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The relationships between plant viruses, their herbivore vectors and host plants can be beneficial, neutral, or antagonistic,
depending on the species involved. This variation in relationships may affect the process of biological invasion and the
displacement of indigenous species by invaders when the invasive and indigenous organisms occur with niche overlap but
differ in the interactions. The notorious invasive B biotype of the whitefly complex Bemisia tabaci entered China in the late
1990s and is now the predominant or only biotype in many regions of the country. Tobacco curly shoot virus (TbCSV) and
Tomato yellow leaf curl China virus (TYLCCNV) are two whitefly-transmitted begomoviruses that have become widespread
recently in south China. We compared the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on healthy,
TbCSV-infected and TYLCCNV-infected tobacco plants. Compared to its performance on healthy plants, the invasive B biotype
increased its fecundity and longevity by 12 and 6 fold when feeding on TbCSV-infected plants, and by 18 and 7 fold when
feeding on TYLCCNV-infected plants. Population density of the B biotype on TbCSV- and TYLCCNV-infected plants reached 2
and 13 times that on healthy plants respectively in 56 days. In contrast, the indigenous ZHJ1 performed similarly on healthy
and virus-infected plants. Virus-infection status of the whiteflies per se of both biotypes showed limited effects on
performance of vectors on cotton, a nonhost plant of the viruses. The indirect mutualism between the B biotype whitefly and
these viruses via their host plants, and the apparent lack of such mutualism for the indigenous whitefly, may contribute to the
ability of the B whitefly biotype to invade, the displacement of indigenous whiteflies, and the disease pandemics of the viruses
associated with this vector.
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INTRODUCTION
Plant-pathogen-vector systems are characterized by complex

direct and indirect interactions [1,2]. Direct interactions between

the pathogen and the vector include transmission and dispersal of

the pathogen by the vector, influence of the pathogen on the

vector through its presence and replication within the latter, and

sharing of the same host plant as food source between the

pathogen and vector. Indirect interactions between the pathogen

and the vector occur when one induces responses in the plant and

alters the quality of the plant as a food source for the other. Both

direct and indirect effects of the pathogen on the vector, or vice

versa, can be beneficial or harmful, depending on the species [1–

4]. For example, studies of the indirect effects of viruses on their

vectors have revealed a variety of outcomes, ranging from positive

[2,5–10], neutral [11,12], to negative [13,14]. While the effects of

these interactions on individual pathogens and herbivores are

often quantified, the consequences of these interactions for the

population dynamics of both types of organisms and the evolution

of ecological communities have rarely been studied. For example,

many invasive insects, such as some thrips, aphids, and mites, are

effective virus vectors. Whether or not such vector-virus

mutualisms have played a significant role in facilitating the success

of invasion, and in some cases the displacement of indigenous

species by the invaders is little understood.

The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodi-

dae) is a genetically diverse group [15,16]. More than 20 biotypes

have been named from populations of this species complex [17],

and more recently the populations have been grouped into five

races plus an unresolved group [18]. The major feature of the

global distribution of the numerous genetic types of B. tabaci is their

strong geographic delineation [15,16,18,19]. A clear exception is

the B biotype [sometimes also referred to as Bemisia argentifolii

(Bellows & Perring)] which in the past 20 years has spread rapidly

around the world to become a major crop pest in tropical and

subtropical regions [17,20–23]. Damage by the pest occurs

through phloem-feeding, excretion of honeydew, induction of

phytotoxic disorders, and transmission of plant viruses [20,24,25].

The begomoviruses, the largest and most economically significant

group of plant viruses [26,27], are transmitted exclusively by B.

tabaci in a persistent manner [28,29].

While quantitative descriptions of the rapid and widespread

invasion by the B biotype have rarely been reported, extensive

circumstantial evidence from North, Central and South America

as well as India has indicated co-occurrence of the invasion with

two phenomena: disease pandemic caused by some begomoviruses

and displacement of indigenous biotypes of the whitefly

[10,17,20,22,27,30–32]. In China, local populations of B. tabaci

have been recorded on various crops including tobacco since 1949

but the insect had never caused serious damage to any crops until

the late 1990s when the B biotype invaded [33–35]. The B biotype
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is now the predominant or only biotype of B. tabaci in many

regions in China [33–38]. Since the late 1990s, diseases caused by

begomoviruses have also been increasing. In particular, two newly-

characterized begomovirus species, Tobacco curly shoot virus

(TbCSV) and Tomato yellow leaf curl China virus (TYLCCNV),

have become widespread and caused extensive damage to tomato

and tobacco crops in recent years in south China [39,40]. Despite

these extensive observations on the invasion of the B biotype

whitefly in many regions of the world, the population expansion of

the whitefly and the spread of begomovirus disease pandemic have

largely been investigated separately. While increased populations

of B. tabaci are often associated with the spread of plant-virus

epidemics, the effects of vector-virus-plant interactions on the

population expansion of the whitefly have been largely ignored

[10].

