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Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders
characterized by impaired skills in social interaction and communication in addition
to restricted and repetitive behaviors. Many different factors may contribute to ASD
development; in particular, oxytocin receptor (OXTR) deficiency has been reported
to be associated with ASD, although the detailed mechanism has remained largely
unknown. Epidemiological study has shown that maternal diabetes is associated with
ASD development. In this study, we aim to investigate the potential role of OXTR on
maternal diabetes-mediated social deficits in offspring. Our in vitro study of human
neuron progenitor cells showed that hyperglycemia induces OXTR suppression and
that this suppression remains during subsequent normoglycemia. Further investigation
showed that OXTR suppression is due to hyperglycemia-induced persistent oxidative
stress and epigenetic methylation in addition to the subsequent dissociation of estrogen
receptor β (ERβ) from the OXTR promoter. Furthermore, our in vivo mouse study
showed that maternal diabetes induces OXTR suppression; prenatal OXTR deficiency
mimics and potentiates maternal diabetes-mediated anxiety-like behaviors, while there
is less of an effect on autism-like behaviors. Additionally, postnatal infusion of OXTR
partly, while infusion of ERβ completely, reverses maternal diabetes-induced social
deficits. We conclude that OXTR may be an important factor for ASD development and
that maternal diabetes-induced suppression of oxytocin receptor contributes to social
deficits in offspring.

Keywords: autism spectrum disorders, maternal diabetes, oxidative stress, oxytocin receptor, social deficit

Abbreviations: ALB, autism-like behavior; ASD, autism spectrum disorders; ChIP, chromatin immunoprecipitation; ERE,
estrogen response element; ERβ, estrogen receptor β; O2.−, superoxide anions; ROS, reactive oxygen species; OXT, oxytocin;
OXTR, oxytocin receptor; PVN, paraventricular nuclei; SOD2, superoxide dismutase 2; STZ, streptozocin.
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INTRODUCTION

Autism spectrum disorders (ASD) are a group of
neurodevelopmental disorders characterized by deficits in
social interaction and communication in addition to restricted
and repetitive behaviors (Rossignol and Frye, 2012; Baron-Cohen
et al., 2019). Many factors, including genetics/epigenetics, sex
and environmental factors have been reported to be associated
with ASD development (Rossignol and Frye, 2012; Bralten et al.,
2018). We have previously reported that prenatal hormone
exposure (Zou et al., 2017; Li et al., 2018; Xie et al., 2018;
Xiang et al., 2020) and maternal diabetes (Xiang et al., 2018;
Wang et al., 2019) contribute to ASD development, although
the detailed mechanism for the etiology of ASD remains
largely unknown and various other factors may still need to be
investigated.

Oxytocin is a central nervous neuropeptide that is involved
in a variety of physiological processes (Marotta et al., 2020)
and is mainly synthesized in neurons of the PVN and
supraoptic nuclei (SON) in the hypothalamus (Tang et al.,
2020). OXTR is widely expressed in human tissues, with
particularly high levels being located in limbic brain regions
(Kudwa et al., 2014). In conjunction with OXT, OXTR has
been reported to regulate diverse social behaviors (Maejima
et al., 2018; Gulliver et al., 2019; Resendez et al., 2020;
Soltys et al., 2020) and play a role in ASD etiology (Jacob
et al., 2007; LoParo and Waldman, 2015; Uzefovsky et al.,
2019), although there has been some controversy with these
conclusions (Tansey et al., 2010). Epigenetic modification of
OXTR has been widely reported to be associated with ASD
development (Jack et al., 2012; Maud et al., 2018; Krol et al.,
2019; Tops et al., 2019), although the detailed mechanism
remains unclear.

Estrogen receptor β (ERβ), together with estrogen receptor α

(ERα), is widely expressed in various areas of the brain (Bodo
and Rissman, 2006; Phan et al., 2015), and ERβ specifically
has been reported to be associated with ASD development and
anxiety-related behaviors (Krezel et al., 2001; Crider et al., 2014;
Zou et al., 2017). Additionally, ERβ is responsible for the basal
expression of superoxide dismutase 2 (SOD2) and estrogen-
related receptor α (ERRα) through ERE, subsequently regulating
oxidative stress and mitochondria function (Li et al., 2015; Kong
et al., 2016). ERβ is colocalized within the PVN and highly
expressed in OXT-containing neurons located in hypothalamic
regions. Both OXT (Acevedo-Rodriguez et al., 2015) and OXTR
(Murata et al., 2014) have been reported to be regulated by ERβ

either directly or indirectly; and our recent work showed that
maternal diabetes suppresses ERβ expression in brain (Wang
et al., 2019), thus, ERβ may play a role in modulating maternal
diabetes-mediated social behaviors (Clipperton-Allen et al., 2012;
Kudwa et al., 2014).

In this study, we aim to investigate the potential role
of OXTR on maternal diabetes-mediated social deficits. Our
in vitro study in human neuron progenitor cells showed that
OXTR expression was suppressed by transient high glucose
levels and remained low during subsequent normoglycemia
through hyperglycemia-mediated consistent oxidative stress.

Further investigation found that OXTR suppression is due
to hyperglycemia-mediated epigenetic changes on the OXTR
promoter and subsequent dissociation of ERβ from the OXTR
promoter. In vivo mouse study showed that prenatal OXTR
deficiency potentiates maternal diabetes-mediated anxiety-like
behavior, while it has little effect on ALB. In addition, postnatal
infusion of OXTR reversed maternal diabetes-mediated anxiety-
like behavior, while it had little effect on ALB; on the other hand,
postnatal infusion of ERβ completely reversed maternal diabetes-
mediated social deficits. We conclude that maternal diabetes-
induced suppression of oxytocin receptor contributes to social
deficits in offspring.

MATERIALS AND METHODS

A detailed description can be found in Supplementary Data 1,
and the related primers used in this study were shown in
Supplementary Table 1.

