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ABSTRACT

Structural variation (SV), which consists of genomic
variation from 50 to millions of base pairs, confers
considerable impacts on human diseases, complex
traits and evolution. Accurately detecting SV is a fun-
damental step to characterize the features of individ-
ual genomes. Currently, several methods have been
proposed to detect SVs using the next-generation se-
quencing (NGS) platform. However, due to the short
length of sequencing reads and the complexity of
SV content, the SV-detecting tools are still limited by
low sensitivity, especially for insertion detection. In
this study, we developed a novel tool, ClipSV, to im-
prove SV discovery. ClipSV utilizes a read extension
and spliced alignment approach to overcoming the
limitation of read length. By reconstructing long se-
quences from SV-associated short reads, ClipSV dis-
covers deletions and short insertions from the long
sequence alignments. To comprehensively charac-
terize insertions, ClipSV implements tree-based de-
cision rules that can efficiently utilize SV-containing
reads. Based on the evaluations of both simulated
and real sequencing data, ClipSV exhibited an over-
all better performance compared to currently popular
tools, especially for insertion detection. As NGS plat-
form represents the mainstream sequencing capac-
ity for routine genomic applications, we anticipate
ClipSV will serve as an important tool for SV charac-
terization in future genomic studies.

INTRODUCTION

Structural variations (SVs), which refer to genomic variants
over 50 bp in length, are important sources of genomic mu-

tations and potential causes of various human diseases (1).
Over 8.5 Mbp genomic sequences belong to SVs that are
shared in human populations (2). For decades, many ef-
forts have been made to discover the SV events and resolve
exact breakpoints in human genomes (3). Early studies re-
lied on array CGH and SNP microarray to detect large-
scale SVs and copy number variants (4,5). With the ad-
vancement of the next-generation sequencing (NGS) plat-
form, paired-end short reads from whole genome sequenc-
ing (WGS) experiments have been widely applied to the
human genome. The NGS platform shows better resolu-
tion in identifying and characterizing short SV events at
the base level (6). More recently, long reads from the third-
generation sequencing platforms have been employed for
SV discovery in human genome (7). The circular consen-
sus sequencing (CCS) or HiFi sequencing technology from
PacBio further improves the long-read sequencing by gen-
erating high-fidelity (accuracy 99.8%) reads (8). However,
compared with the long reads sequencing platform, NGS
platform still dominates the current WGS studies due to the
high-base accuracy, high-throughput and low-cost advan-
tages (3).

Based on the NGS platform, several methods have been
developed to detect SV events from short reads (9). These
methods can be classified into read depth, split reads, dis-
cordant read-pairs, (local) de novo assembly, and/or a com-
bination of these methods (10). However, the SV detection
from short reads are still limited by a low sensitivity and
the detected events are biased toward deletions (8). There
are two hindering factors with major influences on the per-
formance of SV tools: the length of sequencing reads and
the complexity of SV content. Currently, the read length
for a typical NGS study ranges from 100 to 250 bp. Accu-
rate alignment of the short reads onto the reference genome
around the SV regions is computationally challenging (11).
For the complexity of SV configuration, it was estimated
that around 55% of SVs are present in repetitive sequences
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in human genome (2). Those repetitive regions pose a great
challenge for accurate read alignment, as well as read assem-
bly when resolving large insertion events. The complexity
of SV sequences also indicates that traditional simulation
analyses with random SV sequences may not properly esti-
mate the performance of SV tools on real human genomes.

In this study, we developed a novel SV detecting tool,
ClipSV, to comprehensively characterize SV events from
short reads. To overcome the above limitations of short
reads, ClipSV has two major improvements compared with
previous methods. First, it employs read extension and
spliced alignment methods to resolve read length problem.
Second, it implements a tree-based decision rules to effi-
ciently process SV-containing reads and comprehensively
detect insertion events. Rather than generating simple and
random SV sequences, our simulation experiments were
performed by spiking real SV events, which retains the com-
plexity nature of the human genome. Based on evaluations
from both simulation and real data, ClipSV shows a better
performance than the current popular tools.

MATERIALS AND METHODS

Detection of SV-containing reads

ClipSV implements a multithreaded pipeline to detect SV
signals. By retrieving aligned reads in 1 Mb region of a chro-
mosome, ClipSV calculates the read length from the longest
aligned length. The mean and the standard deviation of the
insert size are calculated with all the fragment size of pri-
mary aligned reads with a mapping score equal 60. With the
read length and insert size, ClipSV collects and categorizes
all kinds of reads that are not perfectly aligned: (i) clipped
reads are collected based on the feature that the read has any
sequence (longer than 5 bp) clipped during alignment. (ii)
Split reads are collected when they contain a supplementary
alignment based on the SA tag in the BAM file. (iii) Dis-
cordant read pairs are defined as when the read pairs have
an insert size longer than min(mean(insert size) + sd(insert
size), mean(insert size) + 300). (iv) Translocation reads are
collected based on the feature that the two paired reads are
aligned to different chromosomes. (v) Inversion reads are
collected based on the feature that the two read pairs have
the same direction during alignment. For the reads that are
clipped during alignment, the base qualities were examined
for the mapped region and the clipped region, respectively.
The ratio of high-quality bases is calculated by dividing the
number of high-quality base (Phred value > 20) by the total
bases in the mapped or clipped region. All the reads with a
duplication mark are filtered out before downstream anal-
ysis.

