ρLB)))

􏽱
)2(σ2y/C)

else if ((λ(1 + ρLB)2)/((1− ρLB)ρLB))< (1/ρUA)− 1, then ρUA , ρLB
2(

�������������������������������������
((2(cA + ct) + cs_2p)((ρLB(1− ρUA))/(ρUA + ρLB)))

􏽱
+

�����������������������������������
((2(cB + ct) + cs_2p)(ρUA(1− ρLB)/(ρUA + ρLB)))

􏽱
)2(σ2y/C)

else ρLA, ρUB 2(
�������������������������������������
((2(cA + ct) + cs_2p)((ρUB (1− ρLA))/(ρLA + ρUB )))

􏽱
+

������������������������������������
((2(cB + ct) + cs_2p)(ρLA(1− ρUB )/(ρLA + ρUB )))

􏽱
)2(σ2y/C)

Note. σ2y � σ2A + σ2B; λ � (2cA + 2ct + cs_2p)/(2cB + 2ct + cs_2p).
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variances, we can check whether the commonly used power
levels of 80% or 90% are realized in the case of small samples.

For the treatment effect estimator, the following ex-
pression for the required number of subjects results for
a crossover design with optimal allocation:

nc � z1−α/2 + z1−c􏼐 􏼑
2

1−
2ρAρB
ρA + ρB

􏼠 􏼡
σ2A + σ2B
β2treat

􏼠 􏼡. (9)

If we let ES� βtreat/
�����������
0.5(σ2A + σ2B)

􏽱
be the effect size based

on the outcome variances in the treatment and control arm
(cf. [14]), then (9) can be rewritten as follows:

nc � 2
z1−α/2 + z1−c

ES
􏼒 􏼓

2
1−

2ρAρB
ρA + ρB

􏼠 􏼡. (10)

Note that, in the case of a maximin design, the ex-
pression is the same as (10), however, with ρLA and ρLB
being substituted for ρA and ρB, respectively. Similar re-
writings of the sample sizes in terms of the effect size are
possible for the parallel and extended parallel design,
respectively:

np � 2
z1−α/2 + z1−c

ES
􏼒 􏼓

2

· ⎛⎝1 + ⎛⎝
cA + cB + 2ct + 2csp

�����������������������
cA + ct + csp􏼐 􏼑 cB + ct + csp􏼐 􏼑

􏽱 ⎞⎠

·

������ρB
ρA + ρB

􏽲 ������ρA
ρA + ρB

􏽲

􏼠 􏼡⎞⎠,

nep �
z1− α/2 + z1− c

ES
􏼒 􏼓

2
⎛⎝1 +

2ρAρB
ρA + ρB

+ ⎛⎝
2cA + 2cB + 4ct + 2cs_2p

�����������������������������
2cA + 2ct + cs_2p􏼐 􏼑 2cB + 2ct + cs_2p􏼐 􏼑

􏽱 ⎞⎠

·

���������
ρB 1 + ρA( 􏼁

ρA + ρB

􏽳 ���������
ρA 1 + ρB( 􏼁

ρA + ρB

􏽳

⎛⎝ ⎞⎠⎞⎠.

(11)

&e choices to be made for ρA and ρB in the case of
maximin versions of the parallel and extended parallel de-
sign are determined by the conditions as formulated in
Table 2.

In the case of the treatment by period interaction effect,
the following expression for the required number of subjects
can be derived for a crossover design with optimal allocation:

nc � 8
z1−α/2 + z1−c

ES
􏼒 􏼓

2
1 +

2ρAρB
ρA + ρB

􏼠 􏼡, (12)

where ES � βtreat×time/
�����������
0.5(σ2A + σ2B)

􏽱
. In the case of

a maximin design, the expression is the same as (12),
however, with ρUA and ρUB being substituted for ρA and ρB,
respectively. &e expression for the sample size of an
extended parallel design, when allocating optimally, can
be written as follows:

nep � 4
z1− α/2 + z1− c

ES
􏼒 􏼓

2
⎛⎝1−

2ρAρB
ρA + ρB

+ ⎛⎝
2cA + 2cB + 4ct + 2cs_2p

�����������������������������
2cA + 2ct + cs_2p􏼐 􏼑 2cB + 2ct + cs_2p􏼐 􏼑

􏽱 ⎞⎠

·

���������
ρB 1− ρA( 􏼁

ρA + ρB

􏽳 ���������
ρA 1− ρB( 􏼁

ρA + ρB

􏽳

⎛⎝ ⎞⎠⎞⎠.

(13)

&e choices to be made for ρA and ρB in the case of
a maximin extended parallel design are determined by the
conditions formulated in Table 3.

Since maximin designs only require information on
plausible ranges of model parameters, they are more practical
than optimal designs. In what follows, we will therefore ex-
amine through a Monte Carlo simulation the power for
maximin designs in the case of small sample sizes. First, we
will discuss the factors that are varied and motivate the
choices made for these factors in determining the simulation
scenarios.

5.1. Choice of Ranges/Values for Relevant Factors

5.1.1. Effect Sizes. &e effect size, ES, is commonly catego-
rized into small (0.2), medium (0.5), and large (0.8) [14].
Being primarily interested in the small sample performance
of (9)–(13), we only will consider ES� 0.8, leading to the
smallest sample sizes.

5.1.2. Costs. &e empirical evidence on costs is rather
scarce, but we will choose the costs such that they imply
minimizing the sample size of a study (i.e., cA � cB � ct � 0
and csp � cs_2p � 1).

