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Tuberculosis is one of the 10 leading causes of death in the world. The current treatment is based on a combination of
antimicrobials administered for six months. It is essential to find therapeutic agents with which the treatment time can be
shortened and strengthen the host immune response against Mycobacterium tuberculosis. M. tuberculosis needs cholesterol to
infect and survive inside the host, but the progression of the infection depends to a large extent on the capacity of the immune
response to contain the infection. Statins inhibit the synthesis of cholesterol and have pleiotropic effects on the immune system,
which have been associated with better results in the treatment of several infectious diseases. Recently, it has been reported that
cells treated with statins are more resistant to M. tuberculosis infection, and they have even been proposed as adjuvants in the
treatment of M. tuberculosis infection. The aim of this review is to summarize the immunopathogenesis of tuberculosis and its
mechanisms of evasion and to compile the available scientific information on the effect of statins in the treatment of tuberculosis.

1. Introduction

Tuberculosis is an infectious disease caused by the Mycobac-
terium tuberculosis complex, which includes the species M.
tuberculosis,M. bovis, BCG strain ofM. bovis,M. africanum,
M. caprae, M. microti, M. canettii, and M. pinnipedii. Of
these,M. tuberculosis is the cause of 98% of cases in humans.
The most common site of infection is the lung, although it
can affect other organs and systems (lymph nodes, bones,
meninges, etc.) [1]. Tuberculosis is one of the 10 leading
causes of death in the world, is the leading cause of death
by a single infectious agent, and produces more deaths than
HIV/AIDS. In 2016, the World Health Organization
reported that there were 10.3 million new cases and 1.4
million deaths caused by tuberculosis [2].

The current treatment against tuberculosis is based on the
administration of a combination of antimicrobials for six
months. The purpose of this strategy is to cure the disease,
eradicate the infection, prevent relapse, and prevent the devel-
opment of resistance. This strategy has been used for the past
60 years; however, the lengthy treatment and its adverse effects
favor poor adherence, failure, and the development of resis-
tance. Despite clinical cure, approximately half of treated
patients have permanent lung damage due to excess inflam-
mation caused by this infection [3, 4]. Therefore, it is essential
to find therapeutic agents with the potential to shorten treat-
ment time and, eventually, with the capacity to strengthen
the immune response against M. tuberculosis.

There are two different approaches in the search for new
anti-TB drugs: bactericidal antimicrobials and host-directed
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therapies (HDT) that improve the immune response of the
host to the infection. These approaches reduce excess
inflammation, prevent damage to tissues, preserve lung
function, and possibly improve the effectiveness of anti-TB
treatment to eliminate infection [5]. Examples of this group
are vitamin D, rapamycin, and statins.

Statins inhibit the main enzyme in the synthesis of cho-
lesterol, called 3-hydroxy-3-methylglutaryl-CoA (HMG-
CoA) reductase. Its main use is in patients with hypercholes-
terolemia and in the prevention of cardiovascular diseases in
patients with risk factors such as dyslipidemia, diabetes,
hypertension, and smoking [6]. However, it has been
reported that statins have pleiotropic effects on the immune
system and have been associated with better outcomes in
several infectious diseases. Recently, statins have been pro-
posed as adjuvants in the treatment of M. tuberculosis infec-
tion [7]. Based on the above, the objective of this review is to
summarize the immunopathogenesis of tuberculosis and to
collect all available scientific information on the effect of sta-
tins in the treatment of tuberculosis.

1.1. Immunopathogenesis of Tuberculosis. Infection by M.
tuberculosis begins with the inhalation of aerosols. Although
most inhaled bacilli are trapped in the upper respiratory
tract, approximately 10% of them reach the alveoli, where
they are phagocytosed by cells of the innate immune
response (macrophages, dendritic cells, and alveolar epithe-
lial cells) [8]. Phagocytosis of M. tuberculosis involves the
participation of complement receptors (CR1, CR3, and
CR4), Fc, and mannose, among others.

It has been noted that the control of the infection depends
to a large extent on the effective acidification of the phago-
some, the adequate fusion of the phage lysosome, and the
activation of processes such as autophagy and apoptosis in
the abovementioned cells [9].

The recognition of M. tuberculosis during the innate
immune response triggers cell activation and the production
of cytokines and proinflammatory chemokines such as
interferon- (IFN-) γ, tumor necrosis factor- (TNF-) α, inter-
leukin- (IL-) 6, IL-12, IL-17, IL-23, C-C motif chemokine
ligand (CCL)2, CCL3, CCL5, C-X-C motif chemokine ligand
(CXCL)8, and CXCL10 [10, 11].

A key cytokine in limiting the intracellular growth of
bacilli is IFN-γ, which is secreted in the initial stages by
natural killer (NK) cells, gamma delta T cells, and natural
killer T (NKT) cells (Figure 1). NK cells lyse monocytes and
macrophages infected with M. tuberculosis through perforin-
mediated cytotoxic activity, granzymes, and the Fas-FasL
system [12]. Other cells that help to control the growth of
M. tuberculosis and that contribute to the formation of the
granuloma are the invariant natural killer T (iNKT) cells.
The iNKT cells are important in the activation of
macrophages and dendritic cells through the production of
IFN-γ; additionally, they have been shown to be capable of
killing macrophages infected with M. tuberculosis [13]. It has
been reported that the specific activation of iNKT cells by
the alpha-galactosylceramide ligand presented via CD1d
protects inbred mouse strains susceptible to tuberculosis
[14]. However, several studies have shown that subjects with

active tuberculosis had a lower number of iNKT cells, which
could indicate that they are more susceptible to M.
tuberculosis infection [15]. IL-1β and IL-18 contribute to
the containment of infection. They are produced by
mononuclear phagocytes and promote the recruitment of
neutrophils and monocytes to the site of infection [16].
Recent reports show that IL-1β increases the secretion and
signaling of TNF, as well as the expression of TNFR1,
which leads to the activation of caspase 3, apoptosis, and
death of M. tuberculosis in macrophages [17].

