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Nowadays, the development of new metaheuristics for solving optimization problems is a topic of interest in the scientific
community. In the literature, a large number of techniques of this kind can be found. Anyway, there are many recently proposed
techniques, such as the artificial bee colony and imperialist competitive algorithm.This paper is focused on one recently published
technique, the one called Golden Ball (GB). The GB is a multiple-population metaheuristic based on soccer concepts. Although it
was designed to solve combinatorial optimization problems, until now, it has only been tested with two simple routing problems:
the traveling salesman problem and the capacitated vehicle routing problem. In this paper, the GB is applied to four different
combinatorial optimization problems. Two of them are routing problems, which are more complex than the previously used
ones: the asymmetric traveling salesman problem and the vehicle routing problem with backhauls. Additionally, one constraint
satisfaction problem (the n-queen problem) and one combinatorial design problem (the one-dimensional bin packing problem)
have also been used. The outcomes obtained by GB are compared with the ones got by two different genetic algorithms and two
distributed genetic algorithms. Additionally, two statistical tests are conducted to compare these results.

1. Introduction

Today, optimization problems receive much attention in
artificial intelligence. There are several types of optimization,
such as numerical [1], linear [2], continuous [3], or combi-
natorial optimization [4]. Typically, problems arising in these
fields are of high complexity. Additionally, many of the prob-
lems arising in optimization are applicable to the real world.
For these reasons, in the literature, many different techniques
designed to be applied to these problems can be found.

Some classical examples of these techniques are the
simulated annealing [5], the tabu search [6], the genetic
algorithm (GA) [7, 8], ant colony optimization [9], or the
particle swarm optimization [10]. Since their proposal, all
these metaheuristics have been widely applied in a large
amount of fields. In fact, these techniques are the focus of
many research studies nowadays [11–14].

Despite the existence of these conventional algorithms,
the development of newmetaheuristics for solving optimiza-
tion problems is a topic of interest in the scientific com-
munity. On the one hand, optimization problems represent

a great challenge because they are hard to solve. For this
reason, the development of new techniques that outperform
the existing ones is a topic of interest for the researchers.
On the other hand, optimization problems (such as routing
problems) are very important from a social perspective. This
is because their resolution directly affects the economy and
sustainability in terms of cost reduction and energy saving.

In this way, there have been many recently proposed
metaheuristics, which have been successfully applied to
various fields and problems. One example is the imperialist
competitive algorithm (ICA) [15]. This population based
metaheuristic, proposed by Gargari and Lucas in 2007, is
based on the concept of imperialisms. In ICA, individu-
als are called countries and they are divided into various
empires, which evolve independently. Throughout the exe-
cution, different empires battle each other with the aim of
conquering their colonies. When one empire conquers all
the colonies, the algorithm converges into the final solution.
Some examples of its application can be seen in recent papers
[16, 17]. Another example is the artificial bee colony. This
technique was proposed in 2005 by Karaboga [18, 19] for
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multimodal and multidimensional numeric problems. Since
then, it has been used frequently in the literature for solving
different kinds of problems [20–22]. The artificial bee colony
is a swarm based technique which emulates the foraging
behaviour of honey bees.Thepopulation of thismetaheuristic
consists in a colony, with three kinds of bees: employed,
onlooker, and scout bees, each with a different behaviour.
The harmony search, presented by Geem et al. in 2001, is
another example [23, 24]. This metaheuristic mimics the
improvisation of music players. In this case, each musical
instrument corresponds to a decision variable; a musical note
is the value of a variable; and the harmony represents a
solution vector.With the intention of imitating themusicians
in a jam session, variables have random values or previously
memorized good values in order to find the optimal solution.
This algorithm is also used frequently in the literature [25–
27].

Bat-inspired algorithm is a more recent technique [28,
29].Thismetaheuristic, proposed by Yang in 2010, is based on
the echolocation behaviour ofmicrobats, which can find their
prey and discriminate different kinds of insects even in com-
plete darkness. Yang and Deb proposed the cuckoo search
algorithm in 2009 [30, 31]. On this occasion, as authors claim
in [30], this metaheuristic is based on the obligate brood
parasitic behaviour of some cuckoo species in combination
with the Levy flight behaviour of some birds and fruit flies.
Another recently developed technique which is very popular
today is the firefly algorithm [32, 33]. This nature-inspired
algorithm is based on the flashing behaviour of fireflies, which
act as a signal system to attract other fireflies. Like the afore-
mentioned techniques, these metaheuristics have been the
focus of several research [34–40] and review papers [41–43].

As can be seen, there are many metaheuristics in the
literature to solve optimization problems. Although sev-
eral techniques have been mentioned, many other recently
developed ones could be cited, such as the spider monkey
optimization [44] or seeker optimization algorithm [45].
This large amount of existing techniques demonstrates the
growing interest in this field, on which several books, special
issues in journals, and conferences proceedings are published
annually. Moreover, combinatorial optimization is a widely
studied field in artificial intelligence nowadays. Being NP-
Hard [46], a lot of problems arising in this field are particu-
larly interesting for the researchers.This kind of optimization
is the subject of a large number of works every year [47–49].
This scientific interest is the reason why this study is focused
on this sort of optimization.

This paper is focused on one recently proposed meta-
heuristic called Golden Ball (GB). This technique is a multi-
ple-population based metaheuristic, and it is based on soccer
concepts. A preliminary version of the GB and some basic
results were firstly introduced in 2013 by Osaba et al. [50].
Furthermore, the final version of the GB and its practical
use for solving complex problems have been presented this
very year (2014) by the same authors [51]. In that paper,
the GB is introduced, and it is compared with some similar
metaheuristics of the literature. In addition, it is successfully
applied to two different routing problems: the traveling sales-
man problem (TSP) [52] and the capacitated vehicle routing

problem (CVRP) [53]. Additionally, the results obtained by
GB were compared with the ones obtained by two different
GAs and two distributed genetic algorithms (DGA) [54, 55].
As a conclusion of that study, it can be said that the GB
outperforms these four algorithms when it is applied to the
TSP and CVRP.

The authors of that study claim that GB is a technique
to solve combinatorial optimization problems. Even so, they
only prove its success with two simple routing problems, the
TSP and the CVRP.This is the reason that motivates the work
presented in this paper. Thus, the objective of this paper is to
verify if the GB is a promising metaheuristic to solve combi-
natorial optimization problems, performing a more compre-
hensive and rigorous experimentation than that presented to
date.Thereby, in this research study, the GB is applied to four
different combinatorial optimization problems. Two of them
are routing problems, which are more complex than the ones
used in [51]: the asymmetric traveling salesman problem
(ATSP) [56] and the vehicle routing problem with backhauls
(VRPB) [57]. Furthermore, in order to verify that the GB
is also applicable to other types of problems apart from the
routing ones, two additional problems have also been used
in the experimentation, the n-queen problem (NQP) [58]
and the one-dimensional bin packing problem (BPP) [59].
As in [51], the results obtained by GB are compared with the
ones obtained by two different GAs and two DGAs. Besides,
with the objective of performing a rigorous comparison, two
statistical tests are conducted to compare these outcomes:
the well-known normal distribution 𝑧-test and the Friedman
test.

The rest of the paper is structured as follows. In Section 2,
the GB is introduced. In Section 3, the problems used in the
experimentation are described.Then, in Section 4, the exper-
imentation conducted is described. In Section 5, the results
obtained are shown and the statistical tests are performed.
This work finishes with the conclusions and future work
(Section 6).

2. Golden Ball Metaheuristic

In this section, the GB is described. As has been mentioned
in Section 1, the GB is a multiple-population based meta-
heuristic which takes several concepts related to soccer. To
begin with, the technique starts with the initialization phase
(Section 2.1). In this first phase, the whole population of
solutions (called players) is created. Then, these players are
divided among the different subpopulations (called teams).
Each team has its own training method (or coach). Once
this initial phase has been completed, the competition phase
begins (Section 2.2). This second phase is divided in seasons.
Each season is composed of weeks, in which the teams
train independently and face each other creating a league
competition. At the end of every season, a transfer procedure
happens, in which the players and coaches can switch teams.
The competition phase is repeated until the termination
criterion is met (Section 2.3). The entire procedure of the
technique can be seen in Figure 1. Now, the different steps that
form the proposed technique are explained in detail.
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Figure 1: Flowchart of GB metaheuristic.