In this study, we compared the performance of the invasive B

biotype and an indigenous non-B (ZHJ1) biotype whitefly on

healthy, TbCSV-infected and TYLCCNV-infected tobacco

plants. We present evidence that the vector-virus-plant relation-

ship differs between the notorious invasive B biotype and an

indigenous biotype whitefly. While the invasive B biotype can

achieve a much higher rate of reproduction on virus-infected

plants than on healthy plants, the indigenous whitefly can not. We

further show that the mutually beneficial relationships between the

invasive whitefly and the plant viruses are indirect via the host

plants. The whitefly achieved its improved performance through

feeding on the virus-infected plants, but the presence of the viruses

within the body of the whitefly has limited effect on the

performance of the vector. This mutualism between the invasive

B biotype whitefly and viruses, and the apparent lack of such

mutualism for the indigenous whitefly, may have contributed to

the invasion of B whitefly and the disease pandemics of the viruses

associated with this vector in China and elsewhere.

RESULTS

Fecundity and Longevity of Non-viruliferous Adult

Whiteflies on Healthy or Virus-infected Tobacco
We first compared the fecundity and longevity of initially non-

viruliferous whitefly adults, which had developed on cotton (a non-

host plant of the two viruses) from egg to adulthood, on healthy

and virus-infected plants. Adults were transferred onto the new

plants upon emergence. We did the comparison for both the

invasive B and the indigenous ZHJ1 whiteflies. All adults

transferred onto either TbCSV-infected or TYLCCNV-infected

plants became infected by the viruses after 48 h feeding [41].

Both whitefly biotype and plant health status had significant

effects on fecundity and longevity, as did the biotype*plant

interaction (Table 1). The B biotype had a higher fecundity, and

lived longer, than the ZHJ1 biotype. More remarkably, in the B

biotype, the mean number of eggs laid on TbCSV-infected or

TYLCCNV-infected plants was twice as high as that on healthy

plants, and the longevity was also 2–3 times longer. In contrast,

adults of ZHJ1 had similar levels of fecundity and longevity on

healthy and virus-infected plants (Table 1).

Life-history Parameters of Whiteflies on Healthy and

Virus-infected Tobacco
We next compared the performance of the two biotypes of

whiteflies on healthy and virus-infected plants when they fed on

the various plants from birth to death. The B biotype had a much

higher level of survival from egg to adulthood than ZHJ1. Plant

status did not affect survival of immature stages in either biotype

(Table 2). Mean development time of the immature stages was not

affected by whitefly biotype, but was significantly affected by plant

status as well as by biotype*plant interaction (Table 2). Mean

durations of development of the B biotype did not differ between

the three types of plants, while development time of ZHJ1 was

slightly reduced on TbCSV-infected plants and slightly increased

on TYLCCNV-infected plants compared to that on healthy plants

(Table 2).

Due to the low numbers of replicates with which we could assess

fecundity and longevity in ZHJ1 on the three types of plants, these

two parameters were not compared statistically between the two

whitefly biotypes. The ZHJ1 generally had a lower fecundity and

shorter longevity than B, while the plant status seemed to have

little effect on both its fecundity and longevity (Table 2). In

contrast, in the B biotype, the mean numbers of eggs laid on

TbCSV-infected and TYLCCNV-infected plants were 12 and 18

times higher than that on healthy plants. Similarly, mean longevity

of the B biotype on TbCSV-infected and TYLCCNV-infected

plants was 6 and 7 times longer than that on healthy plants

(Table 2).