5.1.3. Intraclass Correlations. &e ranges for ρA and ρB
are identical to the ranges of the numerical evaluation of
Section 4.1. Since we are interested in the small sample
performance, for each design, we consider that pair of ranges
across all combinations of ranges for the intraclass corre-
lations (i.e., small-small, medium-medium, large-large,
small-medium, small-large, and medium-large) that lead to
the smallest sample sizes. Since this each time turns out to be
a pair from the small-small category, the same was done
for all pairs of medium and large ranges, which will be
used more often in practice. For each design, the two
resulting pairs of ranges of intraclass correlation are dis-
played in the two leftmost columns of Table 4 and the Table
in Appendix D.

5.1.4. Power Level and Type I Error Rate. In sample size
planning commonly used power levels are 80% and 90% in
a two-tailed test with either a 5% or a 1% type I error rate.
Focusing on the small sample performance, we will consider
80% power in a two-tailed test with a 5% type I error rate. For
small sample sizes derived from the standard normal
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distribution (as in (9)–(13)), corrections are needed that turn
out to depend on the type I error rate [12, 13]. For this
reason, we will also study a 1% type I error rate.

5.2. Simulation Procedure and Testing Methods. For each of
the 20 simulation scenarios, 25,000 data sets were generated.
To distinguish chance deviations of the simulated power
from systematic deviations, a 95% predictive interval was
calculated. For a nominal power π, this is defined as [π +

z0.025
������������
π(1− π)/Nsim

􏽰
, π + z0.975

������������
π(1− π)/Nsim

􏽰
], where

z0.025 and z0.975 are the 2.5 and 97.5 percentiles of the
standard normal distribution and Nsim is the number of
simulations. Since the nominal power π � 0.80 and Nsim�

25,000, the 95% predictive interval is [0.795, 0.805].
For a test of the treatment effect, the data generated for the

crossover design were analyzed with a two-sample t-test on the
difference scores obtained by subtracting the two measure-
ments for each subject. &e model in (2) implies homogeneity
of variances for these difference scores, so that a pooled
variance t-test was applied. &e data generated for the parallel
design were simply analyzed by a two-sample t-test on the
original scores, whereas the data for the extended parallel
design were analyzed with a two-sample t-test on the scores
averaged across both measurements. For these parallel designs,
(1) and (2) imply that the analyzed scores may have variances
differing between groups, so that an unpooled variance t-test
was applied. For the treatment by period interaction effect, the
data generated for the crossover design were analyzed with
a two-sample (pooled variance) t-test on the scores averaged
for each subject across both measurements, whereas the data
generated for the extended parallel design were analyzed with
a two-sample (unpooled variance) t-test on the differences
between the two measurements (3). &ese different t-tests
follow for each of the designs (involving equal numbers of
measurements per subject) from the analysis models in (1)–(3)
and do not require asymptotic assumptions.

In calculating the required sample size, (9)–(11) were
used, when interest is in testing the treatment effect, and (12)
and (13) were used, when interest is in testing the treatment
by period interaction. &e optimal allocations for each
design are given in Table 1, taking the maximin values for ρA
and ρB as determined from Tables 2 and 3 for the treatment
main and treatment by period interaction effect, re-
spectively. Since the outcome variances are unknown, the
calculated sample sizes were subsequently corrected. For an
unpooled variance t-test, if the number of persons per arm
is 8 or more, sufficient corrections for two-tailed tests are
2 extra persons per arm if α� 0.05 and 4 extra persons per
arm if α� 0.01. With less than 8 persons in one or both arms,
sufficient corrections are 3 extra persons per arm if α� 0.05
and 4 extra persons per arm if α� 0.01 ([13], p. 568). For
a pooled variance t-test, we only need to add 1 person per
arm if α� 0.05 (two-tailed) and 2 persons per arm if α� 0.01
(two-tailed) ([12], p. 1216-1217). &ese are sufficient cor-
rections for planned powers of 80% and 90%. &e simula-
tions, statistical tests, and power calculations were done in R,
version 3.1.3 [15].

5.3. Results. As can be seen in Table 4 and Appendix D, for
all sample size-design combinations that should yield 80%
power, the simulated powers were either within or above the
95% predictive intervals. &is indicates that the asymptotic
results, supplemented with simple correction rules for using
the standard normal distribution, yield sample sizes that
guarantee the desired level of power. &e realized power
levels generally are higher than 80%, since the small sample
corrections are sufficient and in some cases smaller cor-
rections would have been appropriate [12, 13].

&e power differences between the designs can become
rather large and are in line with the asymptotic relative
efficiencies. For the examples of Table 4, the crossover design
always is most efficient and in the simulation also has the

Table 4: Powers from the Monte Carlo simulations for maximin designs in the case of the treatment effect. For each pair of ranges of the
intraclass correlations, the asymptotic efficiency of each design versus the most efficient design is given within brackets.

Treatment effect
N Crossover design Parallel design Extended parallel design

Type I error rate� 0.05
[ρLA, ρUA] [ρLB, ρUB ]

[0.01,0.10] [0.90,1.00] 30 0.857 (1) 0.648 (0.61) 0.836 (0.96)
[0.01,0.10] [0.90,1.00] 44 0.959 (1) 0.822 (0.61) 0.950 (0.96)
[0.01,0.30] [0.01,0.30] 36 0.916 (1) 0.805 (0.50) 0.823 (0.76)
[0.01,0.30] [0.70,1.00] 52 0.982 (1) 0.819 (0.51) 0.922 (0.70)
[0.70,1.00] [0.70,1.00] 10 0.813 (1) 0.180 (0.15) 0.182 (0.15)
[0.90,1.00] [0.90,1.00] 6 0.902 (1) 0.088 (0.05) 0.087 (0.05)
Type I error rate� 0.01
[ρLA, ρUA] [ρLB, ρUB ]