2.1. Initialization Phase. As has been said, the first step of the
execution is the creation of the initial population𝑃.The initial
population is composed of 𝑃𝑇 ⋅ 𝑇𝑁 number of solutions 𝑝

𝑖
,

called 𝑝𝑙𝑎𝑦𝑒𝑟𝑠. Note that 𝑃𝑇 is the number of players per
team, and 𝑇𝑁 is the number of teams. Additionally, both
parameters must have a value higher than 1.

After the whole population 𝑃 is created, all the 𝑝
𝑖
are

randomly divided in the 𝑇𝑁 different teams 𝑡
𝑖
. Once the

players are divided between the different teams, they are
represented by the variable 𝑝

𝑖𝑗
, which means the player

number 𝑗 of the team 𝑖. The total set of teams 𝑇 forms the
league. All these conceptsmay be representedmathematically
as follows:

𝑃 : {𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
, 𝑝
5
, . . . , 𝑝

𝑃𝑇∗𝑇𝑁
}

𝑇 : {𝑡
1
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2
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3
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4
, . . . , 𝑡

𝑇𝑁
}
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1
: {𝑝
11
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1𝑃𝑇
}

Team 𝑡
2
: {𝑝
21
, 𝑝
22
, 𝑝
23
, . . . , 𝑝

2𝑃𝑇
}

...

Team 𝑡
𝑇𝑁

: {𝑝
𝑇𝑁1

, 𝑝
𝑇𝑁2

, . . . , 𝑝
𝑇𝑁𝑃𝑇

}

𝑃𝑇 = Number of players per team,

𝑇𝑁 = Total number of teams of the system.

(1)

Furthermore, every 𝑝
𝑖𝑗
has its own quality, which is

represented by the variable 𝑞
𝑖𝑗
(quality of the player 𝑖 of team

𝑗). This variable is represented by a real number, which is
determined by a cost function 𝑓(𝑝

𝑖𝑗
). This function depends

on the problem. For example, for some routing problems, this
function is equivalent to the traveled distance. On the other
hand, for the NQP, for instance, this function is the number
of collisions. In addition, each 𝑡

𝑖
has a captain (𝑝

𝑖cap), which

is the player with the best 𝑞
𝑖𝑗
of their team. To state this in a

formal way, consider

𝑝
𝑖cap = 𝑝𝑖𝑘 ∈ 𝑡𝑖 ⇐⇒ ∀𝑗 ∈ {1, . . . , 𝑃𝑇} : 𝑞𝑖𝑘 ≥ 𝑞𝑖𝑗. (2)

It should be borne in mind that, depending on the
problem characteristics, the objective is to minimize or
maximize 𝑓(𝑝

𝑖𝑗
). In the problems used in this paper, for

example, the lower the 𝑞
𝑖𝑗
is, the better the player is.

Moreover, each team has a strength value associated with
𝑇𝑄
𝑖
. This value is crucial for the matches between teams

(Section 2.2.2). It is logical to think that the better the players
are, the stronger a team is. Thereby, if one team is strong, it
can win more matches and it can be better positioned in the
classification of the league. In this way, the strength value of a
team 𝑡

𝑖
is equal to the average of the 𝑞

𝑖𝑗
of the players of that

team. 𝑇𝑄
𝑖
can be expressed by the following formula:

𝑇𝑄
𝑖
=

∑
𝑃𝑇

𝑗=1
𝑞
𝑖𝑗

𝑃𝑇

.
(3)

Once the initialization phase is completed, the competi-
tion phase begins. This phase is repeated iteratively until the
ending criterion is met.

2.2. Competition Phase. This is the central phase of the
metaheuristic. In this stage, each team evolves independently
and improves its 𝑇𝑄

𝑖
(Section 2.2.1). Additionally, in this

phase, the teams face each other, creating a league compe-
tition (Section 2.2.2). This league helps to decide the player
transfers between teams (Section 2.2.3). The competition
stage is divided into seasons (𝑆

𝑖
). Each 𝑆

𝑖
has two different

periods of player transfers. In each season, every team face
each other twice. In this way, each team plays 2NT-2 matches
in a season. Lastly, an amount of training sessions equal to the
number of matches played is performed.
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Figure 2: Workflow of a training process.

2.2.1. Training of Players. As in real life, trainings are the
processes thatmake players improve their quality. InGB, each
𝑡
𝑖
has its own training method, and some of them are more

effective than others. This fact makes some teams improve
more than others. There are two kinds of training methods
in GB: conventional trainings and custom trainings.

Conventional trainings are those that are performed reg-
ularly throughout the season. This type of training is applied
individually for each player. A training method is a successor
function, which works on a particular neighborhood struc-
ture in the solution space. Taking the TSP as example, one
training function could be the 2-opt [60]. As has been said,
each team has its own training function, which acts as the
coach of the team.The training function is assigned randomly
at the initialization phase. Thereby, each 𝑝

𝑖𝑗
uses the method

of its team. For each training session, the function is applied
a certain number of times, and the 𝑝󸀠

𝑖𝑗
generated is accepted

if 𝑞󸀠
𝑖𝑗
> 𝑞
𝑖𝑗
. Besides, this process could make a change in the

𝑝
𝑖cap of a team, if one𝑝

𝑖𝑗
outperforms the quality of its captain.

It is worth mentioning that one training session has its
own termination criterion. A training session ends when
there is a number of successors without improvement in the
quality of the 𝑝

𝑖𝑗
trained. This number is proportional to the

neighborhood of the team training function. For example,
taking the 2-opt and a 30-noded TSP instance, the training
ends when there are 𝑛/4 + ∑

𝑛/4

𝑘=1
𝑘 (the size of its neighbor-

hood) successors without improvement, with 𝑛 being the size
of the problem (30). Figure 2 schematizes this process.

Furthermore, the fact that every 𝑡
𝑖
explores the space solu-

tion in a different way increases the exploration and exploita-
tion capacity of the GB. This fact occurs because of the use
of a different training method for each team. Besides, this is
enhanced by the fact that players can change their teams.

On the other hand, the procedure of custom trainings
is different. These trainings are performed when one 𝑝

𝑖𝑗

receives a number of conventional training sessions without
experiencing any improvement (in this study, this number
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Figure 3: Flowchart of a match.

has been set in 𝑃𝑇/2). When this fact happens, it can be
considered that 𝑝

𝑖𝑗
is trapped in a local optimum. A custom

training is conducted by two players: the trapped 𝑝
𝑖𝑗
and the

𝑝
𝑖cap of their team.The purpose of these operations is to help
𝑝
𝑖𝑗
to escape from the local optimum and to redirect them

to another promising region of the solution space. From a
practical point of view, custom training combines two players
(like the crossover operator of aGA), resulting in a newplayer
𝑝
󸀠

𝑖𝑗
who replaces 𝑝

𝑖𝑗
. Taking the TSP as example, a function

that combines the characteristics of two players could be the
order crossover (OX) [61] or the partially mapped crossover
[62].The custom training helps a thorough exploration of the
solution space.

2.2.2.Matches betweenTeams. InGB, as in the real world, two
teams (𝑡

𝑗
, 𝑡
𝑘
) are involved in a match. Each match consists

in 𝑃𝑇 goal chances, which are resolved in the following
way: first, the players of both teams are sorted by quality (in
descending order). Then, each 𝑝

𝑖𝑗
faces 𝑝

𝑖𝑘
. The player with

the highest qualitywins the goal chance, and their team scores
a goal. As can be surmised, the team that achieves more goals
wins the match. Furthermore, the team that wins the match
obtains 3 points and the loser obtains 0 points. If both teams
obtain the same number of goals, each one receives one point.
These points are used to perform a team classification, sorting
the teams by the points obtained in a whole season. Figure 3
shows the flowchart of a match.

2.2.3. Player Transfers between Teams. The transfers are the
processes in which the teams exchange their players. There
are two types of transfers in GB: season transfers and special
transfers.The former are the conventional ones, and they take
place twice in a 𝑆

𝑖
. In these transfers, the points obtained by

each team and its position in the league are crucial factors.
In this way, in the middle and the end of each 𝑆

𝑖
, the teams

placed in the top half of the league classification “hire” the
best players of the teams located on the lower half. Moreover,
teams of the bottom half receive in return the worst players
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of the top teams. In addition, the better the position of the
team is, the better the player it receives is. In other words, the
best 𝑡
𝑖
is reinforced with the best player of the worst team of

the league. Furthermore, the second 𝑡
𝑖
obtains the second best

𝑝
𝑖𝑗
of the penultimate team, and so on. Finally, if the league

has an odd number of teams, the team placed in the middle
position does not exchange any 𝑝

𝑖𝑗
.