Population Increase of B biotype Whitefly on

Healthy and Virus-infected Tobacco
We then compared the population increase of the B biotype

whitefly on healthy, TbCSV-infected and TYLCCNV-infected

plants. Plants in the three treatments were grown to bear 9–10 true

leaves by the 28th day and to bear 12–13 true leaves by the 56th

day after B. tabaci adults were released onto them. All plants grew

Table 1. Fecundity and longevity of two biotypes of Bemisia tabaci females that developed on cotton from egg to adulthood and
were transferred upon emergence onto healthy, TYLCCNV-infected or TbCSV-infected tobacco plants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biotype Status of host plants n Mean number of eggs/female (6S.E.)a Mean longevity (days6S.E.)b

B Healthy 27 29.662.1 b 4.160.4 c

TbCSV-infected 30 66.463.9 a 7.260.7 b

TYLCCNV-infected 33 66.263.2 a 13.261.1 a

ZHJ1 Healthy 28 8.360.5 c 1.660.1 d

TbCSV-infected 32 9.660.6 c 2.160.1 d

TYLCCNV-infected 30 9.660.7 c 1.760.1 d

aTwo-factor ANOVA: Fbiotype = 587.8, df = 1,174, p,0.001; Fplant = 46.8, df = 2,174, p,0.001; Fbiotype*plant = 40.7, df = 2,174, p,0.001.
bTwo-factor ANOVA: Fbiotype = 195.5, df = 1,349, p,0.001; Fplant = 46.8, df = 2,349, p,0.001; Fbiotype*plant = 35.4, df = 2,349, p,0.001.
Means in the same column followed by the same letter do not differ significantly at p#0.05 level.
doi:10.1371/journal.pone.0000182.t001..
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well although TbCSV-infected and TYLCCNV-infected plants

showed the characteristic disease symptoms.

By the 28th day, the mean number of whiteflies per plant on

healthy plants reached 401. The mean number on TbCSV-

infected and TYLCCNV-infected plants was 1.9 and 10.8 times

higher than that on healthy plants, and such a difference was

evident for all life stages (Table 3, Figure 1). By the 56th day, the

mean number of whiteflies per plant on healthy plants reached

2340. The mean number on TbCSV-infected and TYLCCNV-

infected plants was 2.1 and 12.8 times higher than that on healthy

plants, and such a difference was also evident for all life stages

(Table 3, Figure 1).

Life-history Parameters of Non-viruliferous and

Viruliferous Whiteflies on Cotton
Finally, we compared the performance of non-viruliferous,

TbCSV-infected and TYYLCCNV-infected whiteflies on cotton,

a nonhost plant of the two viruses, to examine the effects of the

direct association between the vectors and viruses. We did the

comparison for both biotypes of whiteflies. Both whitefly biotype

and whitefly virus-infection status had significant effects on

fecundity and longevity; the biotype*status interaction had

a significant effect on fecundity but not on longevity (Table 4).

In the B biotype, fecundity of TbCSV-infected adults was

significantly increased while both fecundity and longevity of

TYLCCNV-infected adults were reduced, compared to non-

viruliferous adults (Table 4). In ZHJ1, fecundity and longevity of

TbCSV-infected adults remained unchanged, while those of

TYLCCNV-infected adults were significantly reduced, compared

to non-viruliferous adults (Table 4).

The percentage survival from egg to adulthood of the B biotype

was significantly higher than that of ZHJ1, but the survival was not

affected by infection status of whitefly in either biotype (Table 4).

Development time was not affected by either whitefly biotype or

whitefly infection status, but was significantly affected by

biotype*status interaction. The only noticeable effect was that

the development time of progeny produced by TYLCCNV-

infected adults was significantly longer than that of progeny

produced by non-viruliferous adults (Table 4).

DISCUSSION
In comparison with its performance on healthy tobacco, the B

biotype experienced a significant increase in its fecundity and

longevity through feeding on plants infected with the two

begomoviruses. The benefits were quickly achieved by non-

viruliferous whitefly adults when they were transferred from

a nonhost plant of the viruses to virus-infected plants (Table 1).

The benefits were more substantial when the whitefly completed

its life cycle on the virus-infected plants (Table 2). These benefits

were shown to speed up population increase by 2 or 12 fold when

the host plants were infected with TbCSV or TYLCCNV,

respectively (Figure 1). However, the presence of TbCSV within

the B whitefly increased fecundity of the vector by only 36% and

had no effects on longevity of adults and survival and development

time of the progeny, while the presence of TYLCCNV within the

B whitefly actually reduced fecundity and longevity of the vector

by 27% and 36%. Therefore, the B biotype acquired the benefits

mainly through indirect mutualism with the viruses, particularly

TYLCCNV, via their shared host plants.