[0.01,0.10] [0.90,1.00] 45 0.854 (1) 0.618 (0.61) 0.848 (0.96)
[0.01,0.10] [0.90,1.00] 66 0.974 (1) 0.829 (0.61) 0.967 (0.96)
[0.01,0.30] [0.01,0.30] 55 0.931 (1) 0.817 (0.50) 0.838 (0.76)
[0.01,0.30] [0.70,1.00] 77 0.989 (1) 0.822 (0.51) 0.931 (0.70)
[0.70,1.00] [0.70,1.00] 16 0.856 (1) 0.112 (0.15) 0.119 (0.15)
[0.90,1.00] [0.90,1.00] 8 0.849 (1) 0.029 (0.05) 0.030 (0.05)
Note. &e power printed in bold indicates the design for which the sample calculation should yield a power of 80%. N: total sample size.
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highest power. Additional simulations show that similar
conclusions can be drawn for ranges of intraclass correla-
tions for which the crossover design is not most efficient. As
expected, when testing the treatment by period interaction,
the extended parallel design has more power than the
crossover design (Appendix D).

6. Application in Planning a Trial

Suppose one would like to perform a randomized trial on the
effectiveness of indacaterol versus tiotropium, among subjects
suffering from chronic obstructive pulmonary disease, similar
to Donohue et al. [16]. After 12 weeks of treatment, one plans
to evaluate the effect of 18μg of tiotropium versus 300μg of
indacaterol on the bronchodilator efficacy of 24h postdose
forced expiratory volume in 1 s (FEV1 in mL). &e variance of
FEV1 in the indacaterol and the tiotropium conditions in the
study by Donohue et al. [16] differed significantly from each
other, their ratio being 1.58. No information was available on
the intraclass correlations and the research costs. Suppose
reasonable guesses on the intraclass correlations are
ρA ∈ [0.10, 0.70] for indacaterol and ρB ∈ [0.30, 0.90] for
tiotropium. If one aims at minimizing the total sample size (so
we set cA� cB� ct� 0 and csp� cs_2p� 1), the maximin cross-
over design is more efficient than the AA/BB and A/B designs
requiring only 48% and 43%, respectively, of the number of
subjects of these designs. To be able to detect a medium effect
(ES� 0.5, see below (9)) with 80% power in a two-tailed test
with a 5% type I error rate, taking asmaximin parameter values
ρ∗A � 0.10 and ρ∗B � 0.30 in (10), 54 subjects are needed. Since
the sample size calculation in (10) is based on the standard
normal, whereas the test statistic follows a t-distribution, we
add 1 subject to each treatment sequence [12], yielding a total
sample size of 56 subjects with 28 subjects being allocated to
each of the two treatment sequences of the crossover design.

7. Conclusion and Discussion

We examined the asymptotic efficiency of the ML estimator
of the treatment and the treatment by period interaction
effect for three two-treatment designs: a parallel, an ex-
tended parallel, and a crossover design. For a flexible cost
function, the optimal allocations to the treatment sequences
and corresponding optimal efficiencies were derived. Since
commonly the intraclass correlations for each of the
treatments and the ratio of treatment-dependent variances
are not precisely known, also maximin designs were derived,
which guarantee a power level across plausible ranges of
values for the intraclass correlations at the lowest costs.

When interested in testing the main effects of the
treatments, the relations between the efficiencies of the
maximin versions of the A/B, AB/BA, and AA/BB designs
depend on assumed ranges of the intraclass correlations, on
the costs of the treatments and the costs of recruiting and
measuring subjects. A numerical investigation shows that if
A and B are equally expensive or the sum of the costs of one
treatment and measurement per person are less than the
remaining subject-specific costs (such as recruitment costs),
then the crossover design is most efficient for ranges of

intraclass correlations starting at 0.15 or higher. In other cost
scenarios, also for ranges of the intraclass correlations above
0.15, the parallel design or its extended version may become
most efficient. &en, the efficiency relations are complicated,
and the most efficient design is best determined by the
results in Table 2. For the treatment by period interaction,
however, the maximin AA/BB trial is proven to be more
efficient than the maximin AB/BA design.

Since the efficiency comparisons of the maximin designs
were based on asymptotic variances, a Monte Carlo simu-
lation study was done for small samples. After applying
correction factors in sample size planning based on the
standard normal distribution, it was shown that (a) the
asymptotic relative efficiencies translate into corresponding
relative power levels and (b) power levels targeted in sample
size planning are realized. &is illustrates the practical utility
of these results for sample size calculation.

If prerandomization measurements of the outcome
variable are available, these could be included as covariates
in the analysis [1]. Adding covariates in a randomized trial
will not change the treatment effect of interest but will lead to
a reduction of the intercept variance and thus of the
intraclass correlations [3]. Provided that the costs of pre-
randomization measurements are the same for all designs
(and there are no missing values on these prerandomization
covariates), the results of the present study also apply.

&e present study did not consider carry over in deriving
optimal and maximin designs. If there is self carry over, that
is, carry over from a treatment onto itself, this implies that
steady-state did not yet occur in the first period, and then the
total treatment effect would be the relevant effect, that is, the
direct effect in the first period plus the carry over effect in the
second period [5]. If there is self carry over, one-period
designs and the AB/BA design are not suitable, as they do
not allow for estimating the total treatment effect, leaving
only the AA/BB design as a suitable option. &ere may also
be steady-state carry over, which can only occur if there is
a switch of treatments [17]. Such carry over would affect the
efficiency of the crossover design. Although one commonly
tries to avoid carry over, examining to what extent steady-
state carry over affects the relative efficiency of the maximin
crossover design would be an interesting issue for further
research.