On the other hand, the special transfers are sporadic
exchanges that can occur at any time during a season. If one
player receives a certain number of conventional and cus-
tom trainings without experiencing any improvement, they
changes their team (in this study, this number has been set
in PT conventional training sessions without improvement).
This change is made in order to obtain a different kind of
training. Besides, it is nomatter whether the destination team
has less 𝑇𝑄

𝑖
than its current team. Additionally, with the aim

of maintaining the 𝑃𝑇 per team, there is an exchange with a
random player of the destination team.

As authors said in [51], these interchanges help the search
process. This neighborhood changing improves the explora-
tion capacity of the technique.

Lastly, it is noteworthy that another sort of transfer exists
in GB. In this case, these transfers are not performed with
players, but with team coaches. This process has been called
cessation of coaches. In each period of season tranfers, the
teams positioned in the bottom half of the league classi-
fication change their training form. This change is made
hoping to get another kind of training which improves the
performance and the 𝑇𝑄

𝑖
of the team.This training exchange

is performed randomly among all the training types existing
in the system, allowing repetitions between different 𝑡

𝑖
.

This random neighborhood change increases the exploration
capacity of the metaheuristic.

2.3. Termination Criterion. The termination criterion is a
critical factor in the development of a metaheuristic. It must
be taken into account that this criterion has to allow the
search to examine a wide area of the solution space. On
the other hand, if it is not strict enough, it can lead to a
considerable waste of time. In this way, the termination crite-
rion of the GB is composed of three clauses:

𝑇𝑁

∑

𝑖=1

𝑞
󸀠

𝑖cap ≤
𝑇𝑁

∑

𝑖=1

𝑞
𝑖cap,

𝑇𝑁

∑

𝑖=1

𝑇𝑄
󸀠

𝑖
≤

𝑇𝑁

∑

𝑖=1

𝑇𝑄
𝑖
,

𝐵𝑒𝑠𝑡𝑆𝑜𝑙
󸀠
≤ 𝐵𝑒𝑠𝑡𝑆𝑜𝑙.

(4)

In other words, the execution of the GB finishes when (1)
the sum of the quality 𝑞󸀠

𝑖cap of all the captains is not improved
over the previous season, (2) the sum of the strengths 𝑇𝑄󸀠

𝑖
of

all the teams has not been improved compared to the previous
season, and (3) there is no improvement in the best solution
found (𝐵𝑒𝑠𝑡𝑆𝑜𝑙󸀠) in relation to the previous season. When
these three conditions are fulfilled, the 𝑝

𝑖𝑗
with the best 𝑞

𝑖𝑗

of the system is returned as the final solution.

3. Description of the Used Problems

As has been mentioned in the introduction of this study, four
combinatorial optimization problems have been used in the
experimentation conducted. In this section, these problems
are described. The first two are routing problems: the ATSP
(Section 3.1) and the VRPB (Section 3.2). Besides, with the
aim of verifyingwhether theGB is also a promising technique
with other kinds of problems apart from the routing ones, the
NQP (Section 3.3) and the BPP (Section 3.4) have been used.

It is important to highlight that the objective of the
present paper is not to find an optimal solution to these
problems. In fact, in the literature, there are multiple efficient
techniques with this objective. Instead, these four problems
have been used as benchmarking problems. In this way, the
objective of using them is to compare the performance of
the GB with the one of the GAs and DGAs and to conclude
which obtains better results using the same parameters and
functions.

3.1. Asymmetric Traveling Salesman Problem. As the sym-
metric version of this problem (the TSP), the ATSP has
a great scientific interest, and it has been used in many
research studies since its formulation [63, 64]. This problem
can be defined as a complete graph 𝐺 = (𝑉,𝐴), where
𝑉 = {V

1
, V
2
, . . . , V

𝑛
} is the set of vertexes which represents the

nodes of the system and 𝐴 = {(V
𝑖
, V
𝑗
) : V
𝑖
, V
𝑗
∈ 𝑉, 𝑖 ̸= 𝑗}

is the set of arcs which represents the connection between
nodes. Additionally, each arc has an associated distance cost
𝑑
𝑖𝑗
. Unlike in the TSP, in the ATSP, the distance cost between

two nodes is different depending on the direction of the flow;
that is, 𝑑

𝑖𝑗
̸= 𝑑
𝑗𝑖
.Thereby, the objective of the ATSP is to find a

route that, starting and finishing at the same node, visits every
V
𝑖
once andminimizes the total distance traveled. In this way,

the objective function is the total distance of the route.
In this study, the solutions for the ATSP are encoded

using the permutation representation [65]. According to this
encoding, each solution is represented by a permutation of
numbers, which represents the order in which the nodes
are visited. For example, for a possible 10-node instance,
one feasible solution would be encoded as 𝑋 = (0, 5,

2, 4, 3, 1, 6, 8, 9, 7), and its fitness would be 𝑓(𝑋) = 𝑑
05
+𝑑
52
+

𝑑
24
+ 𝑑
43
+ 𝑑
31
+ 𝑑
16
+ 𝑑
68
+ 𝑑
89
+ 𝑑
97
+ 𝑑
70
. This situation is

depicted in Figure 4.

3.2. Vehicle Routing Problem with Backhauls. The VRPB is a
variant of the basic VRP where customers can demand either
a delivery or a pick-up of certain goods [57]. In this problem,
all deliveries are done before the pick-ups. This is so because,
otherwise, it could be a movement of material within the
mobile unit that could be counterproductive, for example,
putting collected materials on the front of the trunk, whereas
at the bottom some goods remain undelivered. The VRPB is
widely used in the literature thanks to its applicability to the
real world and to its solving complexity [66–68].

The VRPB can be defined as a complete graph 𝐺 =

(𝑉,𝐴), where 𝑉 = {V
0
, V
1
, . . . , V

𝑛
} is the set of vertexes and

𝐴 = {(V
𝑖
, V
𝑗
) : V

𝑖
, V
𝑗

∈ 𝑉, 𝑖 ̸= 𝑗} is the set of arcs.



6 The Scientific World Journal

Nodes

5

0

2

7

53

1

6

8
9

(a)

Route

9

5

0

2

7

53

1

6

8

(b)

Figure 4: Example of a 10-node ATSP instance and a possible solution.

The vertex V
0
represents the depot, and the rest are the

customers. Besides, in order to facilitate the formulation, the
set of customers 𝑉 can be separated into two subsets [69].
The first one, 𝐿, called linehaul customers, contains those
users who demand the delivery of goods. On the other hand,
the second subset, 𝐵, called backhaul customers, demand the
pick-up of a certain amount of material. To express customer
demand (𝑞

𝑖
), positive values are used for linehaul customers

and negative values for backhaul ones.
Additionally, a fleet of 𝐾 vehicles is available with a lim-

ited capacity𝑄.The objective of the VRPB is to find a number
of routes with a minimum cost such that (i) each route starts
and ends at the depot, (ii) each client is visited exactly by one
route, (iii) all deliveries aremade before pick-ups, and (iv) the
total demand of the customers visited by one route does not
exceed the total capacity of the vehicle that performs it.

Finally, the permutation representation is also used for
this problem [70], and the routes are also encoded as
nodes permutation. In addition, to distinguish the different
routes in a solution, they are separated by zeros. As an
example, suppose a set of five linehaul customers 𝐿 =

{𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5} and seven backhaul customers 𝐵 =

{𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7}. One possible solution with three
vehicles would be𝑋 = (𝐿5, 𝐿3, 𝐵1, 𝐵6, 0, 𝐿4, 𝐿1, 𝐵3, 𝐵7, 0, 𝐿2,
𝐵4, 𝐵5, 𝐵2) and its fitness would be 𝑓(𝑋) = 𝑑

0𝐿5
+ 𝑑
𝐿5𝐿3

+

𝑑
𝐿3𝐵1

+ 𝑑
𝐵1𝐵6

+ 𝑑
𝐵60

+ 𝑑
0𝐿4

+ 𝑑
𝐿4𝐿1

+ 𝑑
𝐿1𝐵3

+ 𝑑
𝐵3𝐵7

+ 𝑑
𝐵70

+

𝑑
0𝐿2

+𝑑
𝐿2𝐵4

+𝑑
𝐵4𝐵5

+𝑑
𝐵5𝐵2

+𝑑
𝐵20

. In Figure 5(a), an example
of a VRPB instance is depicted. Furthermore, in Figure 5(b),
a possible solution for this instance is shown.