Read extension and spliced alignment

ClipSV employs read extension and spliced alignment to
detect deletions and small insertions (Figure 1A). To per-
form read extension from the clipped reads, ClipSV filters
out the clipped reads with low quality (mapping score <20,
supplementary alignments). Next, it slides along the chro-
mosome and dynamically classifies the clipped reads within
1 kb bin into two groups based on directions of their clipped

sequences: the MS group and SM group (M: Matched se-
quence; S: clipped sequences). For each clipped read in the
SM group, ClipSV iteratively checks its overlapping with
the clipped reads in the MS group within 1 kb. This pro-
cess compares the first n bases in the SM read with the last
n bases in the MS read, starting from the largest n = read
length −30. For each iteration, the program decreases the
n value until it identifies the longest n bases that are shared
by the two clipped reads. If n is >30, it will output the ex-
tended sequences by concatenating the two clipped reads.
Considering potential sequencing errors, three bases shift is
allowed at the boundary of the clipped reads. The resulted
long sequences are reported in a FASTA format for down-
stream spliced alignment.

The inputs of ClipSV include two sets of reads for spliced
alignment: (i) the raw clipped reads without read extension;
(ii) the extended sequences from clipped reads. The spliced
function in Minimap2 (v2.14) is employed to perform the
spliced alignment (Li, (12)). The resulted SAM file is an-
alyzed to identify the reads with spliced alignment in the
genome. With the SAM file, the CIGAR string is extracted
and analyzed to search the location with ‘N’ or ‘D’ for dele-
tions and ‘I’ for insertions. The deletions and short inser-
tions are identified with at least X reads support (X is set
as 10% of the sequencing coverage). The low-quality align-
ments are filtered out before downstream analysis: (i) map-
ping quality is lower than 10. (ii) Boundary sequence is
clipped during alignment. (iii) Aligned boundary sequence
is shorter than 20. (iv) More than five regions within a read
are separately aligned.

Detection of insertions by tree-based decision rules

To detect insertions, ClipSV employs tree-based decision
rules to efficiently process the clipped reads (Figure 1B).
ClipSV extracts all the positions that are supported by the
raw clipped reads. Then ClipSV tests whether an insertion
can be discovered by the method in each node. The order of
each decision tree node was arranged based on the following
considerations: The CIGAR can discover indels (<50 bp);
the read extension and spliced alignment can identify short
insertions; the local assembly can identify large insertions
and the insertions missed by spliced alignment; the complex
read alignment can rescue insertions that fail to be identified
by the above methods.

In detail, the positions of SV signals are collected based
on the support of the raw clipped reads (5 bp region with at
least X clipped reads; X is set as 10% of the sequencing cov-
erage). Then ClipSV implements the decision tree by testing
whether the SV signal could be resolved with an insertion
event:

i) Starting from the original SAM file, the CIGAR string
is extracted to check whether SV events are within the
aligned reads.

ii) The raw clipped reads are subjected to read extension
and spliced alignment to identify short insertions.

iii) If an insertion fails to be identified at the location, the
local assembly will be performed by extracting all the
raw short reads around the breakpoint regions. Around
the 1.2 kb region of a high-confident breakpoint, all
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Figure 1. Overview of the key methods implemented by ClipSV. (A) Schematic diagram of the read extension and spliced alignment to detect SVs. In the
process of read extension, ClipSV slides along the chromosome and dynamically concatenates the clipped reads within 1 kb bin based on the reciprocal
overlapping of the last 30 bp regions. With the reconstructed long sequences and the raw clipped reads, ClipSV utilizes the spliced alignment method to
detect SV events (left: deletions; right: insertions). (B) The pipeline of the tree-based decision rules for insertion detection. By extracting all the positions
supported by the clipped reads, ClipSV tests whether an insertion could be identified by the following decision nodes: the CIGAR string, the read extension
and spliced alignment, the local de novo assembly, and the complex read alignment. These methods are sequentially arranged as the major decision nodes.
The ‘yes’ or ‘no’ indicates whether an insertion from the SV containing position could be detected by the corresponding method. The test will terminate if
an insertion event could be identified by the earlier node.

the clipped reads and improperly paired reads lacking
alignment flag 0 × 2 (mapping score ≥ 20), as well as
their read pairs are extracted from the BAM file. Then
the retrieved read pairs are converted to FASTQ for-
mat. Velvet (v1.2) is employed to perform local de novo
assembly (13). Three k-mers are used for de novo as-
sembly: 41, 61 and 81 bp. The assembled contigs are
pooled together as FASTA format and aligned to the
genome by Minimap2. The aligned SAM file is pro-
cessed to identify two types of insertions: the fully as-
sembled insertions and the partially assembled inser-
tions. The fully assembled insertions are identified by
‘I’ symbol in the CIGAR string around the breakpoint
region. The partially assembled events are identified by
the clipped sequences (>50bp) around the breakpoint
region.

iv) After de novo assembly, additional insertion events
are identified by complex read alignments. Because of

the sequence complexity, reads arising from insertion
events are often unmapped or misaligned to other re-
gions. To resolve such insertion events, the breakpoints
of the SV events are identified with the following cri-
teria: (a) the clipped reads are aligned with high con-
fidence (mapping score ≥ 50, the ratio of high-quality
bases ≥ 0.8), while their mates are aligned to other
chromosomes or unmapped. (b) The breakpoints are
supported with at least X clipped reads (X is set as
10% of the sequencing coverage). (c) The breakpoints
do not overlap with indels, inversions or translocation
events.