Appendix

A.1. Asymptotic Variance for the ML
Estimator of the Treatment Effect

Let the vector of observed scores on the dependent variable
for person j(� 1, . . . , N) in a two-period design be denoted

as yj �
y1j

y2j
􏼢 􏼣. &e linear mixed model for the scores yj can

be expressed as follows:

yj � Xjβ + 1u0j + QεAj +(Ι −Q)εBj , (A.1)

where Xj is the design matrix for subject j, β is the vector
of regression coefficients, u0j is the random person effect,
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εAj �
εA1j

εA2j

􏼢 􏼣 is the vector of residual scores under treatment

A, and εBj �
εB1j

εB2j

􏼢 􏼣 is the vector of residual scores under

treatment B. In (A.1), 1�
1
1􏼢 􏼣, I is the identity matrix, andQ

is a matrix which indicates whether treatment A has been
given or not in a particular period, so for a person j with

treatment sequence AB, we haveQ�
1 0
0 0􏼢 􏼣, indicating that

A has been given in period 1 and treatment B in period 2.
Let J be a matrix with only ones (of order 2 by 2). &e

variance-covariance matrix of yj can be derived as follows:

Vj � QTQσ2εA +(I−Q)
T
(I−Q)σ2εB + σ20J. (A.2)

For the AA sequence, we have Q� I, and (A.2) can be
rewritten as follows:

Vj � σ2εAI + σ20J. (A.3)

By applying the result that, for an n× n matrix,
X � aI + bJ, with a ≠ 0 and a ≠ −nb, the inverse is X−1 �

(1/a)(I− J(b/(nb + a))) ([18], p. 443), the inverse of the
matrix in (A.3) can be written as follows:

V−1j �
1
σ2εA

I− J
σ20

2σ20 + σ2εA
􏼠 􏼡􏼠 􏼡

�
1
σ2εA

×
1

2σ20 + σ2εA
×

σ20 + σ2εA −σ20

−σ20 σ20 + σ2εA

⎛⎜⎝ ⎞⎟⎠.

(A.4)

For the BB sequence, we have I2Q� I, and in a similar
way, we obtain

V−1j �
1
σ2εB

I− J
σ20

2σ20 + σ2εB
􏼠 􏼡􏼠 􏼡

�
1
σ2εB

×
1

2σ20 + σ2εA
×

σ20 + σ2εB −σ20

−σ20 σ20 + σ2εB

⎛⎜⎝ ⎞⎟⎠.

(A.5)

Finally, for the AB sequence and BA sequence, we can
derive the following equations, respectively:

V−1j �
1

σ20 + σ2εA( 􏼁 σ20 + σ2εB( 􏼁− σ40
×

σ20 + σ2εB −σ20

−σ20 σ20 + σ2εA

⎛⎜⎝ ⎞⎟⎠,

V−1j �
1

σ20 + σ2εA( 􏼁 σ20 + σ2εB( 􏼁− σ40
×

σ20 + σ2εA −σ20

−σ20 σ20 + σ2εB

⎛⎜⎝ ⎞⎟⎠.

(A.6)

&e information matrix of the ML estimator of β can be
written as

Inf β̂ � 􏽘
N

j�1
XT

j V
−1
j Xj. (A.7)

Taking the inverse of the information matrix yields the
asymptotic variance-covariance matrix of the ML estima-
tors of β.

Different treatment sequences not only lead to different
matrices Vj but also to different Xj matrices. As an ex-
ample, we consider the crossover design. In total, we have
N subjects, and p is the proportion of persons being al-
located to the AB sequence. Let βT � (β0, β1, β2), where the
regression coefficients represent the intercept, the treat-
ment effect, and the time effect, respectively. For persons

allocated to the AB sequence, we have Xj �
1 0 0
1 1 1􏼢 􏼣,

where j � 1, . . . ,Np. For persons allocated to the BA se-

quence, we have Xj �
1 1 0
1 0 1􏼢 􏼣, where j � Np + 1, . . . , N.

We can now elaborate the matrix formulation in (A.7). For
persons in the AB sequence, we have

XT
j V
−1
j Xj �

1
σ20 + σ2εA( 􏼁σ2εB + σ20σ2εA

·

σ2εA + σ2εB σ2εA σ2εA

σ2εA σ20 + σ2εA σ20 + σ2εA

σ2εA σ20 + σ2εA σ20 + σ2εA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.8)

and for persons in the BA sequence, we obtain

XT
j V
−1
j Xj �

1
σ20 + σ2εA( 􏼁σ2εB + σ20σ2εA

·

σ2εA + σ2εB σ2εA σ2εB

σ2εA σ20 + σ2εA −σ20

σ2εB −σ20 σ20 + σ2εB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.9)

&e information matrix in (A.7) can be obtained by
summating the expressions in (A.8) and (A.9) across all
persons in each of the treatment sequences, and the as-
ymptotic variance-covariance matrix of the ML estimators
then results by taking the inverse of this matrix. We are
interested in the variance of the treatment effect estimator,
which is the entry in row 2 and column 2 of the resulting
variance-covariance matrix:

Var 􏽢β1 ∣ξcrossover􏼐 􏼑

�
σ2εB − σ2εA( 􏼁

2
p(1−p) + σ20 + σ2εA( 􏼁σ2εB + σ20 · σ2εA

4σ20 + σ2εA + σ2εB( 􏼁p(1−p)N
,

(A.10)

which, noting that ρA � σ20/(σ20 + σ2εA), ρB � σ20/(σ20 + σ2εB),
and σ2y � 2σ20 + σ2εA + σ2εB, can be written as the expression
given in Table 5. Along similar lines, the variance of the
treatment effect estimator for a parallel and an extended
parallel design, as shown in Table 5, can be derived.
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A.2. Asymptotic Variance for the ML
Estimator of the Treatment by Period
Interaction Effect