The recruitment of inflammatory cells leads to the forma-
tion of early granuloma (Figure 1), composed of macro-
phages, dendritic cells, neutrophils, apoptotic cells, and
necrotic cells [18]. Several experiments have suggested that
the mechanism of apoptosis more effectively favors the elim-
ination of bacillus, while the mechanism of necrosis favors its
dissemination [19]. Fratazzi et al. reported that infected mac-
rophages that die by apoptosis are associated with decreased
mycobacterium viability, whereas this decrease is not
observed if macrophages die due to necrosis (Figure 2) [20].

The development of the effector immune response by T
lymphocytes requires the processing and presentation of
bacterial antigens through major histocompatibility complex
(MHC) molecules expressed by antigen-presenting cells
(APCs). The presentation of antigens to naïve T cells occurs
through MHC class II (MHCII) for CD4+ T lymphocytes
and class I (MHCI) for TCD8+ lymphocytes (Figure 1)
[21]. The main effector mechanism of CD4+ T cells is the
production of IFN-γ, which induces the maturation and
activation of macrophages to control or eliminate the bacil-
lus; it has been observed that the depletion of CD4+ T cells
in animal models causes reactivation of the infection and
death of the host, with high bacterial loads in the lung
[22]. Another function of CD4+ T cells is the direct produc-
tion of other cytokines, such as IL-2 and TNF-α [23].

CD8+T lymphocytes alsoplay an important role in the cel-
lular response against mycobacteria since they are capable of
killing infected cells or of directly eliminating bacilli [24, 25].

Likewise, nonconventional T cells (γδT cells) are activated
and contribute to fightM. tuberculosis infection. For example,
a marked expansion of γδ T cells in the blood of patients with
tuberculosis has been reported. These cells contribute to the
secretion of cytokines (IFN-γ and TNF-α), cytotoxic effector
function, and cellular contact-dependent signaling [26].

Recently, the involvement of B cells in the process of
developing immunity during tuberculosis infection has been
described. These cells favor antigenic presentation and
through the production of antibodies opsonize the bacilli,
activate the complement, and promote the formation of
memory cells and plasma cells [27].

With the formation of the granuloma (Figure 1), the
immune system controls more than 90% of the bacterial load
of the primary infection. In this way, most infected subjects
develop latent tuberculosis (defined as a state where the indi-
vidual is infected but remains free of clinical manifestations);
however, if the infecting bacterial inoculum is very large, if
the subject has HIV, or if the individual has some primary
immunodeficiency, the infection may evolve to progressive
active tuberculosis [28]. In subjects who develop latent
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Figure 2: Pleiotropic effect of statins. Statins exert diverse effects on the immune response. It has been reported that statins can promote
autophagy (in macrophages) and apoptosis (in tumor cells). Statins increase the number of NK and NKT cells. Statins may inhibit
cytotoxicity of NK cells. Statins inhibit MHC-II expression (in CPA) and promote discrete secretion of IL-1β, IL-18, and IFN-γ (in
mononuclear cells). Statins increase serum levels of IL-10. The blue boxes show the function of the immune cells in the pathogenesis and
the mechanisms of M. tuberculosis evasion of the immune response; at the center, the blue lines demonstrate that the effect of statins is
related to these processes; the green boxes show the statin effects that potentially favor the immune response against M. tuberculosis; and
the red boxes indicate the statin effects that could modulate the immune response against M. tuberculosis.

CXCL10, CCL19, CCL21

14-17 days

Lung

Lymph
node

TNF-�훼, IFN-�훾

IL-12, CCL19,
CCL21
8-12 days

Figure 1: Immunopathogenesis of tuberculosis. The M. tuberculosis infection begins with the inhalation of airdrops that contain numerous
bacilli that are phagocytosed. The initial stages of infection are directed by cells responsible for innate immunity, and the recruitment of
inflammatory cells leads to the formation of an early granuloma. Antigen-presenting cells migrate to nearby lymph nodes and activate
lymphocytes that return to the lung and generate the mature granulomas. The immune system contains the primary infection in almost
90% of patients, who will develop latent tuberculosis.
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tuberculosis, when an immunosuppressive condition appears
and alters the homeostasis of the immune system, such as the
coexistence of diabetes mellitus, the administration of immu-
nosuppressive drugs, or a state of malnutrition, the bacillus is
reactivated and initiates its replication, the granulomas are
broken, the levels of proinflammatory cytokines increase,
and the clinical manifestations of the disease appear. There-
fore, active tuberculosis is defined precisely by the appear-
ance of signs and symptoms of the disease (chronic cough,
sputum, and/or hemoptysis) confirmed by the isolation of
M. tuberculosis in the cultures [29].

1.2. Mechanisms of Mycobacterium tuberculosis Evasion of
the Immune Response. M. tuberculosis is able to evade both
innate and adaptive immune responses. In macrophages,
bacteria inhibit phagosome maturation by different mecha-
nisms, such as the retention of the protein TACO (trypto-
phan aspartate-containing protein) and the Rab5 protein in
the phagosome (Figure 2) [30]. This retention prevents the
process called “Rab conversion,” through which Rab5 is
exchanged for Rab7, which inhibits phagolysosome fusion
[31]. To perform this function, the phosphatidylinositol 3-
phosphate molecule produced by hVPS34 kinase is neces-
sary. Another mechanism of inhibition of phagolysosome
maturation occurs through the glycosylated lipoarabino-
mannan of the M. tuberculosis cell wall, which decreases
the activity of hVPS34 and inhibits the recruitment of the
early endosomal antigen 1 (EEA1) [32].