In contrast, the performance of the indigenous ZHJ1 biotype

whitefly was similar on healthy and virus-infected plants, whether

non-viruliferous adults were transferred onto virus-infected plants

(Table 1) or the whitefly completed its life cycle on the virus-

infected plants (Table 2). The population increases of ZHJ1 on

healthy and virus-infected plants were not compared in the current

study due to lack of resources at the time when the experiments

were performed. Population increase of ZHJ1 under caged

conditions has been investigated on host plants of different levels

of suitability [37,32,42]. The rate of population increase of this

biotype is always positively correlated with its performance on

undetached leaves in clip-cages (37, unpublished data). It is likely

that population increases on healthy and virus-infected tobacco

plants would be similar as indicated by its similar performance on

undetached leaves of virus-infected and healthy tobacco plants

(Tables 1 and 2).

Both B biotype and ZHJ1 whiteflies are effective vectors of

TbCSV and TYLCCNV [41], and both of them have been

recorded from a number of host plants such as tobacco, tomato,

cotton, sweet potato, squash, egg plant and soybean in the field

(Xu J and Liu SS, unpublished data). However, the two biotypes

are reproductively isolated [43], and the B biotype has a wider

host range than ZHJ1 and generally performs better on their

shared host plants [42]. In the laboratory, Zang et al. [37]

demonstrated that the B biotype had the capacity to displace ZHJ1

on plants that were equally suitable to both of them, and the speed

of displacement progressed faster as the relative suitability of the

host plant for ZHJ1 decreased. Apparently, the wider host range of

Table 2. Performance of two biotypes of Bemisia tabaci on healthy, TYLCCNV-infected or TbCSV-infected tobacco plants
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biotypes Status of host plants Immature stages Female adults

n % survivala
Mean development time
(days6S.E.)b n

Mean number of eggs/
female (6S.E.)c

Mean longevity
(days6S.E.)d

B Healthy 369 72.1 a 23.060.2 a 33 7.762.1 c 4.160.3 b

TbCSV-infected 534 75.7 a 22.560.1 a 26 92.0611.7 b 24.961.9 a

TYLCCNV-infected 417 74.6 a 22.860.2 a 31 138.4613.3 a 29.161.9 a

ZHJ1 Healthy 195 2.1 b 21.860.5 a b 2 4.562.5 1.560.5

TbCSV-infected 173 7.5 b 20.360.6 b 6 4.260.9 1.560.2

TYLCCNV-infected 210 4.8 b 23.660.6 a 4 3.561.3 1.360.3

aTwo-factor ANOVA: Fbiotype = 982.2, df = 1,2, p = 0.001; Fplant = 3.7, df = 2,2, p.0.05.
bTwo-factor ANOVA: Fbiotype = 1.9 df = 1,1002, p.0.05; Fplant = 4.5, df = 2,1002, p = 0.001; Fbiotype*plant = 3.04, df = 2,1002, p = 0.05.
cOne way ANOVA: Fplant = 41.3, df = 2,87, p,0.001.
dOne way ANOVA: Fplant = 75.2, df = 2,87, p,0.001.
Percentages or means in the same column followed by the same letter do not differ significantly at p#0.05 level.
doi:10.1371/journal.pone.0000182.t002..
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the B biotype over that of ZHJ1 gives it a competitive advantage,

although the mechanisms for the competitive advantage of the B

biotype over the indigenous biotype, in the absence of plant

viruses, are still under investigation. The differential vector-virus

relationships between the two biotypes observed in this study

indicates that the B biotype has a significant advantage via its

mutualism with the viruses to increase the suitability of host plants

for its population increase, while the indigenous biotype is unable

to do so. Tobacco is a relatively poor host plant for both whitefly

biotypes used in this study, especially for ZHJ1, although the

suitability of this plant species differs in degree among cultivars

[42,44] (Tables 1 and 2). However, the B biotype is able to

transmit the two begomoviruses into this host plant and then

increase its reproduction substantially on the virus-infected plants

as compared to that on plants uninfected by the viruses (Tables 1

and 2, Figure 1). In contrast, the indigenous ZHJ1 whitefly is

Figure 1. Mean numbers (6standard error) of eggs, nymphs, adults or all individuals per plant at two sampling dates of three cohorts of the B
biotype Bemisia tabaci that were initiated on healthy, TbCSV-infected, or TYLCCNV-infected tobacco plants. Each plant was inoculated with 5 female
and 5 male adult whiteflies.
doi:10.1371/journal.pone.0000182.g001

Table 3. One-way ANOVA statistics for analyzing
Ln(number+1) of whiteflies on healthy, TbCSV-infected and
TYLCCNV-infected tobacco plants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sampling date Whitefly stages F2,6 P

28th day Total 68.8 ,0.001

Eggs 59.8 ,0.001

Nymphs 72.7 ,0.001

Adults 6.9 ,0.05

56th day Total 44.0 ,0.001

Eggs 52.6 ,0.001

Nymphs 47.1 ,0.001

Adults 105.2 ,0.001

doi:10.1371/journal.pone.0000182.t003..
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unable to increase its reproduction on virus-infected plants,

although it can transmit the two viruses as effectively as the B

whitefly [41].