Both translocation reads and complex read alignments
from insertions include clipped reads and their mates
mapped to different chromosomes. However, the complex
read alignments include more types of read alignments: (i)
when the inserted sequences are distinct from the genome
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sequence (e.g. de novo sequence insertion), the clipped reads
will be only mapped to the breakpoint regions. Meanwhile,
the clipped reads in translocations need to be mapped to
two different chromosome locations; (ii) when the inserted
sequences are slightly similar to the genome sequence, the
inserted sequence may be mapped to other chromosomes,
but with a low mapping quality. Such low mapping quality
will not meet the criteria to support a translocation event
(mapping quality >20 for both locations). Therefore, these
clipped reads in insertion regions can be distinguished from
translocation reads; (iii) in the cases when the clipped se-
quences are quite short, only one region of the clipped reads
can be mapped to the genome, leaving the clipped sequences
unmapped. This kind of clipped reads will be regarded as
complex read alignments to identify insertions, but they do
not belong to translocation reads. To exclude the poten-
tial false positive signals, ClipSV performs an additional
filtering step to ensure that translocations and other SV
events are absent from the insertion positions. Consistent
with long read studies that consider tandem duplications
are one type of insertion events (2,8), ClipSV does not dis-
tinguish tandem duplications with the insertion events. The
tandem duplication events are regarded as insertions when
evaluating different SV tools.

Detection of inversions and translocations

ClipSV relies on raw short reads to detect the inversion and
translocation events. Inversion events are identified based
on the reversion features from the split reads and discor-
dant read pairs (Supplementary Figure S1). For split reads,
the orientations of the primary and supplementary align-
ments from the split reads are analyzed. If the two align-
ments from one split read have opposite orientations, an
inversion spanning the two breakpoints will be identified.
For discordant read pairs, if the orientations of the aligned
read pairs are the same, this read pair will support a large
inversion event. In this scenario, the precise location of
the inversion breakpoint can be inferred based on the ob-
served and the predicted insert size of the read pair. If the
two breakpoint regions contain any clipped reads, the ex-
act breakpoints of the clipped reads will be used to esti-
mate the positions of inversion events. If the breakpoints
are supported with at least X coverage of the split reads or
discordant read pairs (X is set as 10% of the sequencing
coverage), the inversion will be considered as a confident
event.

Translocation events involve the sequences between two
chromosomes. Both clipped reads and discordant read pairs
can be observed around the translocation regions (Supple-
mentary Figure S2). For split reads, the breakpoints of the
two alignments are regarded as the translocation site. For
discordant read pairs, the translocation sites could be ap-
proximated by the alignments of the two read pairs. If the
region of discordant read pairs overlaps with split reads, the
exact breakpoints of the split reads will be used to estimate
the positions of translocations. If the breakpoints are sup-
ported by at least 2*X coverage with the total number of
split reads and discordant read pairs (X is set as 10% of the
sequencing coverage), the translocation will be considered
as a confident event.

Simulation of the SV-containing genome and the sequencing
reads

The SV events are enriched with repetitive sequences and
are more prone to be distributed in centromeres and telom-
ere regions (2). Therefore, simulating SV events that can
reflect SV sequence features and chromosome locations is
important to benchmark the performance of SV detection
tools. To achieve this, we employed a non-random simula-
tion strategy to simulate SV events in the genome. In this
pipeline, the diploid genome was simulated separately by
merging two haploid genomes. In each haploid genome, we
spiked in the real deletions and insertion events of HG002
from GIAB database. These SV callsets were obtained
from GIAB database (ftp://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/AshkenazimTrio/analysis/
NIST SVs Integration v0.6/), and only ‘PASS’ events
were used for simulation. These SV events were identified
by integration of multiple sequencing platforms and have
a high-confidence based on the evaluation of CCS reads
(8,14).

Because the SV callset of HG002 in GIAB does not con-
tain inversion and translocations, these two SV types were
generated by random simulation. In real human genomes,
the inversions and translocations are very few based on the
evaluation of long read sequencing results (2). Therefore,
200 inversion events and 60 translocation events were sim-
ulated to benchmark performance of SV tools. To simulate
inversion events, a genomic location was randomly selected
while avoiding the co-occurrence with previous SV events
within 1 kb region. The length of inversion was randomly
assigned within 50–10 kb length. To generate transloca-
tion events, the chromosomes in the genome were grouped
into two haplotypes. For each haplotype, two chromosomes
were randomly selected as a pair for translocations. In to-
tal, 10 chromosome pairs were generated from each haplo-
type of the genome. For each chromosome pair, three re-
ciprocal translocation events were created along the two
chromosomes. Each reciprocal translocation generated two
breakpoints, which lead to 60 translocation breakpoints for
each haplotype. Deletions, insertions and inversions were
randomly assigned to one haploid genome (heterozygous)
or two haploid genomes (homozygous). Specifically, three
numbers 1, 2 and 3 were randomly generated. These num-
bers represent three genotypes ‘1|1’, ‘0|1’ and ‘1|0’, and were
randomly assigned to each SV event. Theoretically, the ratio
of homozygous to heterozygous genotype in the simulation
is 1:2 = 0.5. Using this method, we spiked in GIAB calls
and generated 4089 ‘1|1’, 4165 ‘0|1’ and 4113 ‘1|0’ SV events.
Translocation events were heterozygous and randomly as-
signed to a haplotype.