Under normal conditions, phagocytic cells, such as neu-
trophils, monocytes, macrophages, and eosinophils, destroy
phagocytosed microorganisms by producing reactive oxygen
and nitrogen species (NO-, O2-, and ONOO-). However,M.
tuberculosis can inhibit the recruitment of iNOS into the
phagosome and prevent the formation of reactive oxygen
and nitrogen species [33]. In addition, M. tuberculosis
secretes methionine sulfoxide reductase enzymes A and B
that reduce peroxynitrite (ONOO-) in nonionic molecules,
which do not destroy mycobacteria [34].

Another form of immune response evasion is the inhibi-
tion of antigenic presentation. In vitromodels have shown that
macrophages infected withM. tuberculosis reduce the expres-
sion of MHCII [35]. Recent data from in vivo experiments
demonstrated that APCs infected with M. tuberculosis have
lower expression of MHCII compared with uninfected APCs
[36]. It has also been reported that the ESAT-6 protein inter-
acts with beta-2-microglobulin, which affects the function of
antigen presentation through MHCI (Figure 2) [37], and it
has been shown that the suboptimal presentation of the anti-
gen contributes to the persistence of M. tuberculosis in vivo
[38]. In addition, the inhibition of antigenic presentation has
been associated with the virulence of the strains, since, for
example, M. tuberculosis H37Rv has a greater capacity to
inhibit antigenic presentation compared with H37Ra [39].

The antigenic presentation of the dendritic cells is also
affected in the normal maturation process, which is essen-
tial for the proper activation of the cell [40]; in contrast,
they have a lower expression of integrins, which decreases
the capacity of the dendritic cells to migrate to the lymph
nodes [41]. There is evidence that M. tuberculosis infection

alters the presentation of lipid antigens by CD1 molecules.
Mycobacterial wall alpha-glucan negatively regulates the
expression of CD1 in APCs [42, 43]. Recent data indicate
that immune evasion can occur not only through a block-
ade of the maturation of dendritic cells but also by facili-
tating poorly coordinated maturation. According to this
model, M. tuberculosis induces the movement of MHC-II
molecules to the cell membrane and inhibits the synthesis
of new MHC-II-type molecules. As a consequence, the
presentation of antigenic peptides of M. tuberculosis is
affected (Figure 2) [44].

In the adaptive immune response, Mahon et al. have
shown that the glycolipids of the M. tuberculosis cell wall,
including the mannosylated lipoarabinomannan (LAM),
directly inhibit the activation of polyclonal CD4+ T cells by
blocking the phosphorylation of ZAP-70 [45], and Sande
et al. reported that LAM induces CD4+ T cell anergy by
inducing the overexpression of GRAIL (the receptor associ-
ated with the induction and maintenance of anergy in CD4+

T cells) [46]. Saavedra et al. showed that the activation of
CD8+ T lymphocytes is also inhibited by the mycobacterial
glycolipid 2,3-di-O-acyl-trehalose (DAT) since it reduces
the cellular proliferation induced by the antigen [47].

Another way that M. tuberculosis evades the immune
response is by altering the production of cytokines. The
production of proinflammatory cytokines, such as TNF-α,
IL-6, and interleukin-1 beta (IL-1β), and the chemokine
MCP-1 is inhibited by phenolic glycolipids present in the
cell wall of M. tuberculosis [48]. M. tuberculosis inhibits the
production of IL-12, and the mmA4 gene has been identified
as a key locus for such inhibition [49]. It has also been
reported that signaling induced through TLR2 by M. tuber-
culosis in macrophages induces the secretion of IL-10,
suppresses IL-12, and attenuates the Th1 response, which
is critical for controlling infection [50]. Wang et al. reported
thatM. tuberculosis induces the expression of the IL-10 gene
and that IL-10 reduces antigen presentation and attenuates
phagosome maturation, which prevents bacterial death and
induces infection by M. tuberculosis over the long term in
the lung (Figure 2) [51].

The survival of M. tuberculosis within the host macro-
phages implies apoptosis resistance dependent on overexpres-
sion of the antiapoptotic protein Mcl-1 (Figure 2) [52]. It has
also been described that M. tuberculosis causes a significant
alteration of the innermembrane of themitochondria ofmac-
rophages, which favors cell death by necrosis, a mechanism
that promotes the spread of the pathogen and the appearance
of the disease [53]. M. tuberculosis can evade the autophagy
mechanism through the ectopic expression of ESAT-6, which
inhibits the formation of autophagosomes in infected macro-
phages [53] and reduces the expression ofAtg8 (ubiquitin-like
protein) in human dendritic cells (Figure 2) [54].

1.3. The Role of Cholesterol in Mycobacterium tuberculosis
Infection. The cell wall of M. tuberculosis contains an abun-
dant amount of lipids, and a relatively large fraction of its
genes encode proteins for their synthesis. It has been shown
that mycobacteria can accumulate and use cholesterol as a
carbon source and for the synthesis of some virulence
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factors, such as phthiocerol dimycocerosate and sulpholipid-
1 [55]. It has been reported that M. tuberculosis dysregulates
the metabolism of lipids in the host and the progression of
the granuloma until the caseation correlates with the high
expression of the genes for lipid metabolism and sequestra-
tion [56]; in an apoE -/- mouse model, Martens et al. studied
the effect of hypercholesterolemia in tuberculosis infection,
observing that hypercholesterolemic mice infected with M.
tuberculosis have a greater bacillary load and an accentuated
pulmonary pathology [57]. In another human study, it was
reported that dietary cholesterol is dose-dependently associ-
ated with an increased risk of having active tuberculosis [58].