To our knowledge, this is the first study to demonstrate that two

biotypes of an insect species complex, one invasive and the other

indigenous, differ markedly in their relationships with the viruses

they transmit. The invasive B biotype of the whitefly, in contrast to

the indigenous ZHJ1 biotype, benefits from infection of host plants

by the viruses. The tobacco cultivar used in this study, NC89, has

been widely cultivated in regions of south China, where pandemics

of TbCSV and TYLCCNV have been occurring on tobacco crops

since the invasion of the B biotype in the late 1990s [39,40], and

local biotypes of B. tabaci are no longer found in recent collections

in the past two years (Xu J and Liu SS, unpublished data). The

circumstantial evidence suggests that the comparative advantage

of the B biotypes over local biotypes acquired through its

mutualism with the viruses may have assisted its invasion and

displacement of the local biotypes in many regions of south China.

Other circumstantial evidence indicates that this situation may not

be unique. In the USA, McKenzie et al. [8] and McKenzie [45]

demonstrated that the invasive B biotype whitefly had higher

fecundity and increased faster on tomato plants infected with

tomato mottle virus than on healthy plants, while Costa et al. [46]

showed that the indigenous A biotype (not detailed in the original

article, but identity of the biotype was confirmed subsequently, J.

K. Brown, personal communication) exhibited generally similar or

lower levels of survival and fecundity on six species of host plants

infected with various viruses compared to its performance on

healthy plants. It is possible that the B biotype also has an

advantage in its mutualism with begomoviruses over the A biotype

in the USA, and this advantage has assisted in its apparently rapid

invasion and displacement of the indigenous A biotype in that

country [13,32,47]. In south India, the B biotype whitefly was

first reported in 1999 and has since been spreading; the B biotype

has become more common than the indigenous biotypes in places

where it has been present for more than 2 years, and the invasion

of the B biotype has been associated with the appearance of new

epidemics of various viruses vectored by B. tabaci [10,23]. It is

also likely that other invasive insects, such as the western flower

thrips, Frankliniella occidentalis, may have taken the advantage of

mutualism with the viruses it transmits in its widespread invasion

[1,9,48].

In plant-pathogen-vector systems such as the one examined in

this study, the pathogen depends on the arthropod herbivore

vector for transmission and dispersal. Thus higher rates of vector

population increase through mutualism with the viruses will in

turn facilitate the spread of virus disease pandemic. Laboratory

and field evidence indicates that this kind of vector-virus

mutualism has played a significant role in driving the spread of

a cassava mosaic disease pandemic in Uganda [10,49]. Circum-

stantial evidence for this kind of vector-virus mutualism in assisting

in the spread of virus disease pandemic has been seen in other

plant-vector-systems, such as some aphid-transmitted viruses in

wheat, barley and oats [6,7,50].

Since the effect of plant virus on the vector can vary from

positive to negative, effort has been made to reveal patterns of the

effects according to the type of plant-virus-vector relationships.

Studies on virus-thrips interactions suggest that an indirect positive

effect of virus infection of host plant on the vector is more likely to

occur on plants of poor quality [9]. A study on performance of the

aphid Myzus persicae on potato plants infected with different viruses

indicates that improved fitness of the vector is found only where

the relationship between the vector and the virus is close and the

virus is transmitted in a persistent manner [51]. While indications

from both these studies [9,51] seem consistent with the results

obtained in our study, since tobacco is a relatively poor host and

both TbCSV and TYLCCNV are transmitted by the whitefly in

a persistent (circulative, non-propagative) manner [39,40], they

offer no explanation for the differential interactions in the B

biotype and ZHJ1 whiteflies.

Improved performance of sucking insects on virus-infected

plants is often correlated with increases in free amino acids in the

plants [2]. This correlation has been shown for the African cassava

B. tabaci on cassava plants infected with the Cassava mosaic viruses

[10]. Whether the increased fitness of the B biotype whitefly on

TbCSV- or TYLCCNV-infected tobacco involves increase of free

amino acids in the plants remain to be investigated. Another

possible mechanism for a positive effect of viruses on the vector via

host plants is a virus-induced suppression of plant defence against

the herbivore [1].