After simulating SV events in the genome, two haploid
genome sequences were obtained. Each haploid genome
FASTA file was used to simulate reads by DWGSIM
(v0.1.11) (https://github.com/nh13/DWGSIM) with param-
eters: -C 15 -S 2 -e 0.002 -E 0.002. Then the simulated raw
reads from each genome were pooled together to generate a
30× coverage of paired-end reads. Two datasets were simu-
lated with both 150 and 250 bp read length, respectively.

The simulated reads and real sequencing reads were
aligned to genome reference hg19 by BWA-MEM (v0.7.17)
(15). SAMBLASTER (v0.1.24) was used to mark dupli-

ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/
https://github.com/nh13/DWGSIM
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cate reads in the alignment (16). The commands used
to generate the aligned bam file is: bwa mem -t 12
-R ‘@RG\tID:foo\tSM:bar’ genome.fa sim.read1.fastq
sim.read2.fastq |samblaster | samtools view -1 - >out.bam.
Then the aligned bam file was sorted, indexed, and used for
downstream SV calling.

Evaluation of SV signal detection by different read align-
ments

For the split reads and clipped reads, we extracted the
aligned reads and calculated the breakpoint position.
Then high-confident breakpoints, which were supported by
breakpoint sites of two reads within 5 bp, were used to over-
lap with the high-confident SV events from GIAB database.
If the breakpoint region overlapped with SV events within
200 bp window, the SV event signal was considered to be
captured by this type of read alignment. For the discor-
dant read-pairs, mate unmapped or mapped to other chro-
mosomes, we approximated the breakpoint sites using the
200 bp boundary from start and the end positions of the
mapped reads respectively. If these breakpoint sites were
supported by two reads within 200 bp, they were considered
as high-confident breakpoint sites. If the high-confident
breakpoint sites overlapped with SV events within 600 bp
window, the SV event signal was considered to be captured
by this type of read alignment. Overall, in this process an-
alyzed the captured SVsignal by different read alignments
without resolving SV events.

Evaluation of different SV tools by simulation

To evaluate performance of each tool by simulation, Lumpy
(v0.2.13) (Layer et al., (17), Manta (v1.3.2) (Chen et al.,
(18) and ClipSV were used to detect SV events with de-
fault parameters. For simulation studies, the identified SV
events by each tool were compared with the ground truth
events. For deletions and inversions, the identified true SV
events were defined as the events overlapping with ground
truth with 200 bp window shift, and less than 50% of size
difference. For insertions, the identified true events were
defined as 200 bp shift around the breakpoint of ground
truth, and <50% of size change. For large insertion events
that do not have an event size, the evaluation was per-
formed based on 200 bp shift around the breakpoint of
ground truth. For translocations, the true events were de-
fined as the events overlapping with ground truth with 200
bp window shift. The sensitivity was calculated by divid-
ing the number of true positive events by the number of
ground true events. The precision was calculated by di-
viding the number of true positive events by the number
of total identified events. The F1 score was calculated as:
2*(sensitivity*precision)/(sensitivity+precision).

Evaluation of different SV tools by real sequencing data

To evaluate performance of different SV tools in real
genome sequencing reads, we obtained 2 × 150 bp and
2 × 250 bp reads sequenced by Illumina platform from
GIAB (ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/

giab/data/AshkenazimTrio/HG002 NA24385 son/). The
raw reads were mapped to hg19 reference genome and
down-sampled to 30× coverage. Lumpy (v0.2.13), Manta
(v1.3.2) and ClipSV were run with default parameters to
detect SVs.

We used two datasets to evaluate the performance of dif-
ferent SV tools: the high-confident SVs in GIAB database
and the CCS detected SV results. As the GIAB high-
confident callset only contains half of the SV events iden-
tified by the CCS dataset (8), this callset is only suitable
to evaluate the sensitivity of SV tools. The SV events de-
tected by the CCS reads was used to evaluate the precision
of different SV tools. For the high-confident SVs in GIAB
database, we compared the SV events with those detected
by each tool. The true SV events were defined with the same
criteria as the simulation analysis.

For CCS read analysis, we downloaded the mapped
CCS reads from GIAB database (ftp://ftp-trace.ncbi.nlm.
nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/
HG002 NA24385 son/). Each CIGAR string of the read
alignment was analyzed. The CIGAR character ‘I’ and
‘D’ was searched by a custom python script to identify SV
events within the CIGAR string. The split information was
also considered to identify large deletions and insertions.
The SV events supported by at least three CCS reads were
considered as confident events. These SVs were used as
ground truth to evaluate performance of each SV tool. The
criteria were similar with those in the simulation analysis:
for deletions, the identified true SV events were defined
as the events overlapping with ground truth with 200 bp
window shift, and less than 50% of size difference; for
insertions, the identified true events were defined as 200 bp
shift around the breakpoint of ground truth and <50% of
size change; for the insertion events without an event size,
the evaluation was only based on 200 bp shift around the
breakpoint of ground truth.