Cholesterol is essential for the internalization of myco-
bacteria in host cells [30]. M. tuberculosis enters cells
through high-cholesterol domains, and by eliminating cho-
lesterol from the cell membrane, phagocytosis is inhibited
[59, 60]. Within the macrophages, the mycobacterium can
inhibit the maturation of the phagosome, along with its
hydrolytic and microbicidal capacities, and cholesterol also
plays an important role in arresting the phagosome’s matura-
tion. For example, the accumulation of cholesterol causes
abnormal retention of the TACO protein [30] and inhibits
the dissociation of Rab7 from the phagosomemembrane [61].

The foamy macrophages of the granulomas of patients
with tuberculosis are reservoirs rich in nutrients, have
altered their phagocytic capacity, and favor the persistence
of mycobacteria [62]. One study shows that M. tuberculo-
sis infection induces the accumulation of oxidized low-
density lipoprotein in alveolar macrophages, and when
alveolar macrophages are exposed to oxidized low-density
lipoproteins in vitro, the survival and persistence of intra-
cellular bacilli are promoted; the mechanism is unknown
but could be related to the use of host cholesterol as a
source of energy [63].

2. Pleiotropic Effect of Statins

The main mechanism of the action of statins is the inhibi-
tion of the enzyme HMG-CoA reductase, which regulates
the synthesis of cholesterol and has been used mainly in
patients with hypercholesterolemia. Recently, pleiotropic
effects of statins on the immune system and some bacteri-
cidal effects have been reported [64] (Figure 2).

It has been documented that statins have the capacity to
act as immunomodulators. For example, statins induce the
phagocytic activity of macrophage J774 [65]. It has also been
reported that they act as inhibitors of the expression of
MHCII induced by IFN-γ in primary endothelial cells,
monocytes, and human macrophages, which in turn inhibits
the activation of T lymphocytes [66]. The treatment of
mononuclear cells with fluvastatin produced the discrete
activation of caspase 1 and moderated the secretion of IL-
1β, IL-18, and IFN-γ [67]. It has also been demonstrated
that statins upregulate IL-10 in the serum of patients with
acute coronary syndrome [68].

Another study showed that the in vitro treatment of
mononuclear cells with atorvastatin increases the number
of NK and NKT cells in peripheral venous blood [69]. It
has also been reported that treatment with simvastatin and

IL-2 promotes the activation of NK cells [70]. In contrast,
other studies have reported that statins inhibit the cytotoxic-
ity of NK cells [71] and the function of activating receptors
[72]. It has also been shown that simvastatin therapy in
patients with hypercholesterolemia for six months increases
the iNKT cells in peripheral venous blood [73].

Other studies show that statins can induce apoptosis in
human cells from tumors through the inhibition of Ras
signaling pathways [74, 75]. Statins also promote autoph-
agy through the activation of the AMPK-TOR signaling
pathway in cells from rhabdomyosarcoma [76]. Treatment
with lovastatin increases the expression of Rab7 mRNA by
decreasing the synthesis of isoprenyl groups and promot-
ing phagosome maturation [77].

2.1. Effect of Statins on Infectious Diseases. With respect to
statins and their antimicrobial effect, it has been reported that
statin therapy reduces mortality in patients with bacteremia
and multiple organ failure [78]. Several studies have evalu-
ated the benefit of the use of statins in the prevention or treat-
ment of sepsis, although some results are contradictory. In
differentmeta-analyses, promising results have been observed
in which treatment with statins significantly reduced the pro-
gression of the disease and/or mortality associated with sepsis
[79–81].

In vitro studies have shown some antimicrobial effects
against gram-positive and gram-negative bacteria and on
some viruses and fungi [82]. The addition of atorvastatin
or lovastatin reduces the in vitro growth of Chlamydophila
pneumoniae [83] and of Salmonella enterica [84]. Simva-
statin demonstrated a significant antimicrobial effect against
methicillin-sensitive Staphylococcus aureus (average MIC,
15.65μg/mL) and, to a lesser extent, against methicillin-
resistant S. aureus (MIC 31.25μg/mL), inhibiting adhesion
and formation of biofilm of the microorganism [85].

It has been observed that lovastatin interferes with the
replication of hepatitis C virus RNA through the inhibition
of geranylgeranylation protein of the host [86]. Statins also
inhibit the assembly of dengue virus virions through a mech-
anism independent of cholesterol levels [87]. Statins have
also shown antiviral effects on cytomegalovirus [88], the
Epstein-Barr virus [89] and HIV infection [90]. The antiviral
mechanism that statins exert is not clear; however, the
metabolite rescue experiments suggest participation of the
nonsteroidal isoprenoid arm of the mevalonate pathway as
a possible mechanism of action [91, 92].

Statins inhibit the formation of biofilms of Candida
albicans [93] and, in C. glabrata, reduce ergosterol levels,
inhibit their growth, and cause the loss of mtDNA [94].
Statins also inhibit the growth of Aspergillus fumigatus;
in addition, lovastatin strengthens the activity of caspofun-
gin against A. fumigatus in an in vitro model [95, 96].

Together, these in vitro studies show that statins slow the
growth of some microorganisms, including some resistant
bacteria, and also show that they can interfere with biofilm
formation. These effects have clinical relevance because
within the biofilm, bacteria are protected against the action
of antibodies, the attack of phagocytic cells, and the effect
of antimicrobials. It is also known that biofilm bacteria can
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be up to 1000 times more resistant to antibiotics than the
same bacteria grown in liquid medium [97].

Therefore, it is very important to note that statins have the
potential to inhibit the growth of resistant bacteria and inter-
fere with the biofilm formation process. However, it is neces-
sary to emphasize that the concentrations used in in vitro
studies that have antimicrobial properties are 100 to 1000
times higher than the plasma concentrations reached in
patients undergoing statin therapy, which is why it is still nec-
essary to clarify whether these effects are transferable and if
they have any therapeutic benefit in humans.