Reagents and Materials
Human neural progenitor cells (NPC, #ACS-5003) were obtained
from ATCC and were cultured in NPC medium as described
previously (Wang et al., 2019). The mouse primary amygdala
neurons were isolated and cultured in DMEM medium plus
10% fetal bovine serum (FBS), 10% heat-inactivated defined
horse serum, 20 mM D-glucose and 100 U/ml Pen/Strep
(from Invitrogen). All cells were maintained in a humidified
incubator with 5% CO2 at 37◦C. In some experiments, the
cells were conditionally immortalized using a hTERT lentivirus
vector with an extended life span to achieve higher transfection
efficiency and experimental stability (Bodnar et al., 1998;
Kong et al., 2016).

The antibodies for β-actin (sc-47778), C/EBPα (sc-365318),
GATA1 (sc-266), SOD2 (sc-30080), Sp1 (sc-17824) and YY1
(sc-7341) were obtained from Santa Cruz Biotechnology.
Antibodies for OXTR (#BS-1314R) was purchased from
Fisher; OXT (#AB911) was purchased from Sigma; 8-oxo-dG
(4354-MC-050) was purchased from Novus Biologicals; NeuN
(#24307) was purchased from Cell Signaling. Antibodies for
acetyl-histone H4 K5, K8, K12, and K16 (H4K5,8,12,16ac,
#PA5-40084) were obtained from Invitrogen. Antibodies for
ERα (ab3575), ERβ (ab3576), anti-histone H3 acetyl K9, K14,
K18, K23, K27(H3K9,14,18,23,27ac, ab47915), H4K20me1
(ab9051), H4K20me3 (ab9053), H4R3me1 (ab17339), H3K9me2
(ab1220), H3K9me3 (ab8898), H3K27me2 (ab24684), and
H3K27me3 (ab6002) were obtained from Abcam. 3-nitrotyrosine
(3-NT) was measured using the 3-Nitrotyrosine ELISA Kit
(ab116691 from Abcam) per manufacturers’ instructions. The
mitochondrial fraction was isolated using a Pierce Mitochondria
Isolation Kit (Pierce Biotechnology) per manufacturers’
instructions. Protein concentration was measured using
the Coomassie Protein Assay Kit (Pierce Biotechnology).
Luciferase activity assay was carried out using the Dual-
LuciferaseTM Assay System (Promega) and the transfection
efficiency was normalized using a cotransfected renilla plasmid
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(Zhang et al., 2017). Streptozocin (STZ, #18883-66-4) were
obtained from Sigma.

Construction of OXT/OXTR
Reporter Plasmid
Human genomic DNA was prepared from NPC cells. In order
to construct OXT/OXTR reporter plasmids, the gene promoter
(2 kb upstream of the transcription start site plus first exon) was
amplified from Ensembl gene ID: OXT-201 ENST00000217386.2
(for OXT) and OXTR-201 ENST00000316793.7 (for OXTR)
by PCR and subcloned into the pGL3-basic vector (# E1751,
Promega) using underlined restriction sites with the following
primers: OXT forward: 5′-gcgc-acgcgt- ttg gat gcg ggc cac ctg gga
-3′ (MluI) and OXT reverse: 5′- gtac- aagctt- ctt gcg cac gtc gag
gtc cgg -3′ (HindIII); OXTR forward: 5′-gcgc- ggtacc - tgg aac ttt
gag gat ttt ttt -3′ (KpnI) and OXTR reverse: 5′- gtac- aagctt - ctg
cac cga gtc cgc agg cga -3′ (HindIII). To map OXTR promoter
activity, the related deletion promoter constructs were generated
by PCR methods and subcloned into the pGL3-basic vector. All
the vectors were verified by sequencing, and detailed information
on these plasmids is available upon request (Zhang et al., 2017).

Generation of Expression Lentivirus
The lentivirus for human ERβ and SOD2 was prepared as
described previously in our lab (Wang et al., 2019). The cDNA
for mouse ERβ and OXTR was obtained from Open Biosystems
and subcloned into the pLVX-Puro vector (from Clontech)
using underlined restriction sites with the following primers:
mouse ERβ forward primer: 5′- gtac- ctcgag- atg tcc atc tgt
gcc tct tct -3′ (Xho1) and mouse ERβ reverse primer: 5′- gtac-
tctaga- tca ctg tga ctg gag gtt ctg -3′ (Xba1); mouse OXTR
forward primer: 5′- gtac - gaattc- atg gag ggc acg ccc gca
gcc -3′ (EcoR1) and mouse OXTR reverse primer: 5′- gtac -
tctaga- tca tgc cga gga tgg ttg aga -3′ (Xba1). The lentivirus for
ERβ, OXTR, or empty control (CTL) was expressed through
Lenti-XTM Lentiviral Expression Systems (from Clontech) per
manufacturers’ instructions (Wang et al., 2019).

Gene Knockdown by shRNA Lentivirus
Particles
The shRNA lentivirus particles for human ERβ and SOD2
were prepared as described previously in our lab (Wang et al.,
2019). The shRNA lentivirus plasmids for human SOD2 (sc-
41655-SH), ERβ (sc-35325-SH) or non-target control (sc-108060)
were purchased from Santa Cruz Biotechnology, and the related
lentivirus for either ERβ and SOD2 or empty control (CTL)
were expressed through Lenti-XTM Lentiviral Expression Systems
(from Clontech) per manufacturers’ instructions. The purified
and condensed lentivirus were used for in vitro gene knockdown.
The knockdown efficiency was confirmed by more than 65% of
mRNA reduction compared to the control group in cells using
real time PCR (see Supplementary Table 1).

In vivo Mouse Experiments
The animal protocol conformed to US NIH guidelines (Guide
for the Care and Use of Laboratory Animals, No. 85-23, revised

1996), and was reviewed and approved by the Institutional
Animal Care and Use Committee from Kangning Hospital of
Shenzhen. All the experimental mice were either OXTR wild type
(WT) or OXTR null (OXTR−/−) mice with a C57BL/6J mixed
genetic background (a kind gift from Dr. Haimou Zhang from
Hubei University, China). In the generation of diabetic mice,
adult (3-month-old) female mice with either WT or OXTR−/−

backgrounds were monitored for estrous cycles with daily vaginal
smears. Only mice with at least two regular 4- to 5-day estrous
cycles were included in the studies. Chronic diabetic female mice
were induced by injection of 35 mg/kg streptozocin (STZ, 0.05
M sodium citrate, pH 5.5) after an 8-h fasting period. Animals
with blood glucose >250 mg/dl were considered positive with
the success rate of∼90%, while control (CTL) mice received only
vehicle injection (Williams et al., 2017).