3.3. n-Queen Problem. The NQP is a generalization of the
problem of putting eight nonattacking queens on a chess-
board [71], which was introduced by Bezzel in 1848 [72]. The
NQP consists in placing 𝑁 queens on a 𝑁 × 𝑁 chessboard,
in order that they cannot attack each other. This problem is
a classical combinatorial design problem (constraint satisfac-
tion problem), which can also be formulated as a combinato-
rial optimization problem [73]. In this paper, the NQP has
been formulated as a combinatorial optimization problem,

where a solution 𝑋 is coded as an 𝑁-tuple (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
),

which is a permutation of the set (1, 2, . . . , 𝑁). Each 𝑞
𝑖

represents the row occupied by the queen positioned in the
𝑖th column. Using this representation, vertical and horizontal
collisions are avoided, and the complexity of the problem
becomes𝑂(𝑁!).Thereby, the fitness function is defined as the
number of diagonal collisions along the board. Notice that 𝑖th
and 𝑗th queens collide diagonally if

󵄨
󵄨
󵄨
󵄨
𝑖 − 𝑞
𝑖

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑗 − 𝑞
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

∀𝑖, 𝑗 : {1, 2, . . . , 𝑁} ; 𝑖 ̸= 𝑗. (5)

In this way, the objective of NQP is to minimize the
number of conflicts, the ideal fitness being zero. A possible
solution for an 8-queen chessboard is depicted in Figure 6.
According to the encoding explained, the solution repre-
sented in this figure would be encoded as 𝑓(𝑋) = (4, 3, 1,

6, 5, 8, 2, 7). Additionally, its fitness would be 3, since there
are three diagonal collisions (4-3, 6-5, and 6–8). This same
formulation has been used before in the literature [74, 75].

3.4. One-Dimensional Bin Packing Problem. The packing of
items into boxes or bins is a daily task in distribution and
production. Depending on the item characteristics, as well
as the form and capacity of the bins, a wide amount of
different packing problems can be formulated. In [59], an
introduction to bin-packing problems can be found.The BPP
is the simplest one, and it has been frequently used as a
benchmarking problem [76–78]. The BPP consists of a set of
items 𝐼 = (𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑛
), each with an associated size 𝑠

𝑖
and

an unlimited supply of bins with the same capacity 𝑞. The
objective of the BPP is to pack all the items into a minimum
number of bins. In this way, the objective function is the
number of bins, which has to be minimized.

In this study, the solutions are encoded as a permutation
of items. To count the number of bins needed in one solution,
the item sizes are accumulated in a variable (𝑠𝑢𝑚𝑆𝑖𝑧𝑒). When
𝑠𝑢𝑚𝑆𝑖𝑧𝑒 exceeds 𝑞, the number of bins is incremented in
1, and 𝑠𝑢𝑚𝑆𝑖𝑧𝑒 is reset to 0. Thereby, we suppose a simple
instance of 9 items 𝐼 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

9
}, three different sizes

𝑠
1−3

= 20, 𝑠
4−6

= 30, and 𝑠
7−9

= 50, and 𝑞 = 100. One
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Figure 5: Example of a VRPB instance and a possible solution.

Figure 6: Example of an 8 × 8 instance for the NQP.

possible solution could be𝑋 = (𝑖
1
, 𝑖
4
, 𝑖
7
, 𝑖
2
, 𝑖
5
, 𝑖
8
, 𝑖
3
, 𝑖
6
, 𝑖
9
), and

its fitness would be 3 (the number of bins needed to hold all
the items). This example is represented in Figure 7.

4. Experimentation Setup

In this section, the experimentation performed is described.
According to the study carried out in [51], the GB meta-
heuristic provides some originality regarding the well-known

Items Bin

Possible solution

50
3020

50
30

20

50
30

20

50
30

20

q = 100

×3 ×3 ×3

Figure 7: Example of a BPP instance and a possible solution.

techniques that can be found today in the literature. In line
with this, analyzing the philosophy and the working way of
GB, it can be concluded that the DGA is the technique which
shares the most similarities with it. Among other similarities,
in the evolution of their individuals, thesemetaheuristics rely
on two operators, a local and a cooperative one, which are
used for the exploitation and exploration. In addition, these
techniques are easy to apply to combinatorial optimization
problems.

For these reasons, to prove the quality of the GB, two
single-population GAs and two DGAs are used for the
experimentation. The general characteristics of these four
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(1) Initialization of the population
(2) while termination criterion not reached do
(3) Parents selection
(4) Crossover phase
(5) Mutation phase
(6) Survivors selection
(7) end
(8) Return the best individual found

Algorithm 1: Pseudocode of GA1 and GA2.

(1) Initialization of the subpopulations
(2) while termination criterion not reached do
(3) for each subpopulation do
(4) Parents selection
(5) Crossover phase
(6) Mutation phase
(7) Survivors selection
(8) end
(9) Individual migration phase
(10) end
(11) Return the best individual found

Algorithm 2: Pseudocode of DGA1 and DGA2.

techniques are explained in Section 4.1. In addition, the
parametrization of all the algorithms is described in the same
section. The details of the experimentation are introduced in
Section 4.2.

4.1. General Description of Developed Techniques. As has been
mentioned, the outcomes obtained by the GB are compared
with the ones obtained by two basic single-population GAs
(GA
1
and GA

2
) and two different DGAs (DGA

1
and DGA

2
).

The structure used for both GAs is the one represented
in Algorithm 1, and it is considered the conventional one.
Furthermore, in Algorithm 2, the structure of both DGAs is
depicted, which is also the conventional one.

On one hand, for GA
1
and DGA

1
conventional operators

and parameters have been used, that is, a high crossover
probability and a low mutation probability. These concepts
are based on the concepts outlined in many previous studies
[54, 79, 80]. On the other hand, for GA

2
and DGA

2
,

parameters have been adjusted to be similar to those used
for the GB. Thereby, the numbers of cooperative movements
(crossovers and custom trainings) and individualmovements
(mutations and conventional trainings) performed are the
same. In addition, the same functions have been used for
GA
2
, DGA

2
, and GB. In this way, the only difference between

them is the structure. Thereby, it can be deduced which
algorithm is the one that obtains better results, using the same
operators for the same number of times.

The population size used for each metaheuristic is 48.
All the initial solutions have been generated randomly. For
DGA
1
and DGA

2
, this population has been divided into

4 subpopulations of 12 individuals. For the GB, the whole
population is also divided into 4 teams of 12 players each.The
crossover probability (𝑝

𝑐
) and mutation probability (𝑝

𝑚
) of

the GA
1
are 95% and 5%, respectively. On the other hand,

different 𝑝
𝑐
and 𝑝

𝑚
have been used for every subpopulation

of DGA
1
. For 𝑝

𝑐
, 95%, 90%, 80%, and 75% have been utilized,

and for𝑝
𝑚
, 5%, 10%, 20%, and 25% have been utilized. At last,

for GA
2
and DGA

2
, 𝑝
𝑐
= 0.003% and 𝑝

𝑚
= 100% have been

used, in order to fit with the GB parameters.
In relation to the parents selection criteria for the GAs

and DGAs, first, each individual of the population is selected
as parent with a probability equal to 𝑝

𝑐
. If one individual

is selected for the crossover, the other parent is selected
randomly. Regarding the survivor function, a 100% elitist
function has been developed for GA

2
and DGA

2
, and a 50%

elitist random (which means that the half of the survivor
population is composed of the best individuals, and the
remaining ones are selected randomly) has been developed
for GA

1
and DGA

1
. In DGA

1
and DGA

2
, the classic best-

replace-worst migration strategy has been used. In this
strategy, every subpopulation 𝑖 shares its best individual
with the following 𝑖 + 1 deme, in a ring topology. This
communication happens every generation and the immigrant
replaces the worst individual of deme 𝑖 + 1. Ultimately, the
execution of both GAs and DGAs finishes when there are
𝑛 + ∑

𝑛

𝑘=1
𝑘 generations without improvements in the best

solution, where 𝑛 is the size of the problem.The problem size
is the number of customers in the two routing problems, the
number of queens in the NQP and the number of items in the
BPP.

The successor functions employed by GB as conventional
training functions for the ATSP, NQP, and BPP are the
following.