2.2. In Vitro Effect of Statins on Mycobacterium tuberculosis
Infection. The first study on the potential effect of statins
on infection by M. tuberculosis was performed 18 years ago
by Montero et al., where it was observed that fluvastatin
slightly induces the release of TH1 cytokines and promotes
the activation of caspase 1; by infecting peripheral blood
mononuclear cells (PBMCs) with M. tuberculosis and treat-
ing them with fluvastatin, this stimulation was synergistic,
yielding concentrations up to 10 times higher than those of
TH1 cytokines and caspase 1. This result suggested that
statins could strengthen the host response against M. tuber-
culosis [67]. In 2009, another study reported that lovastatin
and fluvastatin inhibit the activation of γδ T cells induced
by M. tuberculosis antigens [98]; however, none of these
studies evaluated the effect of statins on mycobacterial
growth or the influence of these effects on the immune
response of the host against infection (Table 1).

In 2014, Parihar et al. [99] found that mononuclear cells
and monocyte-derived macrophages from patients with
familial hypercholesterolemia who had received statin ther-
apy for at least six months were more resistant to infection
with M. tuberculosis with a multiplicity of infection (MOI)
of 5 (number of bacteria per number of human/mammal
cells) compared with cells from healthy subjects who had
never taken statins. In the same study, they performed an
in vitro model with murine bone marrow-derived macro-
phages that were exposed to simvastatin at a concentration
of 50μM and were infected with M. tuberculosis at an MOI
of 5. The results showed a significant reduction in mycobac-
terial growth, without adverse effects on cell viability. In
addition, they performed Western blot and confocal micros-
copy experiments, where it was observed that simvastatin
promotes maturation in phagosomes and autophagy in
macrophages infected by M. tuberculosis. The effect of
simvastatin on the inhibition of M. tuberculosis growth was
reversed by mevalonate supplementation (Table 1). This
was the first study where the use of statins as HDT was
proposed, and the study opens the possibility of studying
the additive effect of statins with first-line drugs in drug
therapy against tuberculosis.

Lobato et al. investigated the activity and the possible
additive effects of treatment with rifampicin (1μg/mL),
atorvastatin (0.2μM-2μM), and simvastatin (0.2μM-2μM)
on THP-1 macrophages infected with M. tuberculosis, BCG
strain of M. bovis, and M. leprae at an MOI 10. After 72
hours, both statins had dose-dependent bactericidal effects
on all strains. For M. tuberculosis, both statins (2μM

atorvastatin and 2μM simvastatin) reduced the viability of
the mycobacteria by approximately 75% and showed an
additive effect with rifampicin (1μg/mL rifampicin plus
0.2μM atorvastatin or 0.2μM simvastatin). For the BCG
strain of M. bovis and M. leprae, only 0.2μM atorvastatin
had an additive effect with rifampicin. To determine the
mechanism involved in the inhibition of mycobacterial
growth, they only tested the effect of atorvastatin on THP-1
macrophages infected with M. leprae at an MOI of 10; the
results confirmed that statins promote phagosome matura-
tion (Table 1) [100].

Another study investigated whether statins could
strengthen the bactericidal effect of isoniazid. They tested
J774 macrophages, which were infected with M. tuberculosis
CDC1551 at an MOI of 10, and treated them with 5μM sim-
vastatin and 0.05μg/mL isoniazid. The results confirmed that
cells cultured in the presence of simvastatin and infected with
M. tuberculosis CDC1551 had a lower intracellular bacillary
load on day five after infection, and this effect was additive
when the cells were treated simultaneously with simvastatin
and isoniazid on the third day after infection. On the fifth
day, the additive effect lost statistical significance [101].

In 2016, Dutta et al. studied the possible adjuvant activity
of simvastatin with isoniazid, rifampicin, and pyrazinamide.
They performed experiments with the M. tuberculosis
H37Rv expressing the lux operon and THP-1 macrophages
infected at anMOI of 0.05. They used drugs at concentrations
used in experiments to reduce 50% of the relative light units
(RLU) of the mycobacterium (0.011μM isoniazid, 0.012μM
rifampicin, and 162.5μM pyrazinamide); the simvastatin
concentration was 0.1μM. The results confirmed that simva-
statin without antibiotic inhibited the growth ofmycobacteria
in the THP-1 macrophages compared with the control with-
out drugs, and the effect of simvastatin was equivalent to the
activity of 0.011μM of isoniazid. In addition, simvastatin sig-
nificantly increased the bactericidal effect when the three
drugs were added simultaneously [7]. They also evaluated
whether simvastatin could affect the intracellular accumula-
tion of rifampicin using liquid chromatography-mass spec-
trometry. It was observed that although simvastatin (0.1-
1μM) increased the bactericidal activity of rifampicin, it did
not alter its intracellular accumulation (Table 1) [7].

The different studies used different strains of mycobac-
teria (reference and clinical isolates) and different MOIs
(from 0.05 to 10); however, the effect of statins has been con-
sistent, and the studies have shown that statins activate sev-
eral cellular mechanisms (autophagy and maturation of the
lysosome phage) by which control of infection in infected
cells is favored in vitro. However, identification of the possible
direct antimicrobial effect of statins has not been performed.

Skerry et al. reported the first study on the direct
antimicrobial effect of simvastatin against M. tuberculosis
tested at different concentrations (0-320μM). The results
obtained showed that simvastatin had no inhibitory effect,
even at the highest concentration (320μM, a concentration
60 times higher than those used in in vitro experiments
performed in cells) [101].

Another study also evaluated the direct antimicrobial
effect of statins on M. tuberculosis H37Rv and the BCG
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strain of M. bovis using the agar proportion method, with
different concentrations of simvastatin. The MIC found
was 100μg/mL (238.91μM), defined as the lowest concen-
tration of the statin that inhibited more than 99% of the
bacterial population. In addition, this study reported that
simvastatin decreases the amount of phosphatidylinositol
mannosides and triacylglycerols present in the mycobacte-
rial cell wall (Table 1) [102].