RESULTS AND DISCUSSIONS

Methods of ClipSV to detect SV events

In human genomes, deletions and insertions represent the
major types of SV events. Split reads, which have two align-
ments at the boundaries of the deleted sequences, are im-
portant signal for deletion discovery (Tattini et al., (10).
However, due to the repetitive nature of the contents of the
SV events, the intrinsic short length of the sequencing reads
and the uneven read distribution, the split read signal may
disappear around the SV boundary (Supplementary Figure
S3). Unlike split reads methods that use two alignments of
a split read, ClipSV starts from all clipped reads (the reads
with sequence clipped during alignment) that contain SV
signals. Two key methods distinguish ClipSV from other
tools. First, ClipSV employs the read extension and spliced
alignment to detect deletions and short insertions (Figure
1A). Second, it adopts tree-based decision rules to compre-
hensively detect and classify insertion events (Figure 1B).

To alleviate the read length limitation, ClipSV seeks to
extend the read length to generate long sequences and
aligning the reconstructed long sequences onto the genome
(Figure 1A). It first performs pair-wise overlapping of the

ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/
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clipped reads to generate long sequences. This process in-
volves concatenating the two reads that contain common
sequences (>30 bp) with a ‘head-to-tail’ structures between
them. With the reconstructed long sequences as well as
raw clipped reads, ClipSV utilizes spliced alignment method
to detect SV events. Spliced alignment was originally pro-
posed as an algorithm to construct exon assemblies from the
genome background (19). Recently, it was used in mapping
the long reads onto the genome reference (12). Here, tak-
ing the advantage of longer read length, spliced alignment
method is employed by ClipSV to discover SV events within
the reconstructed long sequences. The design of read exten-
sion and spliced alignment method has the following ad-
vantages. First, as read extension performs pair-wise over-
lapping of clipped reads, the computational process is effi-
cient and the resulted long sequences are accurate. Second,
unlike assembly based methods that usually reply on reads
with a high coverage and try to calculate a long consensus
sequence representing that region (20), the read extension
method faithfully keeps useful and informative reads and
the extended sequences can be treated as a single long read
to support an SV event. Third, spliced alignment can iden-
tify deletions and short insertions by aligning the clipped
reads to the boundary sequences of SV events. Meanwhile,
the long sequences from read extension can be directly used
by spliced alignment, alleviating read length limitation of
the raw clipped reads.

Detecting insertion events is intrinsically difficult for
short reads. Based on recent estimates from Pacbio sequenc-
ing results, the sensitivity of SV detection in current tools is
still very low and biased toward deletions (8). To improve
insertion detection, ClipSV implements tree-based decision
rules to efficiently stream the clipped reads for insertion de-
tection. Briefly, it first collects the SV candidate breakpoints
based on the raw clipped reads. Then it implements read
extension and spliced alignment to detect short insertion
events within the raw clipped reads and extended long se-
quences. If an insertion fails to be identified at the location,
the de bruijn graph based local assembly will be performed
by extracting all the raw short reads around the breakpoint
regions. If both spliced alignment and local assembly fail to
identify the insertion event, ClipSV will test whether an in-
sertion could be supported by the complex read alignments.
Considering complex read alignments may be introduced
by clipped reads of other types of SVs, ClipSV further fil-
ters the positions overlapping with deletions, inversions and
translocations.

Evaluation of SV signals captured by ClipSV

Clipped reads are the starting point for ClipSV pipeline.
We evaluated the performance of clipped reads in capturing
SV signals. We benchmarked the results with high-confident
SV events from the HG002 sample of the GIAB database
(14). To compare different types of read alignments, we
categorized the sequencing reads into five groups: (i) the
split reads; (ii) the discordant read pairs (distance of a read
pair longer than expected); (iii) the mates of read pairs un-
mapped; (iv) the mates of read pairs mapped to other chro-
mosomes; (v) the clipped reads. Among 386 high-confident
deletions and 567 high-confident insertions (including tan-

dem duplications) evaluated, the split reads overlapped with
177 (45.9%) deletions and 34 (6.0%) insertions, and the
discordant read pairs overlapped with 149 (38.6%) dele-
tions (Figure 2A). Noticeably, the split reads and discor-
dant read pairs had a bias toward deletions compared with
insertions. On the other hand, 7% of insertion signals over-
lapped with the reads whose mates were unmapped, indi-
cating these events are novel sequence insertions. Moreover,
31% of insertion signals overlapped with the reads whose
mates were mapped to different chromosomes, suggesting
the inserted sequences have sequence similarity to other
genomic regions. Among the five different alignments, the
clipped reads captured the most comprehensive SV signals,
which included 273 (70.7%) deletions and 374 (66.0%) in-
sertions (Figure 2A).