(i) 2-opt and 3-opt: these functions, proposed by Lin for
the TSP [60], have been used widely in the literature
[81–83]. These operators eliminate at random 2 (for
the 2-opt) and 3 (for the 3-opt) arcs of the solution,
and they create two or three new arcs, avoiding the
generation of cycles.

(ii) Insertion function: this operator selects and extracts
one random node of a solution, and it inserts it
in another random position. Because of its easy
implementation and its good performance, this func-
tion is often used in the literature for any kind of
permutation encoded problem [84, 85].

(iii) Swapping function: this well-known function is also
widely employed in lots of research studies [86].
In this case, two nodes of a solution are selected
randomly, and they swap their position.

These successor functions have also been used as muta-
tion functions for the DGA

2
(a different function for each

subpopulation). On the other hand, for the GA
1
, GA
2
, and

DGA
1
, the 2-opt has been utilized for this purpose, since it is

the one that gets the best results.
For the same problems (ATSP, NQP, and BPP), GB uses

the half crossover (HX) operator [81] as a custom training
function. This operator is a particular case of the traditional
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3 1 0 9 68 45 27
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Figure 8: Example of HX with a 10-node instance.

8 2 6 3 79 51 04

3 1 0 9 68 45 27

Initial state Intermediate state Final state

6 39 5

0 98 4

8 4 6 3 79 50 12

3 5 0 86 74 219

Figure 9: Example of OX with a 10-node instance.

one-point crossover, in which the cut-point is made always
in the middle of the solution. Assuming a 10-node instance,
in Figure 8, an example of this function can be seen. This
function has been used as a crossover operator for the GA

2

and DGA
2
. On the other hand, for the GA

1
and DGA

1
, the

well-known order crossover (OX) [61] has been implemented
as a crossover function. In Figure 9, an example of the OX is
shown. Finally, in Table 1, a summary of the characteristics of
both GAs and DGAs is depicted.

Regarding the VRPB, 2-opt and Insertion functions are
also used as conventional training functions.These operators,
as Savelsbergh called them [87], are intraroute functions,
which means that they work within a specific route. Addi-
tionally, two interroute functions have been developed.

(i) Insertion Routes: this function selects and extracts
one random node from a random route. After that,
this node is reinserted in a random position in anoth-
er randomly selected route.This function could create
new routes.

(ii) Swapping Routes: this operator selects randomly two
nodes of two randomly selected routes. These nodes
are swapped.

It is noteworthy that all these functions take into account
both the vehicles capacity and the class of the nodes’
demands, never making infeasible solutions. As in the previ-
ous problems, these same operators have been also developed
as mutation functions for the DGA

2
(a different operator for

each subpopulation).Moreover, Insertion Routes operator has
been used for the same purpose in GA

1
, GA
2
, and DGA

1
.

For the VRPB, the half route crossover (HRX) has been
used as custom training.This function has been used recently
in several studies [49, 85], and it operates as follows: first,
half of the routes of one parent are directly inserted into the
child.Then, the nodes that remain to be inserted are added in
the same order in which they appear in the other parent. As
the above functions, the HRX takes into account the VRPB
constraints, and it does not generate infeasible solutions. In
Figure 10, an example of the HRX procedure in a 20-node
instance is shown. Additionally, in Table 2, a summary of the
characteristics of both GAs and DGAs for VRPB is shown.
Finally, the features of the GB for the four problems are
depicted in Table 3.
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Figure 10: A possible example of HRX with a 20-node instance.

4.2. Description of the Experimentation. In this section, the
basic aspects of the experimentation are detailed. First, all
the tests have been run on an Intel Core i7 3930 computer,
with 3.20GHz and a RAM of 16GB. Microsoft Windows
7 has been used as OS. All the techniques were coded
in Java. For the ATSP, 19 instances have been employed,
which have been obtained from the TSPLib Benchmark [88].
These 19 instances are all the available ones that can be
found in the TSPLib webpage (https://www.iwr.uni-heidel-
berg.de/groups/comopt/software/TSPLIB95/). Additionally,
12 instances have been utilized for the VRPB.These instances
have been created by the authors of this study.With the aim of
allowing the replication of this experimentation, the bench-
mark used is available under request, and it can be obtained
from the personal site of the corresponding author of this
paper (http://paginaspersonales.deusto.es/e.osaba). The first
6 instances of the benchmark have been picked from the
VRPTW Solomon Benchmark (http://w.cba.neu.edu/∼msol-
omon/problems.htm). For these instances, the time con-
straints have been removed. Furthermore, the demands type
has been modified in order to create backhaul and linehaul
customers.The vehicles capacity and the amount of customer
demands have been retained. On the other hand, the remain-
ing instances have been taken from the VRPWeb, and they
belong to the Christofides/Eilon (http://neo.lcc.uma.es/vrp)
CVRP set. In this case, only the demand nature has been
modified. These problem instances have been adapted for
experimentation purpose and so, their optimum solutions are
unknown.

In regard to the NQP, 15 different instances have been
developed. The name of each of them describes the number
of queens and the dimension of the chessboard. For example,
the 20-queen instance consists in placing 20 queens on a
20x20 board. For this problem, the optimum is also not
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Table 1: Summary of the characteristics of GA1, GA2, DGA1, and DGA2 for the ATSP, NQP, and BPP.

Alg. Population 𝑝
𝑐
and 𝑝

𝑚
Surviv. funct. Cross. oper. Mut. operators

GA1
1 population, 48
individuals 80% & 20% 50% elitist—50%

random OX 2-opt

GA2
1 population, 48
individuals 0.003% & 100% 100% elitist HX 2-opt

DGA1

4 subpopulations,
each with 12
individuals

95% & 5%, 90% &
10%, 75% & 25%, 80%
& 20%, respectively

50% elitist—50%
random OX 2-opt (the same for all

subpopulations)

DGA2

4 subpopulations,
each with 12
individuals

0.003% & 100% 100% elitist HX

2-opt, 3-opt,
Swapping, and

Insertion (a different
function for each

population)

Table 2: Summary of the characteristics of GA1, GA2, DGA1, and DGA2 for the VRPB.

Alg. Population 𝑝
𝑐
and 𝑝

𝑚
Surviv. funct. Cross. oper. Mut. operators

GA1
1 population, 48
individuals 80% & 20% 50% elitist—50%

random HRX Insertion Routes

GA2
1 population, 48
individuals 0.003% & 100% 100% elitist HRX Insertion Routes

DGA1

4 subpopulations,
each with 12
individuals

95% & 5%, 90% &
10%, 75% & 25%, 80%
& 20%, respectively

50% elitist—50%
random HRX

Insertion Routes (the
same for all

subpopulations)

DGA2

4 subpopulations,
each with 12
individuals

0.003% & 100% 100% elitist HRX

2-opt, Insertion,
Insertion Routes, and
Swapping Routes (a
different function for
each population)

Table 3: Summary of the characteristics of GB.

Number of teams (TN) 4
Number of players per team (PT) 12
Number of trainings without
improvement for a custom training 6

Number of trainings without
improvement for a special transfer 12

Custom training function for the
ATSP, NQP, and BPP HX

Custom training function for the
VRPB HRX

Conventional training functions for
the ATSP, NQP, and BPP

2-opt, 3-opt, Swapping, and
Insertion

Conventional training functions for
the VRPB

2-opt, Insertion, Swapping
Routes, and Insertion

Routes

shown, since it is 0 in every case. At last, regarding the
BPP, 16 instances have been chosen from the well-known
Scholl/Klein benchmark (http://www.wiwi.uni-jena.de/ent-
scheidung/binpp/index.htm). These cases are named
𝑁𝑥𝐶𝑦𝑊𝑧 𝑎, where 𝑥 is 1 (50 items), 2 (100 items), 3 (200
items), or 4 (500 items); 𝑦 is 1 (capacity of 100), 2 (capacity of
120), and 3 (capacity of 150); 𝑧 is 1 (items size between 1 and

100) and 2 (items size between 20 and 100); and 𝑎 is A, B, or
C as benchmark indexing parameter.

Each instance has been run 40 times. Besides, with the
intention of conducting a fair and rigorous outcomes’ com-
parison, two different statistical tests have been performed:
the normal distribution 𝑧-test and the Friedman test. Thanks
to these tests, it can be concluded whether the differences in
the results are statistically significant or not. The details of
these statistical tests are explained in the next section.

5. Experimentation Results

In this section, the results obtained by each technique for
the chosen problems are shown and analysed. In addition,
the statistical tests are also depicted in this section. First,
the results and statistical tests are displayed (Section 5.1).
Then, the analysis of the outcomes obtained is conducted
(Section 5.2).