Mouse Protocol 1 for Prenatal Treatment of Diabetes
or OXTR Deficiency
Verified pregnant dams were randomly assigned to the following
four groups: Group 1: CTL group mice with OXTR WT
background (CTL/WT); Group 2: STZ mice with OXTR WT
background (STZ/WT); Group 3: CTL group mice with OXTR
null background (CTL/OXTR−/−); Group 4: STZ mice with
OXTR null background (STZ/OXTR−/−). Neurons from the
amygdala were isolated on embryonic day 18 (E18) as described
below. The male offspring were separated from the dams on day
21 and fed with normal chow until 7–8 weeks old for behavior
tests. Then, the offspring were sacrificed and various brain tissues,
including the amygdala, hypothalamus and hippocampus, were
isolated, flash frozen in dry ice, and then stored in a −80◦C
freezer for analysis of gene expression and oxidative stress.

Mouse Protocol 2 for Postnatal Manipulation of
OXTR/ERβ Expression
The male offspring (6 weeks old) from either the CTL or
STZ group in Mouse Protocol 1 were anesthetized with a
mixture of ketamine (90 mg/kg) and xylazine (2.7 mg/kg) and
implanted with a guide cannula targeting the amygdala (26 gauge;
Plastics One) (Neal-Perry et al., 2014). The following stereotaxic
coordinates from the bregma were used for the amygdala:
anteroposterior (AP) = −1.4, mediolateral (ML) = ±3.5,
dorsoventral (DV) = −5.1. Dorsoventral coordinates, which
were based on the mouse brain atlas (Heldt and Ressler, 2006),
were measured from the skull surface with the internal cannula
extending 2 mm beyond the end of the guide cannula. The
cannula was attached to the skull with dental acrylic and jeweler’s
screws and closed with an obturator (Hu et al., 2015). An osmotic
minipump (Alzet model 2002; flow rate 0.5 µl/h; Cupertino,
CA, United States) connected to a 26-gauge internal cannula
that extended 1 mm below the guide was implanted and used
to deliver ORTR overexpression (↑OXTR), ERβ overexpression
(↑ERβ), or vehicle (VEH) lentivirus. Vehicle consisting of
artificial cerebrospinal fluid (aCSF; 140 mM NaCl, 3 mM KCl,
1.2 mM Na2HPO4, 1 mM MgCl2, 0.27 mM NaH2PO4, 1.2
mMCaCl2, and 7.2 mM dextrose, pH 7.4) was used for the
infusion of the lentivirus. Infusion (flow rate 0.5 µl/h) begun
immediately after placement of the minipump. 0.5 µl of total
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2 × 103 cfu of lentivirus was infused for 1 h. The experimental
mice were separated into four groups, with 10 in each group.
Group 1: CTL offspring with vehicle control lentivirus infusion
(CTL/P-VEH); Group 2: STZ offspring with vehicle control
lentivirus infusion (STZ/P-VEH); Group 3: STZ offspring with
OXTR expression lentivirus infusion (STZ/P-↑OXTR); Group
4: STZ offspring with ERβ expression lentivirus infusion
(STZ/P-↑ERβ). Cannula placement was verified histologically
postmortem by the injection of 0.5 µl of India ink (volume
matching that of drug delivery in the experiments). Mice whose
dye injections were not located in the amygdala were excluded
from the data analysis. Two weeks after lentivirus infusion, the
offspring were used for behavior tests followed by biomedical
analysis, as indicated in Mouse Protocol 1 (Zou et al., 2017).

DNA Methylation Analysis
We developed a real-time PCR-based method for methylation-
specific PCR (MSP) analysis on the human OXTR promoter
according to the previously described method with some
modifications (Eads et al., 2000; Ogino et al., 2006; Nosho et al.,
2008). The genomic DNA from human #ACS-5003 cells was
extracted and purified before then being treated by bisulfite
modification using the EpiJET Bisulfite Conversion Kit (#K1461,
Fisher). The modified DNA was then amplified using methylated
and unmethylated primers for MSP that were designed using the
Methprimer software1 with the below details: Methylated primer:
forward 5′- ttt gag ttt att gtt aaa gtc gt -3′, reverse 5′- aaa taa taa tat
tct tcc ccg aa -3′; Unmethylated primer: forward 5′- ttt gag ttt att
gtt aaa gtt gt -3′; reverse 5′- aaa taa taa tat tct tcc cca aa -3′. Product
size: 147 bp (methylated) and 147 bp (unmethylated); CpG island
size: 134 bp; Tm: 64.2◦C. The final methylation readout was
normalized by unmethylated input PCR (Zou et al., 2017).

Animal Behavior Test
The animal behavior test of offspring was carried out at 7–8 weeks
of age. Anxiety-like behavior was evaluated using the marbles
burying tests (MBT) and the elevated plus maze (EPM) tests
(Zou et al., 2017; Xie et al., 2018). ALB was evaluated using
ultrasonic vocalization (USV), social interaction (SI) tests and a
three-chambered social test as described below (Moy et al., 2004;
Silverman et al., 2010; Schaafsma et al., 2017).

Statistical Analysis
The data was given as mean± SEM and all the experiments were
performed at least in quadruplicate unless indicated otherwise.
The one-way analysis of variance (ANOVA) followed by the
Turkey–Kramer test was used to determine statistical significance
of different groups, and the two-way ANOVA followed by the
Bonferroni post hoc test was used to determine the differences
of two factors (e.g., OXTR deficiency and maternal diabetes)
using SPSS 22 software, and a P value of <0.05 was considered
significant (Li et al., 2019; Zhou et al., 2019).