Evaluation of read extension and spliced alignment methods

Read length is a key factor that influences read align-
ment and SV detection (7). With the advancement of short
read sequencing technology, 150 bp read length is widely
adopted in genome sequencing projects. Meanwhile, 250 bp
read length is nowadays also available in MiSeq and No-
vaSeq 6000 sequencers on Illumina platform (https://www.
illumina.com/). Therefore, we investigated the performance
of read extension and splice alignment with different read
lengths. Among the same evaluation SVs from the HG002
of the GIAB database, spliced alignment of clipped reads
detected 218 (56.5%) deletions and 5 (0.9%) insertions with
2 × 150 bp sequencing reads (Figure 2B). After the proce-
dure of read extension, it discovered 244 (63.2%) deletions
and 78 (13.8%) insertions. In contrast, split reads alone de-
tected 177 (45.9%) deletions (Figure 2C). Even when com-
bining with discordant read pairs, it could only detect 205
(53%) deletions. This result showed the read extension and
spliced alignment had a better performance than split reads
and discordant read pairs in detecting deletions. For 2 ×
250 bp reads, spliced alignment of clipped reads could iden-
tify 235 (60.9%) deletions and 36 (6.3%) insertions. After
read extension, it discovered 257 (66.6%) and 108 (19.0%)
insertions. This result showed the read extension and spliced
alignment method had an even better performance with a
250 bp sequencing length.

Evaluation of tree-based decision rules

As spliced alignment compares the two parts of clipped
reads with the boundary sequences of the deletions, the
length of deleted sequence is not a constraint for dele-
tion detection. For insertions, the spliced alignment can
only identify small insertion events within the clipped reads
and the extended long sequences (Supplementary figure
S4). To improve insertion discovery, ClipSV implements the
tree-based decision rules that sequentially integrate multi-
ple detection methods. Thus, we evaluated the performance
of each detection method and their contributions to the
whole pipeline. Among the evaluated SVs from the GIAB
database, the read extension and spliced alignment detected
86 insertions (15%) (Figure 2D). Then these SV sites were
excluded from the candidate breakpoints, and local de novo
assembly was performed by extracting all the raw clipped

https://www.illumina.com/
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Figure 2. Evaluation of SV detecting methods implemented by ClipSV. (A) Percentage of SV events overlapping with signals of clipped reads, split reads
and discordant read pairs. The Mate unmap and Mate transposition refer to the reads whose mates were unmapped or mapped to different chromosomes.
(B) Percentage of detected SVs by read extension and spliced alignment with 150 and 250 bp read length. (C) Percentage of identified deletions by different
methods with split reads, discordant read pairs and clipped reads. The orange column indicates the spliced alignment and read extension applied by ClipSV.
(D) Percentage of identified insertions by different methods applied in tree-based decision rules. The orange column indicates the assembled decision tree
approach applied by ClipSV. For above evaluation analyses, the high-confident SVs from chromosome 1 of HG002 sample in the GIAB database were
used as ground truth. The read alignments are from 2 × 150 bp read length with 30× sequencing depth. Two reads were used to support each read signal.

reads. In this process, the local assembly detected 72 (13%)
insertions. Next, we excluded candidate breakpoints over-
lapping with identified deletions, inversions and transloca-
tions. For the remaining candidate breakpoints, 71 (13%)
insertions were supported by evidences of complex read pair
alignments. When integrated with different methods as de-
cision nodes, the tree-based decision rules could identify 226
(40%) insertion events. This result showed the tree-based de-
cision rules improved the insertion detection by taking ad-
vantage of each detection method.

Performance of ClipSV in 150 bp WGS datasets

To evaluate the overall performance at the whole genome
level, we compared the ClipSV with currently popular SV
tools Lumpy and Manta. These two tools were chosen be-
cause they are representative for the different methods to
detect SVs: Lumpy discovers SV events by integrating SV
signals from split reads, discordant read pairs and read
depths (17), while Manta improves SV detection by resolv-
ing breakend graphs with a local assembly approach (18).
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Performance of SV tools by simulation (2x150bp)
Lumpy Manta ClipSV

Deletion 2620 (2638) 3757 (3759) 3745 (3787)
Insertion 0 (76) 5737 (5752) 6096 (6164)
Inversion 190 (190) 181 (182) 180 (182)

Translocation 116 (1309) 116 (128) 107 (110)
Total 2926 (4213) 9791 (9821) 10128 (10243)

Sensitivity 23.7% 79.2% 81.9%
Precision 69.5% 99.7% 98.9%
F1-score 0.35 0.88 0.90
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Figure 3. Performance of different SV detecting tools with 2 × 150 bp sequencing reads. (A) Performance of SV detecting tools in 2 × 150 bp simulation
dataset with 30× sequencing depth. The insertions and deletions were generated by spiking in 12 047 high-confident SV events of the sample HG002 from
the GIAB. The inversions and translocations were generated by random simulation. The number of true SV events were shown for each SV category,
followed by the number of total detected events in brackets. Evaluation of SV tools was based on the detected SV events in each type. (B) Evaluation of
deletion detection by different SV tools on real WGS data. Bar plots show the deletion events detected by each tool with 2 × 150 bp sequencing reads. Two
datasets were used to evaluate tool performance: the GIAB high-confident SVs (light gray bars) and the CCS SVs (gray bars). The black bar indicates total
detected events. (C) Evaluation of insertion detection by different SV tools on real WGS data.

Based on a recent study, both Lumpy and Manta were
ranked among top tools for SV detection (21).