5.1. Results and Statistical Tests. In this section, the outcomes
and statistical tests are shown. In Table 4, the results obtained
for the ATSP are introduced. Furthermore, in Table 5, the
outcomes got for the VRPB are presented. Besides, results
obtained for the NQP and BPP are detailed in Tables 6
and 7, respectively. For each instance, the average result and
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Table 4: Results of GB, GA1, GA2, DGA1, and DGA2 for the ATSP. For each instance results average, standard deviation, and time average
are shown.

Instance GB GA1 GA2 DGA1 DGA2

Name Optimum Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time
br17 39 39.0 0.0 0.1 39.2 0.4 0.1 39.1 0.2 0.1 39.0 0.0 0.1 39.0 0.0 0.2
ftv33 1286 1329.2 33.7 0.2 1412.5 81.5 0.4 1540.3 83.1 0.2 1403.7 60.9 0.4 1416.8 90.4 0.4
ftv35 1473 1509.5 28.8 0.2 1609.1 76.9 0.4 1678.3 165.3 0.2 1606.8 74.7 0.4 1598.3 57.0 0.4
ftv38 1530 1580.4 37.3 0.3 1676.1 71.7 0.5 1709.1 145.8 0.3 1703.6 91.8 0.5 1699.4 74.5 0.4
p43 5620 5620.6 0.8 0.3 5627.7 5.5 0.9 5626.9 3.8 0.4 5625.9 3.7 0.8 5624.8 3.4 0.4
ftv44 1613 1695.1 42.7 0.4 1787.1 93.2 1.0 2071.5 147.7 0.4 1832.6 131.9 0.9 1835.0 108.0 0.6
ftv47 1776 1862.2 55.2 0.5 1961.4 86.7 1.4 2526.2 705.5 0.6 2020.2 139.1 1.0 2038.2 130.7 0.8
ry48p 14422 14614.2 164.5 0.6 15008.2 348.6 1.6 14976.5 259.7 0.8 15038.8 381.9 1.8 14945.2 178.8 0.7
ft53 6905 7335.0 204.7 0.8 8077.2 344.9 1.8 9401.1 632.6 0.9 8331.5 462.9 1.7 7997.4 232.2 0.9
ftv55 1608 1737.1 73.2 0.8 1879.3 110.7 1.4 2152.4 312.5 1.4 2021.2 153.4 1.7 1990.9 109.4 1.4
ftv64 1839 2023.5 93.4 1.6 2203.5 129.5 2.1 3032.9 226.8 1.8 2284.3 163.2 3.2 2321.8 141.3 1.7
ftv70 1950 2151.9 83.9 1.8 2313.7 145.2 2.7 3335.5 330.2 2.1 2390.0 127.0 2.5 2509.6 140.4 2.1
ft70 38673 40135.9 461.4 2.1 40416.0 623.4 3.2 47067.0 1647.2 2.1 40813.1 746.0 2.6 41129.9 823.5 2.3
kro124p 36230 38924.6 1157.4 7.4 42259.0 1813.8 9.4 44084.0 1932.5 8.8 43408.1 2020.3 11.4 41116.5 1044.9 7.8
ftv170 2755 3873.4 468.7 41.2 4214.8 361.8 49.8 4210.1 481.3 43.5 4367.0 470.7 51.7 4252.4 174.2 39.8
rbg323 1326 1494.2 35.7 120.3 1601.0 76.8 130.7 1596.1 77.3 124.9 1584.7 73.7 130.7 1614.7 194.4 124.9
rbg358 1163 1364.8 40.1 147.7 1781.9 62.5 158.1 1799.8 66.2 150.4 1720.8 175.0 164.8 1724.7 189.7 159.4
rbg403 2465 2510.4 29.6 222.0 3088.4 199.6 227.4 3298.8 378.1 224.2 2870.2 194.5 235.1 2766.2 138.4 220.4
rbg443 2720 2767.9 17.5 324.5 3142.5 219.3 335.9 3154.4 242.5 321.0 2992.2 125.6 335.9 2989.6 128.1 329.0

Table 5: Results of GB, GA1, GA2, DGA1, and DGA2 for the VRPB. For each instance results average, standard deviation, and time average
are shown.

Instance GB GA1 GA2 DGA1 DGA2
Name Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time
C101 675.3 39.1 3.3 722.3 67.7 10.4 706.0 40.2 2.9 739.1 47.7 12.6 707.0 65.6 3.4
C201 648.6 44.1 1.1 852.3 124.5 1.2 834.8 75.3 1.4 795.8 50.2 2.4 717.2 133.7 1.1
R101 895.8 25.1 3.1 995.8 80.9 7.8 946.1 48.8 2.5 959.5 43.9 9.1 903.9 51.5 3.1
R201 1047.6 22.6 7.0 1270.0 62.5 13.0 1137.2 65.4 6.5 1188.9 75.1 12.4 1085.7 39.5 6.8
RC101 583.3 15.1 0.5 778.9 118.9 0.9 660.2 59.2 0.9 645.1 66.3 1.1 626.3 44.1 1.1
RC201 1164.6 41.6 6.2 1304.5 76.5 13.2 1261.0 87.9 5.9 1337.2 60.1 12.4 1182.1 63.8 6.1
En23k3 696.8 13.5 0.5 797.0 67.8 0.9 748.4 33.9 0.8 771.0 49.3 0.8 702.6 24.1 0.8
En30k4 509.6 16.3 0.5 672.2 51.7 1.5 630.7 39.7 1.3 600.6 56.6 1.4 593.3 69.2 0.8
En33k4 777.9 30.7 0.6 851.7 41.9 1.7 835.7 47.3 1.1 833.6 35.3 1.2 819.7 28.7 0.9
En51k5 630.5 20.7 2.0 716.8 52.3 2.6 715.0 46.5 2.3 721.5 33.5 2.5 646.0 35.6 1.9
En76k8 830.7 26.4 6.3 915.2 43.1 10.7 916.3 54.3 6.1 918.5 74.0 9.7 871.4 39.2 5.8
En101k14 1088.0 24.2 22.0 1183.8 38.8 26.3 1164.8 56.2 20.8 1231.9 42.9 24.8 1191.4 59.1 19.8

standard deviation are shown. Additionally, average runtimes
are also displayed (in seconds).

As mentioned, two statistical tests have been performed
according to these outcomes. The first one is the normal
distribution 𝑧-test. By this test, the results obtained by the GB
are compared with those obtained by the other techniques.
Thanks to the normal distribution 𝑧-test, it can be concluded
whether the differences betweenGB and the other techniques
are statistically significant or not. The 𝑧 statistic has the
following form:

𝑧 =

𝑋GB − 𝑋𝑖

√(𝜎
2

GB/𝑛GB) + (𝜎
2

𝑖
/𝑛
𝑖
)

, (6)

where𝑋GB: average of the GB, 𝜎GB: standard deviation of the
GB, 𝑛GB: sample size for GB,𝑋

𝑖
: average of the technique 𝑖, 𝜎

𝑖
:

standard deviation of the technique 𝑖, and 𝑛
𝑖
: sample size for

technique 𝑖.
It is noteworthy that the GB has been faced with the other

four implemented metaheuristics. Thereby, the parameter 𝑖
can be GA

1
, GA
2
, DGA

1
, and DGA

2
.The confidence interval

has been stated at 95% (𝑧
0.05

= 1.96). In this way, the result
of the test can be positive (+), if 𝑧 ≥ 1.96; negative (−), if
𝑧 ≤ −1.96; or neutral (∗), if −1.96 < 𝑧 < 1.96. A + indicates
that GB is significantly better. In the opposite case, it obtains
substantially worse solutions. If the result is (∗), the difference
is not significant. In this study, the numerical value of 𝑧 is also
displayed.Thereby, the difference in results may be seenmore
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Table 6: Results of GB, GA1, GA2, DGA1, and DGA2 for the NQP. For each instance, results average, standard deviation, and time average
are shown. The optimum of each instance is 0.

