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Abstract

The corrosion behavior of an AZ91D magnesium alloy was investigated under a heteroge-

neous electrolyte layer by using electrochemical methods and surface analysis techniques.

Dynamic polarization curves and morphological characterization were obtained at the center

and near the edge zones under the electrolyte layer. The influence of the gas/liquid/solid

three-phase boundary zone (TPB) on the corrosion behavior of the AZ91D magnesium alloy

was discussed. The corrosion rate changed more significantly near the TPB zone than that

at the other zones. The AZ91D alloy exhibited the characteristics of filiform corrosion

together with shallow pitting corrosion. Different from the randomly distributed shallow pits,

the filiform corrosion preferred to initiate near the TPB region and then progressively

expanded adjacent to the edge of the electrolyte layer. The TPB zone played a vital role in

determining the corrosion location, the corrosion morphologies and the corrosion rate of the

magnesium alloy by influencing the mass transport process of carbon dioxide.

1 Introduction

A marine atmospheric environment has high humidity and contains a great amount of hygro-

scopic salts (mainly NaCl) generated from sea spray. Due to rainfall or dew condensation, the

hygroscopic salts can deposit and develop thin electrolyte layers (TELs) on metal surfaces. As

the lightest engineering metal, magnesium alloys are often used in applications where they are

exposed to ambient marine atmospheres and usually suffer serious atmospheric corrosion

under TEL [1] [2] [3] [4].

Several papers have reported the corrosion behavior of magnesium alloys under TELs [5]

[6] [7] [8] [9] [10] [11]. Most of the studies have investigated the influence of TEL thickness on

the corrosion behavior of magnesium and its alloys [8] [9] [10]. They found that localized cor-

rosion is the primary form of corrosion, which is in a higher ratio compared to that of uniform

corrosion [11]. These studies have focused on the corrosion behavior of magnesium alloys

under a homogeneous electrolyte layer.
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Some studies have concentrated on the corrosion behavior of magnesium alloys under an

adsorbed film in ambient atmosphere. They studied the corrosion of magnesium alloys in

humid air and indicated that the relatively benign behavior of Mg-Al alloys in atmospheric

corrosion has been attributed partly to the inhibitive effect of carbon dioxide [5] [6] [7]. Most

of the work was investigated by the gravimetric method and surface analysis technique, with

an emphasis on the influences of the microstructure.

These thin water films are heterogeneous and exhibit a gas/liquid/solid three-phase bound-

ary (TPB) owing to the existence of surface tension. The TPB zone refers to a narrow liquid

zone connecting the three phases and plays an important role in the corrosion process [12].

Compared with the general reaction area of the liquid phase, the TPB zone is a zone with high-

speed cathodic reactions in which the diffusion rate of oxygen is much higher than in the bulk

solution [13]. For the corrosion of Mg alloys, the main cathodic reaction is the reduction of

hydrogen ions, so the reaction mechanism and mass transfer process are different.

To date, studies on the corrosion behavior of Mg alloy have been less reported under a het-

erogeneous electrolyte layer, and the influences of the TPB zone are especially unclear. The

aim of the present research was to investigate the corrosion behavior of magnesium alloys

under a heterogeneous electrolytic layer and, on this basis, to clarify the influences of the TPB

zone.

2 Material and method

2.1 Preparation of the electrodes

The material used was as-cast AZ91 magnesium alloy (Shanxi Magnesium Co., Ltd, China),

with an exposed area of 10 mm×10 mm in this experiment. The specimens were sealed by

epoxy resin after adding an electrical connection with copper wires. Then, the electrodes were

mechanically ground with SiC papers up to No. 2000 grit, cleaned ultrasonically with ethanol,

and then rinsed with deionized water. Before placing the electrolyte layer on the surface, the

electrodes were stored in a desiccator for approximately 24 hours.

The silver/silver chloride (Ag/AgCl) electrode was obtained by an electrochemical chlorina-

tion method [14]. First, the silver chloride was precipitated by electrochemically chlorinating

the silver wire (F 200 μm, purity 99.9%, Sinopharm Chemical Reagent, China) in a 1 mol/L

potassium chloride solution (Tianjin Bodi Chemical Reagent, China) under a 1 mA/cm2

anodic current for 1 hour. After that, the electrode was cleaned with deionized water and

treated at 280˚C in a muffle furnace for 2 hours. The Ag/AgCl reference electrode was formed

by inserting the chlorinated silver wire into a micropipette (outer tip diameter, 100 μm), which

was filled with a gel consisting of 2 wt.% agar (Sinopharm Chemical Reagent, China) dissolved

in a saturated potassium chloride solution. The potential of the electrode was calibrated by a

saturated calomel electrode (SCE), and all potentials reported in this work were converted to

values relative to SCE.