&e derivations of the variance of treatment by period in-
teraction estimator are also similar, but start from another
model and corresponding design matrices for the fixed re-
gression coefficients. Now βT � (β0, β1, β2, β3), where the
regression coefficients represent the intercept, the treatment
effect, the time effect, and the treatment by period interaction
effect, respectively.When considering again a crossover trial as
an example, for persons assigned to the AB sequence, we have

Xj �
1 0 0 0
1 1 1 1􏼢 􏼣, where j � 1, . . . ,Np. For persons assigned

to the BA sequence, we have Xj �
1 1 0 0
1 0 1 0􏼢 􏼣, where

j � Np + 1, . . . , N. For persons in the AB sequence, we obtain

XT
j V
−1
j Xj �

1
σ20 + σ2εA( 􏼁σ2εB + σ20σ2εA

·

σ2εA + σ2εB σ2εA σ2εA σ2εA
σ2εA σ20 + σ2εA σ20 + σ2εA σ20 + σ2εA
σ2εA σ20 + σ2εA σ20 + σ2εA σ20 + σ2εA
σ2εA σ20 + σ2εA σ20 + σ2εA σ20 + σ2εA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A.11)

and for persons in the BA sequence, we obtain

XT
j V
−1
j Xj �

1
σ20 + σ2εA( 􏼁σ2εB + σ20σ2εA

·

σ2εA + σ2εB σ2εA σ2εB 0

σ2εA σ20 + σ2εA −σ20 0

σ2εB −σ20 σ20 + σ2εB 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.12)

&e information matrix in (A.7) is obtained by sum-
mating the expressions in (A.11) and (A.12) across all
persons in both treatment sequences, and the asymptotic
variance-covariance matrix of the ML estimators then re-
sults by taking the inverse of this matrix.We are interested in
the variance of the treatment by period interaction effect
estimator, which is the entry in row 4 and column 4 of the
variance-covariance matrix:

Var 􏽢β3 ∣ξcross−over􏼐 􏼑 �
4σ20 + σ2εA + σ2εB( 􏼁

p(1−p)N
, (A.13)

which can be rewritten in terms of ρA, ρB, and σ2y, as the
expression in Table 5. Along similar lines, the variance of the
treatment by period interaction effect estimator for an ex-
tended parallel design, as shown in Table 5, can be derived.

B. Derivation of Optimal Allocations under
a Budget Constraint

&e asymptotic variance of the treatment effect estimator is
minimized as a function of p, the allocation proportion,
given a fixed budget C. For a crossover, parallel, and ex-
tended parallel design, p is the proportion allocated to the
sequence AB, A, and AA, respectively. &e variance for
a crossover design as given in Table 5 can be rewritten in
terms of the research costs and budget C, employing the cost
function in (5) and noting that csc � cs_2p:

Var 􏽢β1 ∣ξcrossover􏼐 􏼑 �
ρA − ρB( 􏼁

2
p(1−p) + ρAρB 1− ρAρB( 􏼁

ρA + ρB( 􏼁 ρA + ρB + 2ρAρB( 􏼁
􏼠 􏼡

·
σ2y

(1−p)pC
􏼠 􏼡 cA + cB + 2ct + cs_2p􏼐 􏼑

� ρA − ρB( 􏼁
2

+
ρAρB 1− ρAρB( 􏼁

(1−p)p
􏼠 􏼡

·
σ2y cA + cB + 2ct + cs_2p􏼐 􏼑

ρA + ρB( 􏼁 ρA + ρB + 2ρAρB( 􏼁C
⎛⎝ ⎞⎠.

(B.1)

It is easy to see that this expression is minimized if
p(1−p) is maximized, which is the case if p � 0.5.

For a parallel design, the variance of the treatment effect
estimator as given in Table 5 can be rewritten in terms of the
cost function in (4) as follows:

Var 􏽢β1 ∣ξparallel􏼐 􏼑 �
ρB

ρA + ρB
􏼠 􏼡

1
p

+
ρA

ρA + ρB
􏼠 􏼡

1
(1−p)

􏼠 􏼡
σ2y
C

· csp + ct + pcA +(1−p)cB􏼐 􏼑.

(B.2)

Taking the derivative of (B.2) with respect to p yields the
following expression:

Table 5: Asymptotic variances of the ML estimator of the treatment effect and treatment by period interaction effect for different designs
under heterogeneity of outcome variances.

Design Var(􏽢βtreat) Var(􏽢βtime×treat)

Crossover design ((ρA − ρB)2p(1−p) + ρAρB(1− ρAρB))/
((ρA + ρB)(ρA + ρB + 2ρAρB))(σ2y/((1−p)pN))

(1 + 2ρAρB/(ρA + ρB))(σ2y/((1−p)pN))

Parallel design ((ρB/(ρA + ρB))(1/p) + (ρA/(ρA + ρB))1/(1−p))(σ2y/N) na

Extended parallel
design

((ρB/(ρA + ρB))(1/p) + (ρA/(ρA + ρB))(1/(1−p)) +

((ρAρB)/(ρA + ρB))(1/((1−p)p)))(σ2y/(2N))

(((ρB(1− ρA))/(ρA + ρB))(1/p) +

((ρA(1− ρB))/(ρA + ρB))(1/(1−p)))(2σ2y/N)

Note. σ2y � σ2A + σ2B; na: not applicable.
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⎛⎝ 2 csp + ct􏼐 􏼑 + cA + cB􏼐 􏼑
ρA

ρA + ρB
􏼠 􏼡− csp + ct + cB􏼐 􏼑􏼠 􏼡p

2

+ 2 csp + ct + cB􏼐 􏼑
ρB

ρA + ρB
􏼠 􏼡p− csp + ct + cB􏼐 􏼑

ρB
ρA + ρB

􏼠 􏼡⎞⎠

·
σ2y

Cp2(1−p)2
.