Instance GB GA1 GA2 DGA1 DGA2
Name Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time
8-queen 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1
20-queen 0.1 0.2 0.1 1.4 0.6 0.1 0.1 0.3 0.1 1.5 1.1 0.2 0.8 0.7 0.1
50-queen 0.0 0.0 0.7 5.3 1.7 0.8 1.9 0.7 0.8 5.0 1.1 1.1 4.3 1.6 0.8
75-queen 0.1 0.2 4.1 8.1 1.6 4.1 4.6 1.8 4.6 9.1 1.7 5.4 6.1 1.7 4.8
100-queen 0.5 0.7 5.8 13.6 2.1 6.8 7.2 1.7 7.2 12.0 2.0 10.1 11.4 3.0 11.0
125-queen 0.3 0.4 13.4 16.4 3.2 15.8 12.6 2.4 14.8 16.2 2.5 18.4 14.3 2.4 14.8
150-queen 1.7 1.4 16.7 18.1 3.2 18.4 17.0 2.9 16.5 20.0 3.2 20.6 19.0 1.9 16.5
200-queen 3.3 1.9 23.1 26.0 3.9 26.1 24.5 3.5 26.1 32.8 4.8 31.1 23.4 3.1 26.1
225-queen 4.3 1.7 35.4 31.9 5.0 41.5 37.9 3.2 31.2 38.4 3.5 31.2 29.2 4.3 35.8
250-queen 3.5 1.6 72.4 44.3 3.9 83.1 32.7 6.7 78.1 41.2 5.3 78.1 32.0 3.1 78.1
275-queen 5.6 3.0 101.6 50.0 11.2 104.2 39.5 4.9 102.5 44.1 7.5 107.6 39.9 4.9 104.7
300-queen 6.4 2.6 131.0 61.9 5.2 132.9 44.4 5.3 130.9 52.8 5.9 134.5 44.4 5.9 128.4
325-queen 4.8 2.4 215.6 63.5 5.6 225.3 47.4 6.4 220.7 54.4 3.6 228.7 49.1 4.1 218.1
350-queen 5.1 3.0 275.3 71.4 5.6 286.7 51.0 4.7 281.2 65.5 5.7 289.6 49.9 5.8 278.5
400-queen 4.3 2.2 359.7 59.9 10.1 371.8 54.0 9.7 365.7 59.4 8.1 379.5 56.1 7.6 357.8

Table 7: Results of GB, GA1, GA2, DGA1, and DGA2 for the BPP. For each instance results average, standard deviation, and time average are
shown.

Instance GB GA1 GA2 DGA1 DGA2

Name Optimum Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time
N1C1W1 A 25 26.0 0.0 0.2 26.5 0.5 0.2 26.7 0.4 0.1 26.8 0.5 0.3 26.7 0.5 0.3
N1C1W1 B 31 31.0 0.0 0.2 31.9 0.4 0.2 31.5 0.5 0.2 31.5 0.5 0.4 31.6 0.6 0.3
N1C2W1 A 21 21.1 0.2 0.2 21.9 0.5 0.3 21.9 0.5 0.2 21.8 0.4 0.4 22.0 0.4 0.3
N1C2W1 B 26 26.1 0.2 0.3 27.6 0.5 0.3 27.1 0.4 0.3 26.8 0.4 0.3 26.8 0.5 0.3
N2C1W1 A 48 51.0 0.3 1.8 53.1 0.6 1.7 52.4 0.6 1.4 52.9 0.6 1.8 52.2 0.7 1.4
N2C1W1 B 49 51.4 0.5 1.8 52.6 0.6 1.9 53.0 0.8 1.5 53.3 0.8 1.8 52.8 0.6 1.4
N2C2W1 A 42 43.9 0.2 1.8 44.6 0.6 1.8 45.4 0.5 1.7 45.7 0.6 1.9 45.3 0.6 1.7
N2C2W1 B 50 51.4 0.5 2.1 52.4 0.6 1.9 53.1 0.7 1.8 53.4 0.6 1.9 53.2 0.6 1.5
N3C2W2 A 107 114.1 1.1 15.0 121.8 1.3 14.8 118.7 1.5 13.5 120.0 1.4 15.2 118.0 1.3 14.1
N3C2W2 B 105 109.6 0.5 17.1 119.8 1.5 16.5 113.4 1.1 16.1 115.3 1.8 15.4 111.9 0.7 14.9
N3C3W1 A 66 70.2 0.5 12.2 74.6 0.7 12.9 71.5 0.7 12.1 72.6 0.9 14.8 71.4 0.8 13.8
N3C3W1 B 71 76.1 0.5 12.1 78.4 0.6 13.1 77.4 0.9 12.7 78.6 1.0 15.7 77.6 1.0 14.5
N4C1W1 A 240 260.5 1.5 194.7 271.6 2.5 187.4 268.4 3.8 181.0 270.1 2.4 200.7 267.7 2.1 199.9
N4C2W1 A 210 231.2 1.2 195.8 239.1 1.6 188.5 233.3 5.2 186.4 241.0 1.9 203.2 235.4 1.3 200.1
N4C2W1 B 213 233.3 1.6 190.5 241.5 2.4 186.2 234.3 4.7 184.2 243.6 1.9 198.6 239.1 0.7 195.4
N4C2W1 C 213 234.5 1.6 199.8 241.7 1.8 194.2 239.7 6.8 191.4 241.3 2.0 201.5 238.1 1.9 198.3

easily. In Table 8, the tests performed for the chosen problems
are shown.

The second statistical test conducted is the Friedman test.
In Table 9, the results of overall ranking calculated using
this test are summarized, where the smaller the score is, the
better the ranking is. This ranking is conducted considering
the average results of each technique and comparing them
instance by instance. Furthermore, in order to check if there
are statistical differences between the developed techniques,
the value of𝑋2

𝑟
is also depicted in Table 9.This value has been

obtained using the following formula:

𝑋
2

𝑟
=

12

𝐻𝐾 (𝐾 + 1)

∑ (𝐻𝑅𝑐)
2
− 3𝐻 (𝐾 + 1) . (7)

𝐻 is the number of problem instances (e.g., for ATSP,
𝐻 = 19), 𝐾 is the number of techniques (𝐾 = 5), and 𝑅𝑐 is
the value of the Friendman test ranking score.The confidence
interval has been stated at the 99% confidence level. The
critical point in a 𝜒2 distribution with 4 degrees of freedom
is 13.277. Thereby, if 𝑋2

𝑟
> 13.277, it can be concluded that

there are significant differences between the five techniques.
Otherwise, the differences are not substantial.

5.2. Analysis of the Results. Looking at the results presented
in the previous section, one clear conclusion can be drawn:
the GB outperforms the other techniques in terms of quality.
Analyzing Tables 4–7, it can be seen how GB obtains
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Table 8: Normal distribution 𝑧-test.

Instance Versus GA1 Versus GA2 Versus DGA1 Versus DGA2

br17 +(3.16) +(3.16) ∗(0.00) ∗(0.00)
ftv33 +(5.97) +(14.88) +(6.76) +(5.74)
ftv35 +(7.67) +(6.35) +(7.68) +(8.79)
ftv38 +(7.48) +(5.40) +(7.86) +(9.03)
p43 +(8.07) +(10.26) +(8.85) +(7.60)
ftv44 +(5.67) +(15.48) +(6.27) +(7.61)
ftv47 +(6.10) +(5.93) +(6.67) +(7.84)
ry48p +(6.46) +(7.45) +(6.45) +(8.61)
ft53 +(11.70) +(19.65) +(12.45) +(13.53)
ftv55 +(6.77) +(8.18) +(10.57) +(12.19)
ftv64 +(7.12) +(26.02) +(8.77) +(11.13)
ftv70 +(6.10) +(21.97) +(9.89) +(13.83)
ft70 +(2.28) +(25.62) +(4.88) +(6.65)
kro124p +(9.80) +(14.48) +(12.17) +(8.89)
ftv170 +(3.64) +(3.16) +(4.69) +(4.79)
rbg323 +(7.97) +(7.56) +(6.98) +(3.85)
rbg358 +(35.52) +(35.54) +(12.54) +(11.73)
rbg403 +(18.11) +(13.14) +(11.56) +(11.43)
rbg443 +(10.76) +(10.05) +(10.96) +(10.84)
C101 +(3.80) +(3.46) +(6.54) +(2.62)
C201 +(9.75) +(13.49) +(13.93) +(3.08)
R101 +(7.46) +(5.79) +(7.96) ∗(0.89)
R201 +(21.16) +(8.18) +(11.39) +(5.29)
RC101 +(10.32) +(7.96) +(5.74) +(5.83)
RC201 +(10.16) +(6.26) +(14.93) ∗(1.45)
En23k3 +(9.16) +(8.94) +(9.18) ∗(1.32)
En30k4 +(18.97) +(17.84) +(9.77) +(7.44)
En33k4 +(8.98) +(6.48) +(7.53) +(6.29)
En51k5 +(9.70) +(10.49) +(14.61) +(2.38)
En76k8 +(10.57) +(8.96) +(7.06) +(5.44)
En101k14 +(13.24) +(7.93) +(18.47) +(10.24)
8-queen ∗(0.00) ∗(0.00) ∗(0.00) ∗(0.00)
20-queen +(13.00) ∗(0.00) +(7.91) +(6.08)
50-queen +(19.71) +(17.16) +(28.74) +(16.99)
75-queen +(31.37) +(15.71) +(33.25) +(22.16)
100-queen +(37.42) +(23.04) +(34.32) +(22.37)
125-queen +(31.57) +(31.97) +(39.71) +(36.39)
150-queen +(29.69) +(30.04) +(33.13) +(46.36)
200-queen +(33.09) +(33.66) +(36.14) +(34.96)
225-queen +(33.05) +(58.64) +(55.42) +(34.05)
250-queen +(61.21) +(26.80) +(43.06) +(51.66)
275-queen +(24.21) +(37.31) +(30.14) +(37.75)
300-queen +(60.37) +(40.71) +(45.51) +(37.27)
325-queen +(60.93) +(39.41) +(72.50) +(58.97)
350-queen +(66.00) +(52.06) +(59.30) +(43.39)
400-queen +(34.01) +(31.60) +(41.51) +(41.40)
N1C1W1 A +(6.32) +(11.06) +(10.11) +(8.85)
N1C1W1 B +(14.23) +(6.32) +(6.32) +(6.32)
N1C2W1 A +(9.39) +(9.39) +(9.89) +(12.72)
N1C2W1 B +(17.61) +(14.14) +(9.89) +(8.22)
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Table 8: Continued.