1http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi

RESULTS

Transient High Glucose Causes
Persistent OXTR Suppression During
Subsequent Normoglycemia Through
Hyperglycemia-Mediated Consistent
Oxidative Stress
We first evaluated the potential effect of glucose memory on the
gene expression of OXTR and OXT. Human ACS-5003 neurons
were first treated by high glucose (25 mM HG) for 4 days
before remaining in low glucose levels (5 mM LG) for another
4 days. The results showed that 4-day high glucose treatment
significantly suppressed the gene expression of both OXTR (see
Figure 1A) and OXT (see Figure 1B); when the cells switched
into low glucose, OXTR expression remained low, while OXT
expression returned to normal; SOD2 expression (↑SOD2) on
day 5 completely reversed the HG-mediated effect; and SOD2
knockdown (shSOD2) on day 5 mimicked the HG-mediated
effect. Furthermore, the mRNA levels for OXTR and OXT on day
8 were presented in Figure 1C in addition to mRNA levels of
SOD2, indicating that SOD2 mRNA expression was suppressed
in HG and remained low during subsequent LG. In addition,
the manipulation of SOD2 using lentivirus was successful; SOD2
expression lentivirus (↑SOD2) significantly increased, while
SOD2 knockdown lentivirus (shSOD2) significantly decreased,
SOD2 mRNA levels (see Figure 1C). We also measured the
protein levels for SOD2 and OXTR, and an expression pattern
similar to that of the mRNA was observed (see Figures 1D,E
and Supplementary Figure 1a). On the other hand, we could
not detect the presence of OXT proteins by western blotting,
indicating that OXT protein is not expressed in ACS-5003
neurons. We then measured the SOD2 activity, and the
results showed a pattern similar to that of SOD2 mRNA
(see Figure 1F). Finally, we evaluated oxidative stress, and
the results showed that ROS formation significantly increased
in the HG(4d) + LG(4d)/CTL group (see Figure 1G). 3-
nitrotyrosine formation (see Figure 1H) also increased compared
to the LG(4d) + LG(4d)/CTL group, and SOD2 expression
HG(4d) + LG(4d)/↑SOD2 completely reversed, while SOD2
knockdown LG(4d) + LG(4d)/shSOD2 mimicked, the high
glucose-mediated effect. Our results indicate that transient high
glucose causes persistent OXTR suppression during subsequent
normoglycemia through hyperglycemia-mediated consistent
oxidative stress.

Hyperglycemia Induces OXTR
Suppression Through Epigenetic
Modification and the Subsequent
Dissociation of ERβ From the
OXTR Promoter
We investigated the possible molecular mechanism for
hyperglycemia-mediated OXTR suppression. A series of
progressive 5′-promoter deletion constructs for the OXTR
promoter were generated, and these constructs were transfected
into conditional immortalized neurons for the analysis of OXTR
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FIGURE 1 | Transient high glucose causes persistent OXTR suppression during subsequent normoglycemia through hyperglycemia-mediated consistent oxidative
stress. Human ACS-5003 neurons were treated with either 5 mM low glucose (LG) or 25 mM high glucose (HG) for 4 days. The cells were then infected by empty
(CTL), SOD2 overexpression (↑SOD2), or SOD2 knockdown (shSOD2) lentivirus for 1 day before they were then treated by LG for another 4 days in the presence of
1% serum; the cells were then harvested for further analysis. (A,B) Cells were harvested at different time points for analysis of mRNA levels. (A) OXTR levels; (B) OXT
levels; n = 4, ∗P < 0.05, vs. day 0 group; ¶ P < 0.05, vs. day 3 group. (C–H) Cell were harvested on day 8 for biomedical analysis. (C) mRNA levels, n = 4.
(D) Quantitation of protein levels, n = 5. (E) Representative western blotting pictures for (D). (F) SOD2 activity, n = 5. (G) ROS formation, n = 5. (H) 3-nitrotyrosine
formation, n = 5. ∗P < 0.05, vs. LG(4d) + LG(4d)/CTL group. Data were expressed as mean ± SEM.

reporter activity in the presence of either 5 mM LG or 25 mM HG
for 24 h. We found that hyperglycemia-induced OXTR reporter
suppression occurred among the −2000, −1600, −1400, −1200,
−1100, −800, −400 and −200 deletion constructs (numbered
according to Ensembl gene ID: OXTR-201 ENST00000316793.7;
transcription start site was marked as 0), while suppression
was significantly restored in the −1000, and −900 deletion
reporter constructs, indicating that hyperglycemia-responsive
transcriptional element is located in the range of −1100∼−900
on the OXTR promoter (see Figure 2A). The transcription factor
database revealed many potential binding motifs, including
one of the GATA1, Sp1 and YY1 and two of the C/EBPα and
ERE (marked in red) binding sites located in the range of
−1100∼−900 on the OXTR promoter (see Figure 2B). We
then mutated these potential binding motifs in the OXTR full
length (pOXTR-2000) reporter construct, and the reporter
assay showed that hyperglycemia-induced reporter activation
disappeared in two of the ERE mutation constructs (located at
−1005 and −944, respectively, marked in green, see Figure 2B),
indicating that hyperglycemia mediates OXTR suppression
through the ERE binding motif on the OXTR promoter (see
Figure 2C). We then made both single and double mutations on
both of the ERE binding sites (located at−1005 and−944) in the
pOXTR full length construct, and the reporter assay showed that
ERE single mutants (M-1005/ERE, M-944/ERE) significantly
decreased OXTR reporter activity in the LG treatment group
compared to the wild type full length (pOXTR-2000/LG), while
ERE double mutants (M-1005/-944/ERE) further decreased
reporter activity, mimicking the reporter activity of the full
length reporter construct (pOXTR-2000) in the HG treatment