(B.3)

Solving the expression for p gives two solutions, one of
which turns out to give a minimum (the second derivative of
the variance as a function of p is positive for this particular
value):

p �

��������������
csp + ct + cB􏼐 􏼑ρB

􏽱

��������������
csp + ct + cB􏼐 􏼑ρB

􏽱
+

�������������
csp + ct + cA􏼐 􏼑ρA

􏽱 . (B.4)

Finally, for an extended parallel design, the variance of
the treatment effect estimator as given in Table 5 can be
rewritten in terms of the cost function in (6) noting that
csep � cs_2p:

Var 􏽢β1 ∣ξextended parallel􏼐 􏼑 � ⎛⎝
ρB

ρA + ρB
􏼠 􏼡

1
p

+
ρA

ρA + ρB
􏼠 􏼡

1
(1−p)

+
ρAρB

ρA + ρB
􏼠 􏼡

1
(1−p)p

⎞⎠

·
σ2y cs_2p + 2pcA + 2(1−p)cB + 2ct􏼐 􏼑

2C
.

(B.5)

Taking the derivative with respect to p yields the fol-
lowing expression:

⎛⎝􏼠 cs_2p + 2ct􏼐 􏼑
ρA − ρB
ρA + ρB

􏼠 􏼡− 2cB
1 + ρA( 􏼁ρB
ρA + ρB

􏼠 􏼡

+ 2cA
1 + ρB( 􏼁ρA
ρA + ρB

􏼠 􏼡􏼡p
2

+ 2 cs_2p + 2ct + 2cB􏼐 􏼑

·
ρB 1 + ρA( 􏼁

ρA + ρB
􏼠 􏼡p− cs_2p + 2ct + 2cB􏼐 􏼑

ρB 1 + ρA( 􏼁

ρA + ρB
􏼠 􏼡⎞⎠

×
σ2y

2Cp2(1−p)2
.

(B.6)

Solving (B.6) for p gives two solutions, one of which
turns out to give a minimum (the second derivative of the
variance as a function of p is positive for his particular value):

p �

������������������������
cs_2p + 2 ct + cB( 􏼁􏼐 􏼑 1 + ρA( 􏼁ρB

􏽱

������������������������
cs_2p + 2 ct + cB( 􏼁􏼐 􏼑 1 + ρA( 􏼁ρB

􏽱
+

������������������������
cs_2p + 2 ct + cA( 􏼁􏼐 􏼑 1 + ρB( 􏼁ρA

􏽱 .

(B.7)

Substituting the optimal allocation p � 0.5, and the
allocations in (B.4) and (B.7) into the corresponding

expressions for the variance of the treatment effect estimator
yields the optimal variances as given in Table 1 of the main
text. Derivations along similar lines can be done if interest is
in minimizing the variance of the treatment by period effect
estimator. &ese result in the allocations and variances, as
also presented in Table 1 of the main text.

C. Derivation of Maximin Designs and
Variances of the Effect Estimators

Maximin designs optimize the allocation to the treatment
sequences under the worst case, that is, the maximum variance
of the treatment effect estimator across plausible ranges of the
model parameters, here the intraclass correlations ρA and ρB.

For crossover designs, the variance of the treatment
effect estimator under optimal allocation to the treatments is
(see Table 1 of the main text)

Var 􏽢β1 ∣ξcrossover􏼐 􏼑 � cA + cB + 2ct + cs_2p􏼐 􏼑 1−
2ρAρB
ρA + ρB

􏼠 􏼡
σ2y
C

.

(C.1)

By taking the derivatives with respect to ρA and ρB, it can be
shown that this expression decreases as a function of these
parameters.&is implies that the worst case occurs for the lower
bounds of the ranges for ρA and ρB. &is yields the expression
for the variance of the treatment effect estimator in the case of
a maximin crossover design in Table 2 of the main text.

Similarly, for a parallel design, we have to examine for
which values of ρA and ρB the following expression is
maximized:

Var 􏽢β1 ∣ξparallel􏼐 􏼑 �

��������������������

cA + ct + csp􏼐 􏼑
ρB

ρA + ρB
􏼠 􏼡

􏽳

⎛⎝

+

��������������������

cB + ct + csp􏼐 􏼑
ρA

ρA + ρB
􏼠 􏼡

􏽳

⎞⎠

2
σ2y
C

.

(C.2)

For derivations purposes, it is more convenient to re-
write (C.2) in terms of ϕ � ρB/ρA:

Var 􏽢β1 ∣ξparallel􏼐 􏼑 �

�������������������

cA + ct + csp􏼐 􏼑
ϕ

1 + ϕ
􏼠 􏼡

􏽳

⎛⎝

+

������������������

cB + ct + csp􏼐 􏼑
1

1 + ϕ
􏼠 􏼡

􏽳

⎞⎠

2
σ2y
C

.