Instance Versus GA1 Versus GA2 Versus DGA1 Versus DGA2

N2C1W1 A +(19.79) +(13.19) +(17.91) +(9.96)
N2C1W1 B +(9.71) +(10.72) +(12.73) +(11.33)
N2C2W1 A +(7.00) +(17.61) +(18.00) +(14.00)
N2C2W1 B +(8.09) +(12.49) +(16.19) +(14.57)
N3C2W2 A +(28.59) +(15.64) +(20.95) +(14.48)
N3C2W2 B +(40.08) +(19.89) +(19.29) +(16.90)
N3C3W1 A +(32.34) +(9.55) +(14.74) +(8.04)
N3C3W1 B +(20.57) +(7.98) +(14.14) +(8.48)
N4C1W1 A +(24.07) +(12.23) +(21.45) +(17.64)
N4C2W1 A +(24.98) +(2.48) +(27.58) +(15.01)
N4C2W1 B +(17.97) ∗(1.27) +(26.22) +(21.00)
N4C2W1 C +(18.90) +(4.70) +(16.79) +(9.16)
+GB is significantly better. −It is worse. ∗The difference is not significant (at 95% confidence level).

Table 9: Results of Friedman’s test (smaller is better). The last
column depicts the𝑋2

𝑟
value.

Problem GB GA1 GA2 DGA1 DGA2 𝑋
2

𝑟

ATSP 1.01 3.16 4.52 3.17 3.01 42.04
VRPB 1.00 4.33 3.25 4.00 2.25 28.00
NQP 1.04 4.21 2.28 4.21 2.64 15.49
BPP 1.00 3.96 3.03 4.06 2.81 34.00

better results than the other metaheuristics in 95.16% of
the instances (59 out of 62). In the remaining 3 instances,
GB obtains the same outcomes as one or more of the
other techniques. Besides, as can be proved, GB has never
obtained worse results. In addition, as Table 8 demonstrates,
GB obtains significantly better results in 95.96% of the cases
(238 out of 248), the differences being insignificant in the
remaining 4.04%. The conclusions that can be extracted by
performing a problem-by-problem analysis are the same.
Regarding the ATSP, the GB gets better results in 94.73%
of the cases (18 out of 19). In the remaining instance, GB
obtains the same results as DGA

1
and DGA

2
. Furthermore,

according to Table 8, GB is substantially better in 97.36% of
the confrontations (74 out of 76). In regard to VRPB and
BPP, GB outperforms the other alternatives in 100% of the
cases, and the differences are significant in 93.75% (45 out
of 48) of the confrontations for the VRPB and in 100% (64
out of 64) for the BPP. Finally, in relation to NQP, GB proves
to be better in 86.66% of the instances. In the remaining 2
cases, it obtains the same results as one or more of the other
techniques. Besides, these differences are significantly better
for the GB in 91% of the confrontations (55 out of 60).

At last, observing the results offered by the Friedman test
(Table 9), it can be seen howGB is arguably the best technique
for all the problems. In addition, all the values of𝑋2

𝑟
are higher

than the critical point, 13.277. For this reason, it can be con-
cluded again that there are significant differences among the
results obtained by the four techniques for all the problems.

The reasons why GB performs better than the other
algorithms are the same that were presented in [51]. On
the one hand, the GB combines local improvement phases
(conventional trainings) with cooperative (custom trainings
and player transfers) and competitive phases (matches).
This technique gives greater importance to the autonomous
improvement of the players, while the other four algorithms
aremore focused on the cooperation and competition of indi-
viduals. Furthermore, GB uses cooperation between players
through custom trainings. Anyway, this resource is used to
avoid local optima and to increase the exploration capacity
of the technique. For this reason, this kind of trainings
is used sporadically and only when it is beneficial for the
search process. Besides, in the GB metaheuristic, players
can explore different neighborhood structures. This feature
is another alternative to avoid local optima, and it helps
players to explore in different ways the solution space. On
the other hand, GA

1
, GA
2
, DGA

1
, and DGA

2
have also

some mechanisms to avoid local optima, but optimization
mechanisms are not as powerful as the GB.

Regarding runtimes, GB is faster than GA
1
and DGA

1
,

while GA
2
and DGA

2
need similar times to GB. This fact

gives an advantage to GB, since it can obtain better results
than the rest of techniques needing similar runtimes as GA

2

and DGA
2
.

The reason why GB is faster than GA
1
and DGA

1
can be

explained following the same concepts introduced in several
recently published works [49, 81]. Comparing individual
improvement operators (mutation and custom training) and
cooperative operators (crossover and custom training), the
first ones need less time.They operate with one solution, and
they perform a simple modification which can be made in
a minimum time. On the other hand, cooperative operators
work with two different solutions, and their working ways
are more complex, needing more runtime. GB makes less
cooperative movements than GA

1
and DGA

1
, and this fact

is perfectly reflected in runtimes. Additionally, GB, GA
2
,

and DGA
2
obtain similar runtimes because they use their

operators similarly.



The Scientific World Journal 15

Another noteworthy fact is the robustness of the GB.The
standard deviation of the GB is lower than the one of the
other techniques in 93.54% of the instances (58 out of 62).
This means that the differences between the worst and the
best result found for an instance are lower for the GB, in
comparisonwith the four other algorithms.This fact provides
robustness and reliability to the metaheuristic, something
very important for a real-world problem.

As a final conclusion, it can be drawn that the GB has
proved to be better than the other four metaheuristics for
all the used problems. In this way, adding these outcomes
to those presented in [51] for the TSP and CVRP, it can be
confirmed that the GB is a promising technique for solving
combinatorial optimization problems.

6. Conclusions and Further Work

The Golden Ball is a recently published multiple-population
metaheuristic, which is based on soccer concepts. Until now,
its performance has been tested with two simple routing
problems, the TSP and the CVRP. In this paper, the quality of
this technique is demonstrated applying it to four additional
combinatorial problems. Two of them are routing problems,
which are more complex than the previously used ones: the
ATSP and the VRPB. Furthermore, one constraint satisfac-
tion problem (NQP) and one combinatorial design problem
(BPP) have also been used. In the paper presented, GB has
been tested with 62 new problem instances. The outcomes
obtained by the GB have been compared with the ones got by
two different GAs and twoDGAs. Additionally, two statistical
tests have been conducted, in order to perform a rigorous
and fair comparison. As a conclusion, adding the results
obtained in this study with those obtained in [51], it can be
concluded that the GB is a promising metaheuristic to solve
combinatorial optimization problems.

As future work, it has been planned to apply the GB
to other types of optimization problems. In addition, it is
intended to compare the technique with other population
metaheuristics, in terms of concepts and results.
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