TheMICs reported by the CLSI for the first-line drugs are
as follows: isoniazid, 0.2 or 1.0μg/mL; rifampin, 1.0μg/mL;
pyrazinamide, 100μg/mL; and ethambutol, 5.0μg/mL [103].
In contrast, the MIC for simvastatin is elevated and similar
to that of pyrazinamide, well above the therapeutic concen-
trations recommended for the treatment of hyperlipidemia
(0.0209μg/mL) [104]. Thus, the direct antimicrobial effect
in vitro appears to be weak, which supports the idea that
simvastatin favors or triggers the cellular mechanisms
necessary to eliminate the bacillus.

2.3. Treatment of Tuberculosis with Statins in Animal Models.
All in vivo and prospective studies of the effect of statins
against tuberculosis have been performed in mice (Table 2).
The first study was performed in C57BL/6 mice, 8-12 weeks
of age, treated intraperitoneally with simvastatin or rosuvas-
tatin (20mg/kg) or with phosphate-buffered saline (PBS) as a
control every two days for two weeks; the mice were infected
with M. tuberculosis by exposure to aerosols. Statin therapy
was continued until four weeks after infection. Both statins
showed a protective response in the infected mice, with up
to 10-fold reductions in the bacillary load in the spleen, liver,
and lungs of mice infected and treated with simvastatin, in

comparison with untreated control animals (Table 2) [99].
Lobato et al. investigated the effect of atorvastatin using the
Shepard infection model [105], in which a suspension of
1× 104M. leprae was injected into the plantar pads of
BALB/c mice. After one month of infection, the mice were
treated with atorvastatin (80mg/kg/day) in combination
with rifampicin (1mg/kg) for five months. The results
showed that atorvastatin reduced the replication ofM. leprae
and had an additive effect with rifampicin. They also showed
that treatment with atorvastatin or the combination of rifam-
pin plus atorvastatin did not increase muscle damage or hep-
atotoxicity in mice (Table 2) [100].

Subsequently, another group tested whether the addition
of statins to the standard first-line treatment regimen could
increase bactericidal capacity. BALB/c mice four to six weeks
of age were infected by aerosols with 3.7 log10 CFU of M.
tuberculosis CDC1551. The infection was allowed to prog-
ress for six weeks before the start of treatment, after which
the mice were treated by gavage with rifampicin (10mg/
kg), isoniazid (10mg/kg), and pyrazinamide (25mg/kg),
with or without simvastatin (25mg/kg), five days per week
for eight weeks. After four and eight weeks of treatment,
the standard regimen in combination with simvastatin
showed a greater efficacy for the elimination of mycobac-
teria, reducing the number of lung CFU by one additional
log10 on day 28 and 1.25 log10 on day 56 [101], suggesting
that simvastatin could improve current treatment (Table 2).

Dutta et al. confirmed that simvastatin therapy as an
adjuvant to standard treatment reduced the time to obtain
a negative culture in BALB/c mice infected with M. tubercu-
losis H37Rv by aerosols. They also evaluated the relapse rates

Table 1: In vitro effects of statins in tuberculosis.

Author Cell type Treatment Strain Effect

Montero
et al.

PBMC Fluvastatin 5 μm
Heat-inactivated M.
tuberculosis H37Ra

10 μg/mL

Promotes release of TH1 cytokines and
promotes the activation of caspase 1

Lu et al. PBMC
Lovastatin 10 μm Fluvastatin

2 μm
M. tuberculosis

antigens
Inhibits the activation of γδ T cells

Parihar
et al.

PBMC and MDM from
patients with

hypercholesterolemia
receiving statin therapy

Simvastatin 50 μM
M. tuberculosis
H37Rv MOI 5

Significant reduction of mycobacterial
growth

Parihar
et al.

Murine bone marrow-
derived macrophages

Simvastatin 50 μM
M. tuberculosis
H37Rv MOI 5

Significant reduction of mycobacterial
growth, simvastatin treatment promotes
phagosomal maturation and autophagy

Lobato
et al.

THP-1 macrophages
Rifampin 1 μg/mL plus 0.2 μM

atorvastatin

M. tuberculosis
H37Rv MOI 10
BCG strain of M.
bovis MOI 50

Atorvastatin has an additive effect with
rifampin, reducing intracellular

mycobacterial viability

Skerry
et al.

J774 macrophage-like cells
Isoniazid 0.05 μg/mL plus

5 μM simvastatin
M. tuberculosis

CDC1551 MOI 10

Simvastatin treatment enhanced the
bacterial killing activity of isoniazid at day 3

after infection

Dutta
et al.

THP-1 macrophages

0.011 μM isoniazid, 0.012 μM
rifampicin, and 162.5 μM
pyrazinamide plus 0.1 μM

simvastatin

Bioluminescent M.
tuberculosis H37Rv

MOI 0.05

Simvastatin treatment significantly
increased the bactericidal effect of isoniazid,
rifampicin, and pyrazinamide alone or in

combination

PBMC: peripheral blood mononuclear cells; MDM: monocyte-derived macrophages.
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in mice treated with simvastatin (60mg/kg) for 2.5, 3.5, and
4.5 months. Relapse was evaluated three months after stop-
ping treatment. The results showed that treatment with
anti-TB drugs plus simvastatin reduced the percentage of
relapses by 50% compared with treatment with only anti-
TB drugs (Table 2) [7].