As viruses and their vectors compete for the same host plants as

a shared food source, the vector-virus beneficial mutualism may

present an evolutionary dead end for the plant-virus-vector

systems. Plants should have evolved a balanced system of defence

Table 4. Fecundity and longevity of non-viruliferous and viruliferous females of two biotypes of Bemisia tabaci, as well as survival
and development time of the progeny produced by these females, on healthy cotton

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biotype Status of whitefly Fecundity and longevity of adults Survival and development of progeny

n
Mean number of eggs/
female (6S.E.)a

Mean longevity
(days6S.E.)b n % survivalc

Mean development time
(days6S.E.)d

B Non-viruliferous 26 84.865.3 b 31.062.2 ab 111 86.5 a 26.360.3 b

TbCSV-infected 26 116.167.6 a 33.861.6 a 94 87.2 a 27.360.3 b

TYLCCNV-infected 22 62.365.8 c 19.862.6 cd 87 85.1 a 28.360.4 a

ZHJ1 Non-viruliferous 20 83.668.3 b 25.262.5 bc 51 78.4 b 27.660.5 ab

TbCSV-infected 23 75.566.7 b 25.762.3 bc 14 78.6 b 26.060.9 b

TYLCCNV-infected 20 55.967.0 c 14.761.8 d 16 75.0 b 27.860.5 ab

aTwo-factor ANOVA: Fbiotype = 8.5, df = 1,129, p,0.01; Fstatus = 46.8, df = 2,129, p,0.001; Fbiotype*status = 5.1, df = 2,174, p,0.001.
bTwo-factor ANOVA: Fbiotype = 12.5, df = 1,174, p,0.001; Fstatus = 18.8, df = 2,174, p,0.001; Fbiotype*status = 0.3, df = 2,174, p.0.05.
cTwo-factor ANOVA: Fbiotype = 392.4, df = 1,2, p,0.01; Fstatus = 14.7, df = 2,2, p.0.05.
dTwo-factor ANOVA: Fbiotype = 0.14, df = 1,309, p.0.05; Fstatus = 0.8, df = 2,309, p.0.05; Fbiotype*status = 3.1, df = 2,309, p,0.05.
Percentages or means in the same column followed by the same letter do not differ significantly at p#0.05 level.
doi:10.1371/journal.pone.0000182.t004..
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against multiple biotic threats [2]. However, many crop cultivars

have been genetically altered in comparison to their ancestral

stocks and may have defence systems that differ from those in

naturally co-evolved plants. Crops such as tomato and tobacco are

planted in enormous acreages every year, and there is always an

abundance of food source for both partners. The challenge, as

always, remains for us to gain a deeper insight into the plant-

pathogen-vector relationships, for a better understanding of the

ecological or evolutionary processes underlying the invasion of

vector herbivores and pandemic of virus diseases they transmit,

and so improve their management.

MATERIALS AND METHODS

Whiteflies
Two biotypes of the whitefly species complex Bemisia tabaci were

used. The B biotype population was first collected from cabbage,

Brassica oleracea var. capitata L. (Cruciferae), and the non-B (ZHJ1)

population from cotton, Gossypium hirsutum, in 2003 in Hangzhou,

Zhejiang, China (32.2uN, 120.1uE, with an elevation of 6 m a.s.l.).

The B biotype (GenBank Acc. No. AJ867555) was shown to be

exotic to China, and ZHJ1 (GenBank Acc. No. AJ867556) is an

indigenous non-B population [43,52]. ZHJ1 belongs to the

unresolved Asia group of B. tabaci as described by De Barro et

al. [18]. In Zhejiang, ZHJ1 has been found to occur on cotton,

tobacco, tomato, sweet potato, squash, eggplant, and soybean [52]

(Xu J and Liu SS, unpublished data; GenBank Acc.

No. DQ309074). A search of the data in GenBank indicated that

whitefly populations that share over 99% similarity of COI

sequences with ZHJ1 also occur in Jiangsu and Guangzhou, China

(GenBank Acc. No. AY686088 and AY686083, respectively).

Stock cultures of the two biotypes were maintained on cotton G.

hirsutum L. cv. Chuanmian 109 in separate climate chambers at

2861uC, 14 h light:10 h darkness and 70610% r.h. The purity of

the cultures was monitored every 3–5 generations using the

random amplified polymorphic DNA-polymerase chain reaction

(RAPD-PCR) technique [43], and measures were taken to use only

pure sub-cultures of the respective biotypes for experiments.