We first constructed a nonrandom simulation dataset by
spiking in 12 047 high-confident SV events of the sample
HG002 from the GIAB. These SV events include 5192 dele-
tions and 6855 insertions. We also randomly simulated 200
inversions and 120 translocation breakpoints in the genome
to encompass diverse SV types. With the SV containing
genome sequence, 150 bp paired-end reads were simulated
to a 30× sequencing depth. Figure 3A shows the overall
performance of different tools in detecting SV events in the
150 bp simulation dataset. For deletions, Manta and ClipSV
had a comparable performance (3757 versus 3745, Supple-
mentary Table S1). But Lumpy only detected 2620 events,
which was much lower than Manta and ClipSV. For inser-
tions, ClipSV had the best performance among the three
tools. It detected 6069 (88.9%) insertion events. In contrast,
Manta detected 5737 (83.7%) insertions and Lumpy did not
detect any true insertions. Instead, Lumpy reported a great
proportion of false positive events in translocations (Fig-
ure 3A). This is likely because Lumpy does not perform
well in resolving insertions from translocations. For inver-
sions, Lumpy has the best performance among the three
tools. To estimate the overall performance, we calculated the

F1 score for the three tools. ClipSV has a highest F1 score
(0.90), followed by Manta (0.88) and Lumpy (0.35). Apart
from Lumpy and Manta, we also evaluated the performance
of a local assembly based SV tool svABA, which relies on
String Graph Assembler and is efficient for SV detection
at genome-wide scale with low memory and computing re-
quirement (22). As svABA only outputs breakpoints with-
out resolving SV types, we used all the breakpoints it iden-
tified to support the true SV events in simulation. The re-
sults showed that svABA had 24.6% sensitivity and 29.3%
precision to detect the spiked-in SV events (Supplementary
Table S2). In contrast, ClipSV showed 81.9% sensitivity and
98.9% precision (Figure 3A). These results suggest a better
performance of ClipSV compared with the pure assembly
based method.

We also evaluated the performance of ClipSV on the
bias of the homologous SV events. Of all the simulated
SV events (4089 homozygous events and 8278 heterozy-
gous events), ClipSV identified 3493 (85.4%) of the homol-
ogous SVs and 6635 (80.2%) heterozygous events. Among
the simulated deletions, ClipSV detected 1314 (76.1%) ho-
mologous events and 2431 (70.1%) heterozygous events.
For insertions, ClipSV detected 2121 (92.3%) homologous
events and 3975 (87.2%) heterozygous events. These results
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Performance of SV tools by simulation (2x250bp)

Lumpy Manta ClipSV

Deletion 2486 (2542) 4049 (4064) 4483 (4588)

Insertion 0 (83) 6128 (6151) 6383 (6525)

Inversion 187 (187) 182 (187) 183 (188)

Translocation 112 (1750) 116 (162) 112 (115)

Total 2785 (4562) 10475 (10564) 11161 (11416)

Sensitivity 22.5% 84.7% 90.2%

Precision 61.0% 99.2% 97.8%

F1-score 0.33 0.91 0.94
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Figure 4. Performance of different SV detecting tools with 2 × 250 bp sequencing reads. (A) Performance of SV detecting tools in 2 × 250 bp simulation
dataset with 30× sequencing depth. The insertions and deletions were generated by spiking in 12 047 high-confident SV events of the sample HG002 from
the GIAB. The inversions and translocations were generated by random simulation. Evaluation of SV tools was based on the detected SV events in each
type. (B) Evaluation of deletion detection by different SV tools on real WGS data. Bar plots show the deletion events detected by each tool with 2 × 250
bp sequencing reads. Two datasets were used to evaluate tool performance: the GIAB high-confident SVs (light gray bars) and the CCS SVs (gray bars).
The black bar indicates total detected events. (C) Evaluation of insertion detection by different SV tools on real WGS data.

showed ClipSV has a slight bias in the detecting homolo-
gous events which are supported by more read alignment
signals.

To evaluate the performance of SV tools on real WGS
datasets, we analyzed 150 bp paired-end reads with 30× se-
quencing depth in the HG002 sample. We used the GIAB
high-confident SV callset and CCS long reads to evaluate
the performance of different tools. In total, ClipSV detected
9149 SV events, which included 5019 deletions and 4130
insertions, respectively. Among them, 5826 events (63.7%)
are supported by GIAB high-confident SV callset and 7383
events (80.7%) are supported by CCS reads (Figure 3B and
C). In contrast, Manta detected 7993 SV events, includ-
ing 5141 deletions and 2852 insertions, respectively. Among
them, 4927 events (61.6%) were supported by GIAB high-
confident SV callset and 6590 events (82.4%) were sup-
ported by CCS reads. Lumpy reported 3777 SV events that
included 3269 deletions and 508 insertions/duplications.
Among them, 2348 (62.2%) and 2332 (61.7%) events
were supported by GIAB high-confident SV callset and
CCS reads, respectively. With CCS reads as a bench-
mark, ClipSV identified the highest number of true SV
events (7383), followed by Manta (6590) and Lumpy
(2332). Consistent with the simulation results, ClipSV had
a comparable performance with Manta in detecting dele-
tions but exhibited a significant improvement in insertion
detections.