(see Figure 2D). Our results indicate that hyperglycemia induces
OXTR suppression through decreased association of ERE on the
OXTR promoter. We then conducted DNA methylation analysis
on the OXTR promoter, and the results showed that there was no
significant difference across the treatments (see Supplementary
Figure 2). We then conducted ChIP analysis using antibodies
for transcription factors GATA1, ERα, ERβ, C/EBPα, YY1 and
Sp1 as indicated in Figure 2B. The results showed that the
binding ability of ERβ on the OXTR promoter was significantly
decreased in the HG(4d) + LG(4d)/CTL group compared to the
LG(4d) + LG(4d)/CTL group, and this effect was completely
restored by infection of SOD2 in HG(4d) + LG(4d)/↑SOD2
group; on the other hand, other transcription factors, including
ERα, showed no significant difference (see Figure 2E), indicating
that ERβ is responsible for hyperglycemia-induced OXTR
suppression. We then evaluated the epigenetic changes in
the range of −1100∼−900 on the OXTR promoter. We
first evaluated the effect of hyperglycemia on histone H3
methylation. The results showed that hyperglycemia treatment
had no effect on the methylation of H3K9me2 and H3K9me3,
while methylation of H3K27me2 and H3K27me3 displayed
a significant increase as a result of HG(4d) + LG(4d)/CTL
treatment compared to the LG(4d) + LG(4d)/CTL treatment. On
the other hand, infection of SOD2 in HG(4d) + LG(4d)/↑SOD2
treatment completely restored this effect (see Figure 2F). We
also evaluated histone H4 methylation on the OXTR promoter
(see Supplementary Figure 3a) and found that hyperglycemia
did not have any effect on histone H4 methylation. We then
evaluated histone acetylation on the OXTR promoter using
the acetyl-histone H4 (K5, K8, K12, K16) antibody that
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FIGURE 2 | Hyperglycemia induces OXTR suppression through epigenetic modification and the subsequent dissociation of ERβ from the OXTR promoter. (A) The
conditional immortalized ACS-5003 neurons were transiently transfected with either OXTR full length (pOXTR-2000) or deletion reporter plasmids. After 24 h, the
cells were treated with either 5 mM low glucose (LG) or 25 mM high glucose (HG) for 3 days and the OXTR reporter activities were calculated, n = 5. ∗P < 0.05, vs.
pOXTR-2000 group. (B) The schematic picture for the potential transcriptional binding motif in the range of –900∼1100 (from transcription start site) on the OXTR
promoter with two potential ERE binding sites marked in red as well as related mutation sites marked in green. (C) The cells were transiently transfected by either a
wild type OXTR reporter construct (pOXTR-2000) or single point mutation at the site shown in panel (B), and then treated with either LG or HG for 3 days, and the
OXTR reporter activities were calculated, n = 5. ∗P < 0.05, vs. pOXTR-2000 group. (D) The cells were transiently transfected by OXTR full length (pOXTR-2000),
single mutant, or double mutations as indicated, or infected by SOD2 lentivirus (↑SOD2), and then treated with either LG or HG for 3 days; the OXTR reporter
activities were then calculated, n = 5. ∗P < 0.05, vs. pOXTR-2000/LG group; ¶ P < 0.05, vs. M-1005/ERE/LG group. (E,F) Cells were treated by either 4-day LG
plus 4-day LG [LG(4d) + LG(4d)], or 4-day HG plus 4-day LG [HG(4d) + LG(4d)], or the cells were infected on day 4 by SOD2 lentivirus [HG(4d) + LG(4d)/↑SOD2]; the
cells were then used for ChIP analysis: (E) ChIP analysis by potential transcription factors on OXTR promoter, n = 4; (F) ChIP analysis by potential histone
methylation, n = 4. ∗P < 0.05, vs. LG(4d) + LG(4d)/CTL group. (G–I) Cells were treated by either LG(4d) + LG(4d)/CTL or HG(4d) + LG(4d)/CTL, or the cells were
infected on day 4 by either ERβ expression lentivirus [HG(4d) + LG(4d)/↑ERβ] or ERβ lentivirus knockdown [LG(4d) + LG(4d)/shERβ]; the cells were then harvested
for biomedical analysis: (G) mRNA analysis, n = 4. (H) Protein quantitation, n = 5. (I) Representative western blotting pictures for (H). ∗P < 0.05, vs.
LG(4d) + LG(4d)/CTL group. Data were expressed as mean ± SEM.

recognizes histone H4 acetylated at lysines 5, 8, 12, or 16 and
the acetyl-histone H3 (K9, K14, K18, K23, K27) antibody that
recognizes histone H3 acetylated at lysines 9, 14, 18, 23 or 27
by ChIP analysis, and the results showed that there was no
significant difference in either histone H3 or H4 acetylation
(see Supplementary Figure 3b). We proceeded to evaluate the
potential effect of ERβ on OXTR expression. The cells were
infected by either ERβ expression lentivirus after HG exposure
[HG(4d) + LG(4d)/↑ERβ] or ERβ knockdown lentivirus after
LG exposure [LG(4d) + LG(4d)/shERβ]. The results showed
that ERβ lentivirus manipulation was successful and that ERβ

expression completely reversed, while ERβ knockdown mimicked
hyperglycemia [HG(4d) + LG(4d)/CTL group]-induced OXTR
suppression, compared to the LG(4d) + LG(4d)/CTL control

group (see Figures 2G–I and Supplementary Figure 1b). Our
results indicate that hyperglycemia induces OXTR suppression
through epigenetic modification and the subsequent dissociation
of ERβ from the OXTR promoter.

Prenatal OXTR Deficiency Potentiates
Maternal Diabetes-Mediated
Oxidative Stress
We evaluated the potential effect of OXTR deficiency on
maternal diabetes-mediated oxidative stress. The OXTR null
(OXTR−/−) mice were used to generate diabetic dams through
streptozocin (STZ) injection, and the brain tissues, including
the amygdala, hypothalamus and hippocampus, were isolated
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FIGURE 3 | Prenatal OXTR deficiency potentiates maternal diabetes-mediated oxidative stress. The OXTR wild type (WT) or OXTR null (OXTR−/−) backgrounds
were used to generate either control (CTL) or STZ-induced diabetic (STZ) pregnant dams, and the amygdala neurons or tissues from subsequent male offspring
were isolated for further analysis. (A–D) The amygdala tissues were isolated from 7- to 8-week-old male offspring for analysis. (A) The mRNA levels by qPCR, n = 4.
(B) The quantitation of protein levels, n = 5. (C) The representative pictures for western blotting for (B). (D) In vivo superoxide anion release, n = 5. (E,F) The
amygdala neurons were isolated on embryonic day (E18) from the above treatment for immunostaining. (E) Quantitation of 8-oxox-dG staining, n = 5.
(F) Representative pictures for 8-oxo-dG staining (green) and DAPI staining for nuclei (blue). Two-way ANOVA was used for the statistical analysis, and each group
contained nine mice. ∗P < 0.05, vs. CTL/WT group; ¶ P < 0.05, vs. STZ/WT group. Data were expressed as mean ± SEM.