Viruses
Infectious clones of TbCSV and TYLCCNV and their satellite

DNA molecules (named DNAb) constructed previously [39,40]

were used as inocula, and the viruses were maintained on plants of

tobacco Nicotiana tabacum L. cv. NC89.

Plants
Tobacco Nicotiana tabacum L. cv. NC89, a host plant of TbCSV

and TYLCCNV, and cotton (cv. Chuanmian 109), a non-host

plant of TbCSV and TYLCCNV, were used. Uninfected tobacco

and cotton plants were grown in a potting mix in 11 cm plastic

pots in insect-proof cages under natural lighting and ambient

temperature in screen houses. To obtain virus-infected tobacco,

the plants at the 4–5 true-leaf stage were inoculated with TbCSV

and its DNAb or TYLCCNV and its DNAb by agroinoculation as

previously described [39,40,53]. Healthy, TbCSV-infected or

TYLCCNV-infected tobacco plants were grown to the 6–7 true-

leaf stage for experiments. Virus infection of test plants was judged

by the appearance of characteristic symptoms caused by each of

the two viruses [39,40] and further confirmed by molecular

techniques as described below. Cotton plants were also grown to

the 6–7 true-leaf stage for experiments. All plants were watered

every 3–4 days as necessary and fertilized once a week.

All experiments were conducted at 2661uC, 40–60% relative

humidity, and a photoperiod of 14 h light:10 h darkness.

Detection of TbCSV and TYLCCNV DNA
Nucleic acids from individual whiteflies and plants were extracted

using the methods of Luo et al. [33] and Xie et al. [54],

respectively. TbCSV and its associated DNAb or TYLCCNV and

its associated DNAb in individual whiteflies and infected plants

were detected using the primers and PCR procedures as described

by Cui et al. [39] and Li et al. [40].

Fecundity and longevity of non-viruliferous adult

whiteflies on healthy or virus-infected tobacco
These experiments were conducted to examine the fecundity and

longevity of adult whiteflies that were reared on cotton from egg to

adulthood and then transferred upon emergence onto healthy or

virus-infected tobacco plants. The experiments for the B and ZHJ1

biotypes were carried out concurrently using the following

procedure. For each biotype, approximately 300 newly emerged

(0–24 h) adult whiteflies were collected from the culture on cotton

and divided randomly into three groups of about 100 each, to be

used for inoculation onto the three types of tobacco plants:

healthy, TbCSV-infected or TYLCCNV-infected. On each type

of plants, approximately 30 replicates were conducted. In each

replicate on a given type of plants, one female and one male adults

were placed on the lower surface of a plant leaf (third to fifth leaf

from the top) enclosed in a clip-cage. This ventilated clip-cage was

made from a clear plastic cup, a metal clip, and white plastic mesh,

and measures 30 mm in diameter, 30 mm in height, and 5 g in

weight [55]. Every 3 days, the leaves bearing the adults were

examined using a dissecting microscope to count the number of

eggs laid, and the adults were transferred to new leaves, until death

of the females.

The experiments include two whitefly biotypes and three types

of plants, making up six treatments (Table 1). For analysis of the

performance of the two biotypes on the three types of plants, a two-

factor analysis of variance (ANOVA) was performed. The two

factors were biotype (two levels) and plant status (three levels). The

two response variables of fecundity and longevity were analyzed

individually (Table 1). When an overall ANOVA indicated

significant effects of the factors or their interactions at P,0.05,

the means were compared using a Tukey test. All statistical

analyses were done using the statistical software, BIOMstat

(version 3.30q) [56].

Life-history parameters of whiteflies on healthy and

virus-infected tobacco
Six treatments, composed of two whitefly biotypes and three types

of plants, were conducted (Table 2). For each of the six treatments,

approximately 300 adults, 4–6 days post emergence, were

collected from the culture on cotton and released onto a tobacco

plant. The adults were left on the plant for 3 h to oviposit and then

removed. The eggs laid for each treatment were counted using

a microscope. From the 15th day onwards, daily observations were

made to collect and record newly emerged adults until all pupae

had emerged or died. From these data we calculated the

percentage survival and development time from egg to adulthood.