Performance of ClipSV in 250 bp WGS datasets

Using a similar strategy to 150 bp reads, we compared the
performance of different SV tools with 250 bp sequencing
reads. First, we spiked the same SV events into the genome
and simulated 250 bp paired-end reads to a 30× sequenc-
ing depth. Compared with 150 bp simulation results (Fig-
ure 3A), both ClipSV and Manta had an improved perfor-
mance with 250 bp reads. The overall sensitivity of ClipSV
increased from 81.9 to 90.2% (Figure 4A). Similarly, the sen-
sitivity of Manta increased from 79.2 to 84.7%. However,
Lumpy showed a decreased sensitivity from 23.7 to 22.5%.
With 250 bp sequencing reads, ClipSV excelled Manta in all
kinds of SV types, including deletions, insertions, inversions
and translocations (Supplementary Table S3). Consistently,
ClipSV had a highest F1 score (0.94) among three tools, fol-
lowed by Manta (0.91) and Lumpy (0.33). As shown in Fig-
ure 4A, compared with 150 bp sequencing reads, Manta had
a higher false positive rate (28.4 versus 9.3%) in detecting
translocations with a longer read length. We also evaluated
the performance of svABA with the 250 bp reads. The result
showed that svABA had 24.6% sensitivity and 35.1% preci-
sion to detect the spiked-in SV events, slightly better than
the 150 bp reads (Supplementary Table S2).

The detection bias toward the homologous SV events was
also evaluated for ClipSV. Of all the simulated SV events
(4089 homozygous events and 8278 heterozygous events),
ClipSV identified 3757 (91.2%) of the homologous SVs



10 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

and 7404 (89.4%) heterozygous events. Among the simu-
lated deletions, ClipSV detected 1547 (89.6%) homologous
events and 2936 (84.7%) heterozygous events. For inser-
tions, ClipSV detected 2151 (93.6%) homologous events
and 4232 (92.9%) heterozygous events. These results showed
ClipSV with the 2 × 250 bp reads has a better performance
in detecting heterozygous events compared with the 2 × 150
bp reads.

We also investigated the performance of SV tools on real
WGS datasets with 250 bp paired-end reads in the HG002
sample. Similar to the 150 bp dataset, the performance was
evaluated by the GIAB high-confident SV callset and CCS
long reads. ClipSV detected 9573 SV events with 250 bp
reads, including 4909 deletions and 4664 insertions, respec-
tively. Among them, 6338 events (66.2%) were supported by
GIAB high-confident SV callset and 8215 events (85.8%)
were supported by CCS reads (Figure 4B and C). Com-
pared with 150 bp sequencing reads, ClipSV showed an im-
proved performance in both deletions and insertions with
250 bp reads. In contrast, Manta totally detected 6994 SV
events, which included 4848 deletions and 2146 insertions,
respectively. Among them, 4457 events (63.7%) were sup-
ported by GIAB high-confident SV callset and 5938 events
(84.9%) were supported by CCS reads. Compared with 150
bp sequencing reads, Manta showed a comparable perfor-
mance in detecting deletions but a decreased performance
in detecting insertions with 250 bp reads. For Lumpy, it to-
tally reported 3624 SV events, including 3262 deletions and
362 insertions/duplications. Among them, 2398 (66.2%)
and 2382 (65.7%) events were supported by GIAB high-
confident SV callset and CCS reads, respectively. Its perfor-
mance in 250 bp reads was similar to the 150 bp sequencing
reads. With CCS reads as a benchmark, ClipSV identified
the highest number of true SV events (8215), followed by
Manta (5938) and Lumpy (2382). Consistent with simula-
tion results, ClipSV had a better performance than Manta
and Lumpy in both deletion and insertion events.

Read depth, running time and memory cost

Finally, we evaluate the performance of ClipSV on different
read coverage. We generated five different coverage (10×,
15×, 20×, 25× and 30×) by down-sampling of 150 bp WGS
reads of HG002. As shown in Supplementary Figure S5,
ClipSV identified 5019 deletions and 4130 insertions with
the sequencing reads of 30× coverage. Among them, 3973
(79.2%) deletions and 3410 (82.6%) insertions could be sup-
ported by CCS reads. When read coverage was decreased to
15×, ClipSV identified 4434 deletions and 3962 insertions.
Among them, 3475 (78.4%) deletions and 2831 (71.5%) in-
sertions could be supported by CCS reads. Therefore, com-
pared with 30× read coverage, ClipSV could retain 87.5%
(3475/3973) sensitivity for deletions and 83.0% (2831/3410)
sensitivity for insertions with 15× read coverage. When the
read coverage was down-sampled to 10×, ClipSV could re-
tain 72.2% (2868/3973) sensitivity for deletions and 60.0%
(2045/3410) sensitivity for insertions.

We also compared the running time and memory cost of
the three tools (Table 1). With a high-performance cluster
with 12 threads, the three tools could be finished within
7 h for one WGS sample with a 30× sequencing depth.

Table 1. Run time and memory usage for the SV tools

2 × 150 bp WGS (30×) 2 × 250 bp WGS (30×)

Tools ClipSV Lumpy Manta ClipSV Lumpy Manta

Wall-clock (hours) 2.9 5.3 0.4 3.5 6.7 1.0
Memory (GB) 22.3 14.7 1.3 29.3 22.9 1.5

The peak memory costs were within 30 GB for these tools.
Among them, Manta had the best performance in both
running time and memory cost. Compared with Lumpy,
ClipSV had a shorter running time but a higher memory
cost. The 250 bp sequencing reads required more compu-
tational resources for all the three tools. Based on overall
performance, ClipSV has a potential to serve as a widely
used tool for SV analysis in individual genomes as well as
large consortium cohorts.
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