An iridium/iridium oxide (Ir/IrOx) electrode was fabricated by oxidation of an Ir wire

(F 500 μm, purity 99.7%, Shanghai Shenjie Instrument, China) in a sodium carbonate melt

at 820˚C in a muffle furnace for 5 hours. Then, it was immersed in 1 mol/L hydrochloric

acid to remove the residual carbonates and rinsed with deionized water. Next, the wire elec-

trode was treated at 120˚C in an oven for 12 hours to obtain the Ir/IrOx electrode [15]. The

pH value was obtained by measuring the potential difference relative to the above-mentioned

Ag/AgCl reference electrode. As shown in Fig 1, the homemade Ir/IrO2 electrode showed a

good linear response to pH and the slope was measured to be 58.34 (close to the theoretical

value 59.13).
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2.2 Electrochemical measurements

A thin electrolyte layer (40 μL, 0.6 mol/L NaCl, Sinopharm Chemical Reagent, China) was

placed on the surface of the Mg alloy by using a syringe. The exposed surface area to the NaCl

solution was about 0.36 cm2. Then, the samples were placed in a temperature-humidity test

chamber where the humidity was controlled using sodium chloride solution. The experiments

were carried out at 20.0±0.5˚C, a relative humidity 93±2%, and the atmosphere of the labora-

tory with a carbon dioxide concentration of approximately 500±30 ppm.

Potentiodynamic polarization curves were obtained through an electrochemical system

PAR S2263 (Princeton Applied Research, USA). For all electrochemical tests, a three-electrode

system was employed with the AZ91D alloy as the working electrode, Pt wire (F500 μm, Sino-

pharm Chemical Reagent, China) as the auxiliary electrode and a homemade Ag/AgCl electrode

as the reference electrode. The samples were kept in open-circuit potential (OCP) conditions for

more than 30 minutes before starting the polarization measurements. The polarization curves

were recorded with a rate of 10 mV/s from -1.8 V to -1.0 V at the center and near the TPB zone,

respectively. During the measurements, the Ag/AgCl reference electrode and Pt auxiliary elec-

trode were positioned approximately 500 μm above the sample surface underneath the electrolyte

layer. The schematic diagram of the electrochemical measurement was shown in Fig 2.

2.3 Surface analysis

The specimens were cleaned with deionized water and dried with cold air after the exposure

test. Then, the morphologies of the specimens were observed by scanning electron microscopy

Fig 1. Variations of potential with pH for the Ir/IrO2 electrode.

https://doi.org/10.1371/journal.pone.0234981.g001
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(SEM, model JSM-6700FX, Japan), and the chemical compositions of the relevant zones were

obtained by energy dispersive spectrometry (EDS, Oxford X-MAX, UK). X-ray photoelectron

spectroscopy (XPS) analysis was carried out using ESCALAB 250 XI. The X-ray source was the

Ka peak of aluminum. Avantage software was used to analyze the data. The accurate binding

energies were determined by referencing to the adventitious C1s peak at 284.8 eV.

3 Result

The microstructure of AZ91D magnesium alloy was measured before corrosion exposure. As

shown in Fig 3, AZ91D magnesium alloy exhibited a multiphase microstructure, consisting of

primary α-Mg phase, β phase (Mg17Al12 phase) and AlMn phase precipitates (indicated by

arrows). From the element distributions, the main element was Mg and Al together with a

small amount of O, Zn and Mn. The element Al was mainly precipitated in the form of β phase

accompanied with AlMn particles. While the distribution of element O and Zn was relatively

uniform on the surface of magnesium alloy.

3.1 Potentiodynamic polarization

The corrosion behavior of the AZ91D alloy was investigated under the TEL at the center and

near the TPB regions, respectively. Fig 4 shows the typical polarization curves of the AZ91D

alloy under the TEL at different times. At the initial stage, both the anodic and the cathodic

current density near the TPB region were larger than those at the central region (Fig 4A). With

increasing corrosion time, the cathodic polarization curves almost overlapped, while the

anodic curves were quite different (Fig 4B, 4C and 4D). This implied that the differences in the

Fig 2. The schematic diagram of the electrochemical measurement.

https://doi.org/10.1371/journal.pone.0234981.g002
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Fig 3. SEM (a) and EDS (b) images of AZ91D magnesium alloy before corrosion exposure.

https://doi.org/10.1371/journal.pone.0234981.g003

Fig 4. Typical polarization curves of AZ91D alloy under TEL for different times. a: 45 min, b: 3 h, c: 6 h, d: 12 h.

https://doi.org/10.1371/journal.pone.0234981.g004
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corrosion behavior between the central and TPB regions were probably due to the anodic reac-

tion process. Compared with the anodic curves at the central region, the TPB region exhibited

high anodic current density for the first 6 hours but low current density after exposure for 12

hours.

To compare the corrosion tendency at different regions under a heterogeneous electrolyte

layer, the variation of 1/Rp with time was shown in Fig 5. The polarization resistance Rp was

obtained from the linear polarization measurements, and the value of 1/Rp was used to repre-

sent corrosion rate according to the Stern-Geary equation (icorr = B/ Rp). As can be seen, 1/Rp

initially increased and then decreased near the TPB zone, reaching a maximum value after sev-

eral hours. While, 1/Rp measured at the central region exhibited fluctuations within a narrow

range. Comparatively, the corrosion rate was more stable at the central zone than near the

TPB zone.