These studies together propose statins as adjuvant
treatment to first-line drugs for the treatment of active
tuberculosis, as they show that treatment with statins
reduces the bacillary load, shortens the duration of ther-
apy, and decreases the relapse rate. However, these studies
have some limitations. First, the doses used in mice are
much higher than those used in humans. Second, some
statins are prodrugs, and in mice, 100% of the prodrug
is converted into the active metabolite, whereas the
conversion reaches 50% of the administered dose in
humans [106]. It is also necessary to determine the best
time to start treatment with statins, as the treatment
started before infecting the mice in the studies reported.
In addition, it would be advisable to carry out studies in
other animal models that have a drug metabolism more
similar to that of humans and to determine the concentra-
tions associated with better antimicrobial activity.

2.4. Retrospective Studies of Statin Use in Humans and the
Risk of Developing Tuberculosis. Kang et al. reported in
2014 the first study in humans that evaluated the effect of
statins on the risk of developing tuberculosis. This study
was retrospective, and the results were obtained from the
information of the database of the National Health Insurance
of South Korea, which included 840,894 subjects with
recently diagnosed diabetes mellitus type 2 (DM2) and who
were 20-99 years of age. The use of statins was less frequent
among patients with active tuberculosis (19.2% patients with
tuberculosis vs. 33.6% without tuberculosis, p < 0 01). How-
ever, after adjustment for possible initial confounding factors
(age, sex, history of silicosis, malignancy, HIV/AIDS, chronic
kidney disease, use of systemic corticosteroids, comorbidities
[e.g., dyslipidemia, hypertension, angina, myocardial infarc-
tion, cerebrovascular disease, peripheral artery disease, and
retinopathy], and history of hospitalization), the use of sta-
tins in subjects with newly diagnosed DM2 was not associ-
ated with a lower or higher risk of developing tuberculosis
(hazard ratio [HR] 0.98, 95% CI 0.89-1.07) [107]. The

authors note that although comorbidities were adjusted as
confounding variables, they could influence the HR for active
tuberculosis development (Table 3).

Subsequently, another retrospective study conducted by
Lee et al. in Taiwan included 13,981 patients with DM2
older than 65 years. They used the Cox proportional hazards
regression model to determine the independent effects of
diabetes on the risk of developing active tuberculosis. After
adjusting for age, sex, comorbidities (gout, hypertension,
hyperlipidemia, asthma, COPD, acquired immunodeficiency
syndrome (AIDS), connective tissue disease, end-stage renal
disease, heart failure, and other cardiovascular diseases) and
medications (antihyperglycemic, antihypertensive, and anti-
hyperlipidemic agents), the investigators reported that Tai-
wanese diabetic subjects older than 65 treated with statins
had a lower risk of developing active tuberculosis, with a risk
of 0.76 (95% CI, 0.60-0.97) [108]. In this study, exposure to
statins was based only on the prescription information com-
piled from the National Health Insurance Database; there-
fore, the level of adherence and dose received by patients is
unknown (Table 3).

Lai et al. conducted a nested case-control study that
included patients older than 18 years of age from 1999 to
2011, using the database from Taiwan’s national health
insurance program. They included 8098 new cases of tuber-
culosis and 809,800 control patients, and statin users were
divided into four groups. The first group was called the cur-
rent users (patients with prescription of statins within 30
days before the diagnosis of tuberculosis), the second group
were the recent users (patients with prescription of statins
between 31 and 90 days before the diagnosis of tuberculosis),
the third group were patients with statin consumption
between 91 days and one year before the date of tuberculosis
diagnosis, and the fourth group were those with chronic use
(patients with a cumulative prescription greater than 90
days). They used a sampling strategy to control cases of
coincident time, and the relative risk (RR) of developing
active tuberculosis was calculated with a confidence interval
greater than 95%. The four types of statin users had a lower
risk of active tuberculosis. For the first group, the RR of
developing active tuberculosis was 0.64 (95% CI 0.54-0.76).
The fourth group showed the lowest risk of developing
active tuberculosis (RR: 0.62, 95% CI: 0.53 to 0.72) [109].
One of the methodological strengths of this study is the

Table 2: Statin treatment of tuberculosis in animal models.

Author Animal model Treatment Strain Effect

Parihar
et al.

C57BL/6 mice
(age 8-12weeks)

Simvastatin or rosuvastatin (20mg/kg) i.p.
every second day for 6 weeks

Low-dose aerosol-
based M.

tuberculosis H37Rv

Up to a 10-fold reduction in bacilli burden
in spleen, liver, and lungs

Lobato
et al.

Mouse foot pads
of BALB/c mice
(Shepard’s mouse

model)

Atorvastatin (80mg/kg/day added daily to
food) alone or combined with rifampin
(1mg/kg by gavage weekly) for five

months

1× 104 liveM. leprae
in 10 μL inoculated
in each footpad

Reduced replication, additive effect with
rifampin. Neither atorvastatin treatment
nor combination treatment increased

muscle damage or induced hepatotoxicity

Dutta
et al.

BALB/c mice (age
4-6 weeks)

Rifampicin (10mg/kg), isoniazid (10mg/
kg), and pyrazinamide (25mg/kg), plus
simvastatin (25mg/kg) by gavage 5 days

per week for 8 weeks

Aerosol infection
with 3.7 log10 CFU
of M. tuberculosis

CDC1551

The combination regimen with simvastatin
enhanced mycobacterial killing and

reduced the relapse rates in mice treated
for 2.5 and 3.5months
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inclusion of a large sample of patients and controls and the
performance of a conditional logistic regression analysis
with more than 75 possible confounding factors (e.g., cardio-
vascular comorbidities, risk factors for developing tuberculo-
sis, frailty indicators, and use of specific medications).
However, some data related to lifestyle and its effects (e.g.,
diet, exercise, overcrowding, smoking, and body mass index)
are not available; therefore, the effects of some residual con-
founding variables are unknown (Table 3).