from subsequent male offspring for further analysis. We first
measured the gene expression in amygdala tissues. The results
showed that gene expression of SOD2, ERβ and OXTR were
significantly decreased in the maternal diabetes (STZ/WT)
group compared to the control (CTL/WT) group; OXTR
knockout (OXTR−/−) mice significantly decreased OXTR
expression, but showed no effect on the expression of SOD2
and ERβ in either the control (CTL/OXTR−/−) or diabetic
(STZ/OXTR−/−) groups (see Figures 3A–C and Supplementary
Figure 1c). We then evaluated mRNA expression for those
genes from the hypothalamus (see Supplementary Figure 4a)
and hippocampus (see Supplementary Figure 4b). The results
showed that the maternal diabetic (STZ/WT) group displayed
significantly decreased OXTR expression levels compared to
the control (CTL/WT) group, while there was no effect on the
expression of SOD2 and ERβ; furthermore, OXTR expression
was successfully decreased in OXTR knockout (OXTR−/−) mice,
but there was no effect on the expression of SOD2 and ERβ. In
addition, we measured OXT mRNA levels from the amygdala,
hypothalamus and hippocampus, and the results showed that
there was no significant difference in OXT expression across

any of the treatments (see Supplementary Figure 4c). Finally,
we evaluated the oxidative stress in amygdala tissues from the
mice, and the results showed that maternal diabetic (STZ/WT)
group displayed significantly increased superoxide anion release
(see Figure 3D) and 8-oxo-dG formation (see Figures 3E,F)
compared to control (CTL/WT) group; there was no effect in
OXTR knockout (OXTR−/−) mice compared to the control
(CTL/OXTR−/−) group, but the OXTR knockout further
potentiated maternal diabetes (STZ/OXTR−/−) -mediated
oxidative stress compared to STZ/WT group. Our results
indicate that prenatal OXTR deficiency potentiates maternal
diabetes-mediated oxidative stress.

Prenatal OXTR Deficiency Potentiates
Maternal Diabetes-Mediated
Anxiety-Like Behavior, While It Has Little
Effect on Autism-Like Behavior in
Offspring
We evaluated the potential effect of OXTR deficiency on
maternal diabetes-mediated social deficits in male offspring.
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We first evaluated anxiety-like behavior in these animals. The
results showed that the maternal diabetic (STZ/WT) group
buried significantly fewer marbles (see Figure 4A) and spent
less time in the Open Arm while spending more time in
the Closed Arm in EPM tests (see Figure 4B) compared to
the control (CTL/WT) group. OXTR knockout mice displayed
an effect mimicking that of the maternal diabetes group
as compared to the control (CTL/OXTR−/−) group, and
interestingly, it further potentiated the maternal diabetes-
mediated anxiety-like behavior in diabetic (STZ/OXTR−/−)
group compared to STZ/WT group. We then evaluated the
effect of OXTR deficiency on ALBs. The results showed that
maternal diabetic (STZ/WT) group had significantly fewer
ultrasonic vocalizations compared to the control (CTL/WT)
group. OXTR knockout mice slightly but significantly mimicked
the effect of maternal diabetes in the control (CTL/OXTR−/−)
group, while there was no further effect in the diabetic
(STZ/OXTR−/−) group (see Figure 4C). In addition, our
results showed that mice from the maternal diabetic (STZ/WT)
group spent significantly less time in Sniffing, Mounting and
interacting in Total, but not in Grooming their partner in the
Social Interaction tests (see Figure 4D). Additionally, they spent
significantly more time in the Empty side for sociability (see
Figure 4E), and less time for social novelty (see Figure 4F)
in three-chambered social tests, compared to the control

(CTL/WT) group. However, there was no significant effect in
the OXTR knockout (OXTR−/−) group. Our results indicate
that prenatal OXTR deficiency potentiates maternal diabetes-
mediated anxiety-like behavior, while it has little effect on ALB
in male offspring.

Increasing Postnatal Expression of ERβ

Completely Reverses Maternal
Diabetes-Induced Oxidative Stress in
Offspring, While Expression of OXTR Has
no Effect
We evaluated the effect of postnatal expression of ERβ and
OXTR on maternal diabetes-mediated oxidative stress. The
male offspring from diabetic dams received expression lentivirus
infusion for either ERβ or OXTR in the amygdala, and then
the brain tissues, including the amygdala, hypothalamus
and hippocampus, were isolated for further analysis. We
first measured the gene expression in amygdala tissues. The
results showed that gene expression of SOD2, ERβ and OXTR
was significantly decreased in the maternal diabetes (STZ/P-
VEH) group compared to the control (CTL/P-VEH) group;
increasing postnatal expression of OXTR (STZ/P-↑OXTR)
had no effect on SOD2 and ERβ, while increasing postnatal
expression of ERβ (STZ/P-↑ERβ) completely reversed maternal