During adult emergence in each treatment, pairs of newly-

eclosed adults, one male and one female in each pair, were

collected and placed onto leaves (second to fourth leaves from the

top) of the same type of plant using clip cages, to observe their

fecundity and longevity. Every 3 days, the leaves bearing the adults

were examined using a dissecting microscope to count the number

of eggs laid, and the adults were transferred to new leaves until

deaths of the females. For the B biotype, approximately 30
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replicates were conducted for each of the three treatments, while

for the ZHJ1 biotype a lower number of replicates were conducted

due to the low numbers of females that were available (Table 2).

The data of percentage survival were transformed by arcsine

square root before ANOVA. For analysis of the percentage

survival or mean development time for the two whitefly biotypes

and three types of plants, a two-factor ANOVA was conducted as

described above. For the analysis of fecundity and longevity of the

B biotype on the three types of plants, a one-way ANOVA was

performed (Table 2).

Population increase of B biotype whitefly on healthy

and virus-infected tobacco
Three treatments of population development of the B biotype

whitefly on healthy, TbCSV-infected and TYLCCNV-infected

tobacco plants were conducted. Ninety newly emerged (0–24 h)

female and 90 newly emerged male adult whiteflies were collected

from the culture on cotton and divided randomly into 18 groups,

each consisting of 5 females and 5 males. The 18 groups of adults

were inoculated onto 18 tobacco plants: 6 healthy, 6 TbCSV-

infected and 6 TYLCCNV-infected, making up 6 replicates for

each of the three treatments. The 18 plants were all at the 6–7

true-leaf stage and placed individually in whitefly-proof, ventilated

cages (55 cm655 cm655 cm), in one room at 2661uC, 40–60%

relative humidity, and a photoperiod of 14 h light : 10 h darkness.

On the 28th day after inoculation, three plants from each of the

three treatments were sampled to count all eggs, nymphs and

adults in each of the replicates. The remaining three plants in each

of the three treatments were likewise sampled on the 56th day.

Since the mean number per plant in each of the three

treatments on the 56th day was obviously much higher than that

on the 28th day (Figure 1), no comparison was considered between

the two sampling dates. Mean numbers of whiteflies on the three

types of plants were analyzed using one-way ANOVA for each of

two sampling dates. Ln(number+1) was performed to transform

the numbers of eggs, nymphs, adults and all individuals on each

plant to be used for ANOVA (Table 3).

Life-history parameters of non-viruliferous and

viruliferous whiteflies on cotton
Six treatments, composed of two biotypes and three categories of

status of whiteflies, were conducted (Table 4). For the observations

on fecundity and longevity of non-viruliferous and viruliferous

adults in each of the two biotypes, approximately 200 newly

emerged adult whiteflies were collected from the culture on cotton

and divided randomly into three groups of 60–70 each, to be used

for inoculation onto the three types of tobacco plants: healthy,

TbCSV-infected or TYLCCNV-infected. The three groups of

adults were left to feed on the three types of plants for 48 h, and

then collected to initiate three treatments on cotton (Table 4). By

the end of the 48 h, the two groups of adults feeding on TbCSV-

infected or TYLCCNV-infected plants would all have become

viruliferous [41]. In each of the three treatments, 25–30 replicates

were conducted. In each replicate, one female and one male were

placed on the lower surface of a plant leaf (third to fifth leaf from

the top) enclosed in a clip-cage. Every 3 days, the leaves bearing

the adults were examined using a dissecting microscope to count

the number of eggs laid, and the adults were transferred to new

leaves, until death of the females.

For observations on the survival and development time of

progeny produced by non-viruliferous and viruliferous adults in

each of the two biotypes, three groups of non-viruliferous,

TbCSV-infected and TYLCCNV-infected adults were again

obtained using the procedure described above. The three groups

of adults were each released onto a cotton plant in a whitefly-proof

cage, left there to oviposit for 24 h and then removed. The eggs

laid on each plant, i.e., in each treatment, were counted using

a microscope. From the 15th day onwards, daily observations were

made to collect and record newly emerged adults, until all pupae

had emerged or died. From these data we calculated the

percentage survival and development time from egg to adulthood.

The data of percentage survival were transformed by arcsine

square root before ANOVA. For analysis of each of the four

response variables: fecundity, adult longevity, survival of progeny,

and development time of progeny, a two-factor ANOVA was

conducted, and the two factors were whitefly biotype (two levels)

and whitefly status (three levels) (Table 4). When an overall

ANOVA indicated significant effects of the factors or their

interactions at P,0.05, the means were compared using a Tukey

test.
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