(C.3)

Taking the derivative of (C.3) with respect to ϕ, we find
that the variance increases as a function of ϕ as long as
ϕ≤ (cA + ct + csp)/(cB + ct + csp) and decreases as a function
of ϕ if ϕ> (cA + ct + csp)/(cB + ct + csp). So, if we can choose
ρA and ρB from their plausible ranges such that
ρB/ρA � (cA + ct + csp)/(cB + ct + csp), this maximizes (C.2).
On the other hand, if even the lower bound of ρA, ρLA, and
the upper bound of ρB, ρUB , yield ρLB/ρ

U
A < (cA + ct + csp)/

(cB + ct + csp), then choose ρLA and ρUB . Furthermore, if
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(cA + ct + csp)/(cB + ct + csp)< ρLB/ρUA, then choose ρUA and ρLB.
Substituting the maximin values of ρA and ρB into (C.2) will
result in the variances of the treatment effect estimator as
displayed in Table 2 of the main text.

For the extended parallel design, the variance for optimal
allocation to the treatment sequences is given in Table 1 of
the main text:

Var 􏽢β1 ∣ξextended parallel􏼐 􏼑 � ⎛⎝

���������������������������

2 cA + ct( 􏼁 + cs_2p􏼐 􏼑
ρB 1 + ρA( 􏼁

ρA + ρB
􏼠 􏼡

􏽳

+

���������������������������

2 cB + ct( 􏼁 + cs_2p􏼐 􏼑
ρA 1 + ρB( 􏼁

ρA + ρB
􏼠 􏼡

􏽳

⎞⎠

2

·
σ2y
2C

.

(C.4)
Taking the derivative of (C.4) with respect to ρA

shows that the variance of the treatment effect estimator
increases as a function of ρA as long as λ(1− ρB)2/(ρB(1 +

ρB))≤ (1 + ρA)/ρA where λ � (2(cA + ct) + cs_2p)/(2(cB+

ct) + cs_2p) and decreases if λ(1− ρB)2/(ρB(1 + ρB))> (1+

ρA)/ρA. Taking into account a feasible range for ρA, the value
for ρA maximizing the variance in (C.4), ρ∗A, therefore is

ρ∗A �
ρB 1 + ρB( 􏼁

λ 1− ρB( 􏼁
2 − ρB 1 + ρB( 􏼁

if ρLA ≤ ρ
∗
A ≤ ρ

U
A

or
1
ρUA

+ 1≤
λ 1− ρB( 􏼁

2

1 + ρB( 􏼁ρB
≤

1
ρLA

+ 1,

(C.5)

ρ∗A � ρUA if ρUA ≤ ρ
∗
A or

λ 1− ρB( 􏼁
2

1 + ρB( 􏼁ρB
<

1
ρUA

+ 1, (C.6)

ρ∗A � ρLA if ρ∗A < ρ
L
A or

1
ρLA

+ 1<
λ 1− ρB( 􏼁

2

1 + ρB( 􏼁ρB
. (C.7)

Taking the derivative of (C.4) with respect to ρB shows
that the variance increases as a function of ρB as long as
(1− ρA)2/(λρA(1 + ρA))≤ (1 + ρB)/ρB and decreases if (1−
ρA)2/(λρA(1 + ρA))> (1 + ρB)/ρB. So, also taking into account
a feasible range for ρB, we have as maximin value for ρB:

ρ∗B �
λρA 1 + ρA( 􏼁

1− ρA( 􏼁
2 − λρA 1 + ρA( 􏼁

if ρLB ≤ ρ
∗
B ≤ ρ

U
B

or
1
ρUB

+ 1≤
1− ρA( 􏼁

2

λ 1 + ρA( 􏼁ρA
≤
1
ρLB

+ 1,

(C.8)

ρ∗B � ρUB if ρUB < ρ
∗
B or

1− ρA( 􏼁
2

λ 1 + ρA( 􏼁ρA
<

1
ρUB

+ 1, (C.9)

ρ∗B � ρLB if ρ∗B < ρ
L
B or

1
ρLB

+ 1<
1− ρA( 􏼁

2

λ 1 + ρA( 􏼁ρA
. (C.10)

For each of the intraclass correlations, ρA and ρB, there
are three possible values that maximize the variance of
the treatment effect estimator. Not all values can cooccur.

(C.5) and (C.8) imply that (1 + ρ∗B)2(1 + ρ∗A)2 � (1− ρ∗B)2

(1− ρ∗A)2, which in turn is true only if ρ∗A � ρ∗B � 0, an un-
realistic condition that we will not consider. Furthermore, if
ρ∗B � ρLB then (1/ρLB) + 1< ((1− ρA)2)/(λ(1 + ρA)ρA)(C.10),
which implies that λ< (((1− ρA)2)/((1 + ρA)ρA)) × (ρLB/
(ρLB + 1)). If at the same time ρ∗A � ρB(1 + ρB)/(λ(1− ρB)2 −
ρB(1 + ρB)), then also λ � ((1 + ρA)/ρA) × (ρLB(ρLB + 1)/
(1− ρLB)2). &e latter two conditions for λ imply that
(1 + ρA)2(1 + ρLB)2 < (1− ρA)2(1− ρLB)2, which is never true.
On the other hand, if ρ∗A � ρB(1 + ρB)/(λ(1− ρB)2 −
ρB(1 + ρB)), then it is possible that ρ∗B � ρUB . It can also
be shown that if ρ∗B � λρA(1 + ρA)/((1− ρA)2 − λρA(1 + ρA)),
then it is only possible that ρ∗A � ρUA. So, all this implies that we
can rewrite the “if” conditions in (C.5)–(C.7), with ρB
replaced by ρUB , and the “if” conditions in (C.8)–(C.10), with
ρA replaced by ρUA.