FIGURE 4 | Prenatal OXTR deficiency potentiates maternal diabetes-mediated anxiety-like behavior, while it has little effect on autism-like behavior in offspring. The
OXTR wild type (WT) or OXTR null (OXTR−/−) background were used to generate either control (CTL) or STZ-induced diabetic (STZ) pregnant dams, and the
subsequent 7- to 8-week-old male offspring were used for animal behavior analysis. (A) Marbles burying tests (MBT), n = 9. (B) Time spent in Open Arm and Closed
Arms in EPM test, n = 9. (C) Ultrasonic vocalization, n = 9. (D) Social interaction (SI) test, the time spent in following, mounting, grooming, and sniffing any body
parts of the other mouse was calculated, n = 9. (E,F) Three-chambered social tests, n = 9. (E) Time spent in chamber for sociability. (F) Time spent in chamber for
social novelty. Two-way ANOVA was used for the statistical analysis, and each group contained nine mice. ∗P < 0.05, vs. CTL/WT group; ¶ P < 0.05, vs. STZ/WT
group. Data were expressed as mean ± SEM.
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diabetes-mediated gene suppression of SOD2 and OXTR
(see Figures 5A–C and Supplementary Figure 1d). We then
evaluated mRNA expression for these genes in both the
hypothalamus and hippocampus. The results showed that
OXTR expression was significantly decreased in the maternal
diabetic (STZ/P-VEH) group based on analysis from both the
hypothalamus (see Supplementary Figure 5a) and hippocampus
(see Supplementary Figure 5b) compared to the control
(CTL/P-VEH) group, while there was no significant effect
on the expression of SOD2 and ERβ; additionally, postnatal
infusion of either OXTR (STZ/P-↑OXTR) or ERβ (STZ/P-
↑ERβ) in the amygdala had no effect on gene expression.
Furthermore, we measured OXT mRNA from the amygdala,
hypothalamus and hippocampus; the results showed that there
was no difference on OXT expression in both the amygdala
and hippocampus across all treatments, while OXT expression
was significantly decreased in the maternal diabetes (STZ/P-
VEH) group compared to the control (CTL/P-VEH) group
in the hypothalamus, and increasing postnatal expression
of either OXTR or ERβ had no effect (see Supplementary
Figure 5c). Finally, we evaluated oxidative stress in the mice.
The results showed that mice from the maternal diabetic

(STZ/P-VEH) group had significantly increased superoxide
anion release (see Figure 5D) and 8-oxo-dG formation
(see Figure 5E) compared to the control (CTL/P-VEH)
group, and amygdala infusion of OXTR (STZ/P-↑OXTR)
had no effect, while amygdala infusion of ERβ (STZ/P-
↑ERβ) completely reversed the diabetes-mediated effect.
Our results indicate that increasing postnatal expression
of ERβ completely reverses maternal diabetes-induced
oxidative stress in offspring, while expression of OXTR has
no effect.

Increasing Postnatal Expression of OXTR
Reverses Maternal Diabetes-Induced
Anxiety-Like Behavior and Has Little
Effect on Autism-Like Behavior, While
Expression of ERβ Completely Reverses
Maternal-Diabetes-Induced Social
Deficits in Offspring
We evaluated the effect of postnatal expression of ERβ and
OXTR on maternal diabetes-mediated social deficits in male

FIGURE 5 | Postnatal expression of ERβ completely reverses maternal diabetes-induced oxidative stress in offspring, while expression of OXTR has no effect. The
male offspring from either control (CTL) or maternal diabetes (STZ) groups received either vehicle (P-VEH), or lentivirus infusion for expression of either OXTR
(P-↑OXTR) or (P-↑ERβ) at 6 weeks old, and the male offspring were sacrificed for further biomedical analysis at 8 weeks old. (A–D) The amygdala tissues were
isolated for further analysis as below: (A) mRNA levels by qPCR, n = 4. (B) The quantitation of protein levels, n = 5. (C) The representative pictures for western
blotting. (D) In vivo superoxide anion release, n = 5. (E) The amygdala neurons were isolated at embryonic day (E18) from the above treatment for quantitation of
8-oxox-dG staining, n = 5. One-way ANOVA was used for the statistical analysis, and each group contained nine mice. ∗P < 0.05, vs. CTL/P-VEH group. Data were
expressed as mean ± SEM.
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offspring. We first evaluated anxiety-like behaviors in these
animals. The results showed that mice from the maternal
diabetic (STZ/P-VEH) group buried significantly fewer
marbles (see Figure 6A) and spent less time in the Open
Arm while spent more time in the Closed Arm in EPM tests
(see Figure 6B) compared to the control (CTL/P-VEH) group;
amygdala infusion of either OXTR (STZ/P-↑OXTR) or ERβ

(STZ/P-↑ERβ) completely reversed the maternal diabetes-
mediated effect. We then evaluated the effect of postnatal
expression in the amygdala on ALB. The results showed that
mice from the maternal diabetic (STZ/P-VEH) group had
significantly fewer ultrasonic vocalizations compared to the
control (CTL/P-VEH) group; amygdala infusion of OXTR
(STZ/P-↑OXTR) partly, while amygdala infusion of ERβ

(STZ/P-↑ERβ) completely, reversed the maternal diabetes-
mediated effect (see Figure 6C). In addition, our results
showed that maternal diabetic (STZ/P-VEH) group spent
significantly less time in Sniffing, Mounting and socially
interacting in Total, but not in Grooming their partner
in Social Interaction tests (see Figure 6D). Furthermore,
mice from this group spent significantly more time in the
Empty side for sociability (see Figure 6E) and less time
for social novelty (see Figure 6F) in the three-chambered
social tests compared to the control (CTL/P-VEH) group;
amygdala infusion of OXTR (STZ/P-↑OXTR) showed no effect,

while amygdala infusion of ERβ (STZ/P-↑ERβ) completely
reversed the maternal diabetes-mediated effect. Our results
indicate that increasing postnatal expression of OXTR in
amygdala reverses maternal diabetes-induced anxiety-like
behavior but has little effect on ALB, while expression of
ERβ completely reverses maternal-diabetes-induced social
deficits in offspring.

DISCUSSION

In this study, we found that OXTR is suppressed by
hyperglycemia-mediated epigenetic changes and the subsequent
dissociation of ERβ from the OXTR promoter. Prenatal OXTR
deficiency potentiates maternal diabetes-mediated anxiety-like
behavior but has little effect on ALB; additionally, postnatal
OXTR expression partly, while postnatal ERβ expression
completely, reversed maternal diabetes-mediated social deficits.