Another case-control study also conducted in Taiwan
included 8236 subjects older than 20 years of age with
recently diagnosed pulmonary tuberculosis from 2000 to
2013. Each case was matched by age and sex with 8236 con-
trols without pulmonary tuberculosis. The users of some
type of statin were subjects who received medication 12
months before being diagnosed with pulmonary tuberculo-
sis. Multivariable logistic regression analysis was performed
to estimate the odds ratio (OR) with a confidence interval
of 95%. After adjusting for lipid-lowering drugs that were
not statins and for DM2, the OR adjusted for pulmonary
tuberculosis was 0.67 for the subjects who used statins at
some point (95% CI: 0.59 to 0.75). They also analyzed the
estimated OR for each type of statin, and the results showed
that the subjects taking atorvastatin had a lower probability
of developing active tuberculosis (0.56, 95% CI 0.46, 0.68)
[110]. The researchers confirmed that the use of statins is a
protective factor for the development of pulmonary tubercu-
losis. However, like all studies conducted using a database,
there are residual confounding factors due to a lack of infor-
mation. In this study, we did not have access to socioeco-
nomic status and lifestyle data (Table 3).

The most recent published study (also retrospective)
included 102,424 statin users and 202,718 control subjects
(no statin use). The use of statins was defined as a prescription
record for ≥30days of some type of statin. They calculated the
cumulative defined daily dose (cDDD) of statins and defined
three groups: low (<180), medium (180-365), and high
(>365). The HR for the development of tuberculosis disease
in patients taking statins was 0.53 (95% CI: 0.47 to 0.61, p <
0 001), suggesting that the use of statins is an independent
protection factor for the development of tuberculosis. They

also found a dose-dependent association between the use of
statins and the risk of active tuberculosis (low, HR 1.06, p =
0 477; medium, HR 0.57, p < 0 001; high, HR 0.27, p < 0 001)
[111]. In this study, the authors adjusted the possible con-
founding variables, including age, sex, level of urbanization,
visits to the emergency department, comorbidities (such as
DM2, coronary heart disease, heart failure, cerebrovascular
disease, chronic kidney disease, cancer, lung disease, asthma,
liver cirrhosis, rheumatoid arthritis and systemic lupus erythe-
matosus), and the use of medications (biological agents,
systemic glucocorticoids, and disease-modifying antirheu-
matic drugs). However, again, information regarding the
diagnosis of tuberculosis and the use of statins depended
on a database; thus, the study suffers from the lack of
precision that can be achieved with a prospective cohort
study (Table 3).

All the studies carried out on the effect of statins on the
risk of developing tuberculosis have been performed in Korea
and Taiwan, so the generalization of the results to other
populations requires verification. In addition, since they are
retrospective studies obtained from databases, no microbio-
logical data are available to support the diagnosis of tubercu-
losis, and a causal relationship cannot be verified.

3. Perspectives and Conclusions

The information gathered in this review provides the basis for
considering statins as a host-directed therapy in infection by
M. tuberculosis. The studies described show that the cells
(mostly macrophages) are more resistant to infection by M.
tuberculosis in the presence of statins in in vitro models.
The mechanism proposed to favor the immune response of
the host is promoting phagolysosome maturation and
autophagy. However, it is necessary to deepen the knowledge
of the effect of statins on the immune response against M.
tuberculosis. In this sense, our group recently reported that
treatment with simvastatin increases the percentage of NKT
cells and increases the expression of costimulatory molecules
in monocytes in an infection model in vitro, and the increase
in the expression of these molecules may favor the antigenic
presentation that is inhibited by M. tuberculosis [112].

Table 3: Retrospective studies of statin use in humans and the risk of developing tuberculosis.

Author Year Method Patients Conclusions

Kang
et al.

2014
Retrospective
cohort study

840,894 newly diagnosed type 2 DM patients
aged 20-99 years who were newly treated with

antidiabetic drugs

Statin use in newly diagnosed type 2 diabetics was not
associated with protection against or a higher risk of

developing tuberculosis

Lee
et al.

2015
Retrospective
cohort study

13,981 patients with type 2 diabetes aged more
than 65 years

After adjusting for age, sex, other comorbidities, and
medications, statin users had a lower independent

association, with a risk ratio of 0.76 (95% CI, 0.60-0.97)

Lai
et al.

2016
Retrospective
nested case-
control study

8098 new TB cases and 809,800 control patients

Statin users had a decreased risk of active tuberculosis.
Chronic use of statins (more than 90 days) was

associated with the lowest risk (RR 0.62; 95% CI 0.53-
0.72)

Su
et al.

2017
Retrospective
nested case-
control study

102,424 statin users, 202,718 patients aged 20
years or older, and 202,718 matched subjects

Statin use is an independent protective factor for
tuberculosis development. There is a dose-dependent

association between statin use and risk of active
tuberculosis
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Studies in mice show that statin therapy shortens the
duration of antituberculosis treatment and appears to
decrease the risk of relapse. Therefore, investigations of the
mechanism through which statins increase the antimicrobial
effect of first-line antituberculosis drugs are still needed,
although we can speculate that it is possible that statins
weaken the mycobacterial wall making it more susceptible
to first-line drugs, that they may only strengthen the
immune response of the host that contributes to the most
effective and rapid elimination of the bacillus, or even a
combination of both effects; specifically, it has been shown
that statins affect the lipids of the wall of some fungi and
can also decrease the phosphatidylinositol mannosides and
triacylglycerols of the cell wall of M. tuberculosis H37Rv.

Although the mechanism by which statins improve the
immune response against M. tuberculosis is still not fully
known, retrospective studies in humans show a protective
effect of statins against the development of active tubercu-
losis. The evidence that exists to date is sufficient to test
statins in prospective studies for the determination of
whether these drugs have only protective effects against
the reactivation of latent tuberculosis or if they could
really be effective adjuvants in the pharmacological treat-
ment of active tuberculosis.
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