Finally, we can show that the combination ρ∗A � ρLA and
ρ∗B � ρLB cannot occur.&is implies the inequalities in (C.7) and
(C.10), which in turn imply that (1/ρLA) + 1< (λ(1− ρUB )2)/
((1 + ρUB )ρUB ) and (1/ρLB) + 1< ((1− ρUA)2)/(λ(1 + ρUA)ρUA),
respectively, which imply λ> ((1 + ρLA)/ρLA) × ((1 + ρUB )ρUB /
(1− ρUB )2) and λ< ((1− ρUA)2/((1 + ρUA)ρUA)) × (ρLB/(ρ

L
B + 1)),

respectively, which are incompatible. All other combinations
of the maximin values ρ∗A and ρ∗B can be shown to be possible.
&ese results lead to the procedure for determining the
maximin design as delineated in Table 2 of the main text for an
extended parallel design.

Similar derivations can be given for the maximin ver-
sions of a crossover and extended parallel design in the case
interest is in the treatment by period interaction effect.&ese
derivations are, upon request, available from the author.

D.Powers fromtheMonteCarloSimulations for
Maximin Designs in the Case of the
Treatment by Period Interaction

Table 6 provides the simulated powers for maximin designs
in the case of the treatment by period interaction. For each

Table 6

Treatment by period interaction

N Crossover
design

Extended
parallel design

Type I error rate� 0.05
[ρLA, ρUA] [ρLB, ρUB ]

[0.01, 0.10] [0.01, 0.10] 110 0.799 (0.90) 0.840 (1)
[0.01, 0.30] [0.01, 0.30] 130 0.801 (0.76) 0.899 (1)
[0.70, 1.00] [0.70, 1.00] 34 0.206 (0.15) 0.830 (1)
[0.90, 1.00] [0.90, 1.00] 15 0.111 (0.05) 0.883 (1)
Type I error rate� 0.01
[ρLA, ρUA] [ρLB, ρUB ]

[0.01, 0.10] [0.01, 0.10] 166 0.808 (0.90) 0.848 (1)
[0.01, 0.30] [0.01, 0.30] 194 0.800 (0.76) 0.912 (1)
[0.70, 1.00] [0.70, 1.00] 51 0.117 (0.15) 0.840 (1)
[0.90, 1.00] [0.90, 1.00] 23 0.048 (0.05) 0.911 (1)
Note. &e power printed in bold indicates the design for which the sample
calculation should yield a power of 80%. N: total sample size.
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pair of ranges of the intraclass correlations, the asymptotic
efficiency of each design versus the most efficient design is
given within brackets.

Data Availability

&is study is not based on empirical data. However, the R
programs that are used in this paper are available upon
request from the corresponding author.

Conflicts of Interest

&e author declares that there are no conflicts of interest
regarding the publication of this paper.

References

[1] B. Jones and M. G. Kenward, Design and Analysis of Cross-
Over Trials, Chapman & Hall, London, UK, 1989.

[2] S. Senn, Cross-Over Trials in Clinical Research, Wiley, Chi-
chester, UK, 2002.

[3] H. Brown and R. Prescott, Applied Mixed Models in Medicine,
Wiley, Chichester, UK, 2006.

[4] M. P. F. Berger and W. K. Wong, An Introduction to Optimal
Designs for Social and Biomedical Research, Wiley, Chichester,
UK, 2009.

[5] M. J. J. M. Candel, “Parallel, AA/BB, AB/BA and Balaam’s
design: efficient and maximin choices when testing the
treatment effect through mixed effects linear regression,”
Pharmaceutical Statistics, vol. 11, no. 2, pp. 97–106, 2012.

[6] R. J. Grissom, “Heterogeneity of variance in clinical data,”
Journal of Consulting and Clinical Psychology, vol. 68, no. 1,
pp. 155–165, 2000.

[7] L.-C. Huang, M.-J. Wen, and S. H. Cheung, “Noninferiority
studies with multiple new treatments and heterogeneous
variances,” Journal of Biopharmaceutical Statistics, vol. 25,
no. 5, pp. 958–971, 2015.

[8] Y. Yuan and J. Zhou, “Cost-efficient higher-order crossover
designs for two-treatment clinical trials,” Pharmaceutical
Statistics, vol. 4, no. 4, pp. 245–252, 2005.

[9] B. W. Brown Jr., “&e crossover experiment for clinical trials,”
Biometrics, vol. 36, no. 1, pp. 69–79, 1980.

[10] R. Garcia, M. Benet, C. Arnau, and E. Cobo, “Efficiency of the
cross-over design: an empirical evaluation,” Statistics in
Medicine, vol. 23, no. 24, pp. 3773–3780, 2004.

[11] M. G. Kenward and J. H. Roger, “&e use of baseline covariates
in crossover studies,” Biostatistics, vol. 11, no. 1, pp. 1–17, 2010.

[12] G. J. P. Van Breukelen and M. J. J. M. Candel, “Calculating
sample sizes for cluster randomized trials: we can keep it
simple and efficient!,” Journal of Clinical Epidemiology, vol. 65,
no. 11, pp. 1212–1218, 2012.

[13] M. J. J. M. Candel and G. J. P. Van Breukelen, “Sample size
calculation for treatment effects in randomized trials with
fixed cluster sizes and heterogeneous intraclass correlations
and variances,” Statistical Methods in Medical Research,
vol. 24, no. 5, pp. 557–573, 2015.

[14] J. Cohen, “A power primer,” Psychological Bulletin, vol. 112,
no. 1, pp. 155–159, 1992.

[15] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2013, http://www.R-project.org/.

[16] J. F. Donohue, C. Fogarty, J. Lötvall, D. A. Mahler, and
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