Maternal Diabetes-Mediated OXTR
Suppression
We found that hyperglycemia suppresses the expression of
both OXT and OXTR, and OXTR expression remains low,
while OXT expression returns to normal during subsequent
normoglycemia. This effect can be completely reversed by

FIGURE 6 | Postnatal expression of OXTR reverses maternal diabetes-induced anxiety-like behavior and has little effect on autism-like behavior, while expression of
ERβ completely reverses maternal-diabetes-induced social deficits in offspring. The male offspring from either control (CTL) or maternal diabetes (STZ) groups
received either vehicle (P-VEH), or lentivirus infusion for expression of either OXTR (P-↑OXTR) or (P-↑ERβ) at 6 weeks old, and the male offspring were used for
animal behavior analysis at 8 weeks old. (A) Marbles burying tests (MBT), n = 9. (B) Time spent in Open Arm and Closed Arms in EPM test, n = 9. (C) Ultrasonic
vocalization, n = 9. (D) Social interaction (SI) test, the time spent following, mounting, grooming, and sniffing any body parts of the other mouse was calculated, n = 9.
(E,F) Three-chambered social tests, n = 9. (E) Time spent in chamber for sociability. (F) Time spent in chamber for social novelty. One-way ANOVA was used for the
statistical analysis, and each group contained nine mice. ∗P < 0.05, vs. CTL/WT group; ¶ P < 0.05, vs. STZ/WT group. Data were expressed as mean ± SEM.
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SOD2 expression, indicating that hyperglycemia-induced
OXTR suppression is due to hyperglycemia-induced consistent
oxidative stress, which has been termed “hyperglycemia
memory” (El-Osta et al., 2008; Lu et al., 2020). Further
investigation showed that hyperglycemia-induced OXTR
suppression is due to oxidative stress-mediated consistent
histone methylation on the OXTR promoter, indicating
that these types of epigenetic changes can be inherited in
offspring as a result of maternal diabetes. This conclusion
has been further supported by the results from our in vivo
study, which showed that OXTR expression was suppressed
in many brain tissues, including the amygdala, hypothalamus
and hippocampus, in prenatal diabetes exposure-induced
offspring. In addition, we found that high glucose suppresses
OXT expression, even though this cannot be inherited in
offspring, indicating that diabetes may suppress OXT-mediated
physiological processes, which is consistent with previous
findings (Lippert et al., 2003; Gutkowska et al., 2009; Dai et al.,
2018; Ding et al., 2019).

Role of OXTR in Maternal
Diabetes-Mediated Social Deficits
We found that prenatal OXTR deficiency induces many social
deficits in offspring, it mimics the effects of maternal diabetes-
induced anxiety-like behavior and ultrasonic vocalization (Tsuji
et al., 2020), while has little effect on ALB. Very interestingly,
prenatal OXTR deficiency potentiates maternal diabetes-
mediated anxiety-like behavior while again having little effect
on ALB, which is consistent with previous findings that
OXT is associated with anxiety, but not necessarily with ALB
(Yoshida et al., 2009; Puglia et al., 2015, 2018; Duque-Wilckens
et al., 2020). In addition, our results showed that prenatal
OXTR deficiency does not directly trigger oxidative stress
in offspring, while we have previously found that maternal
diabetes-induces ALB through persistent oxidative stress and
SOD2 suppression (Wang et al., 2019). Taken altogether,
we suggest that OXTR may contribute to ALB through
other mechanisms, such as serotonergic or glutamatergic
neurons, instead of triggering oxidative stress alone (Yoshida
et al., 2009; Tan et al., 2019; Wang et al., 2019). On the
other hand, this study has a potential limitation due to
the lack of OXTR transgenic mice, and our conclusions
are made using the lack of an effect of increased OXTR
expression in the amygdala, however, OXTR changes were
observed in several brain regions beyond the amygdala. In
this case, OXTR expression in other regions of brain may
also contribute to the animal behaviors, and this needs to be
further investigated.

Role of ERβ and Epigenetic
Modifications on OXTR Expression
It has been reported that genetic and epigenetic change-
mediated OXTR deficiency is associated with ASD (Gregory
et al., 2009), and DNA methylation (Behnia et al., 2015;
Maud et al., 2018; Puglia et al., 2018) on the OXTR
promoter contributes to OXTR deficiency and subsequent

social deficits (Puglia et al., 2015, 2018). In this study, we
found that maternal diabetes-mediated OXTR suppression
is due to oxidative stress-mediated histone methylation
on the OXTR promoter as opposed to DNA methylation,
indicating that many different factors may contribute to
ASD through different mechanisms. In addition, our study
has shown that hyperglycemia-induced histone methylation
dissociates ERβ from the OXTR promoter and subsequently
resulting in OXTR down-regulation (Kudwa et al., 2014).
Additionally, we have previously reported that maternal diabetes
induces suppression of both SOD2 and ERβ, subsequently
contributing to ALBs (Wang et al., 2019). In this study,
maternal diabetes-mediated OXTR suppression may be partly
due to histone methylation and partly due to suppressed
ERβ expression, supporting our previous conclusions that
ERβ may play an important role in ASD development (Zou
et al., 2017; Xie et al., 2018). In addition, our preliminary
study showed that maternal diabetes induces significantly
decreased expression of SOD2 and ERβ in brain, resulting
in more severe ALBs in male offspring compared to female
offspring since male offspring have relatively much lower
basal ERβ expression in brain, making male offspring more
susceptible to hyperglycemia-induced damage. Furthermore,
the presence of high levels of estrogen in female offspring
ameliorates maternal diabetes-induced ALBs by estrogen-
mediated ERβ activation (Zou et al., 2017; Wang et al.,
2019). In this case, the male offspring were chosen in this
study to evaluate the potential effect of maternal diabetes on
animal behaviors.

CONCLUSION

Oxytocin receptor is suppressed by hyperglycemia-induced
persistent oxidative stress and epigenetic changes, which can
be inherited during subsequent normoglycemia. Maternal
diabetes-induced OXTR suppression contributes to anxiety-like
behavior, while it has less of an effect on ALB; moreover, prenatal
OXTR deficiency potentiates maternal diabetes-mediated
social deficits. We conclude that maternal diabetes-induced
suppression of oxytocin receptor contributes to social
deficits in offspring.
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