It should be noted that it is impossible to obtain the static polarization curves using a high

scan rate and a small sample area. However, instead of obtaining the true corrosion rate, the

present work aims to compare the change tendency of different regions on a Mg alloy under

the TEL, which helps to understand the influences of the heterogeneous electrolyte layer.

3.2 Variations of pH value

To understand the corrosion behavior of the AZ91D alloy under the heterogeneous electrolyte

layer, the pH values were measured at the center and near the TPB regions. As shown in Fig 6,

both pH values increased in the first hour and remained almost stable during the remaining

Fig 5. Variations of 1/Rp with the exposure time.

https://doi.org/10.1371/journal.pone.0234981.g005
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time. The cathodic reaction on Mg alloy in the atmosphere was thought to be due to water

reduction and oxygen reduction (reactions 1 and 2), which resulted in the accumulation of

hydroxyl ions and the increase of pH at the initial stage [4]. At the same time, carbon dioxide

in the environment, which acts as an acidic gas, was expected to have a pronounced effect

owing to a limited amount of electrolyte. When dissolved in water, carbon dioxide can form

carbonic acid (reaction 3). In alkaline conditions, carbonic acid forms carbonate (reactions 4

and 5), leading to the consumption of hydroxyl ions [16]. Owing to the neutralization effect of

carbon dioxide gas, the pH value remained stable for a long time. At the same time, it should

be noted that the pH value was lower near the TPB zone than that at the center, which could

be attributed to the rapid production of carbonate and fast consumption of hydroxyl ions for

the short diffusion path of carbon dioxide near the TPB zone.

2H2Oþ 2e� ! 2OH� þH2 ð1Þ

O2 þ 2H2Oþ 4e� ! 4OH� ð2Þ

CO2ðaqÞ þH2O! H2CO3ðaqÞ ð3Þ

Fig 6. Variations of pH values with the exposure time.

https://doi.org/10.1371/journal.pone.0234981.g006
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H2CO3 þ OH� ! HCO�
3
þH2O ð4Þ

HCO�
3
þ OH� ! CO2�

3
þH2O ð5Þ

3.3 Surface analysis

Fig 7 shows optical images of the AZ91D alloy under TEL. Soon after the placement of the

electrolyte layer, hydrogen bubbles were observed randomly adhering to the surface (Fig 7A).

After several hours, a number of shallow pits appeared on the surface of AZ91D alloy, with the

size ranged from several to dozens of microns. At the same time, serious corrosion was

observed near the TPB zone, as shown in Fig 7B. With increasing time, the corrosion features

propagated from the initiation pit and took the form of dark filament near the TPB zone (Fig

7C and 7D). The head of the filament expanded forward quickly, accompanied with releasing

of voluminous hydrogen bubbles and leaving inert pits behind.

The morphologies of different zones on the surface of the AZ91D alloy under the TEL are

illustrated in Fig 8. After exposure for 1 hour, several scattered corrosion products appeared at

the central zone (Fig 8A). Near the TPB zone, some discontinuous curved cracks were

observed with insoluble particles deposited (Fig 8B). The particles were irregular and discon-

tinuous, with a size of several microns. After exposure for 6 hours, a certain number of irregu-

lar corrosion products were found to be dispersed at the center (Fig 8C). In the meantime,

long curved tracks propagated along the surface and were covered by cellular corrosion prod-

uct crusts near the TPB zone, as shown in Fig 8D. This filiform-like corrosion preferred to ini-

tiate and propagate near the TPB zone, different from the corrosion features at the center.

Mg alloys are typically multiphase materials, consisting of a dispersion of intermetallic par-

ticles in the α-Mg matrix [4] [17]. With the aid of EDS, the curved cracks were assumed and

detected to be related to an intermetallic phase with more aluminum and less magnesium.

This filiform corrosion might be attributed to the dissolution of α-phase Mg located around

the intermetallic phase. Because of the significant difference in the nobility of the α-Mg and

intermetallic phase, it is proposed that the intermetallic particles are the principal sites of

cathodic activity, and this is coupled to the anodic attack of the surrounding Mg grains [18]

[19] [20] [21].

The composition of major elements in the center and near the TPB zone for different times

is shown in Table 1. Compared with the EDS data in the center, a depletion of magnesium and

an enrichment in oxygen were found near the TPB zone. This can be attributed to the rapid

anodic dissolution of Mg and the quick generation of corrosion products. With the propaga-

tion of corrosion, the content of magnesium further declined, accompanied by an increase of

oxygen and carbon after 6 hours. This indicated the accumulation of insoluble corrosion prod-

ucts on the specimen surface.

After exposure under TEL for 12 h, the specimen was analyzed using XPS (Fig 9). As shown

in Fig 9A, the XPS spectra of the specimen were obviously composed of Mg, O, C and Al ele-

ments peaks. The main corrosion products were MgO, Mg(OH)2, Al2O3 and Al(OH)3 (Fig

9B–9D). In the meantime, O1s spectrum showed the existence of OH- and a small amount of

CO3
2- (Fig 9C), indicating the conversion process of magnesium hydroxide to carbonate-con-

taining corrosion products is relatively slow [22]. The analysis of the C1s spectrum (Fig 9E)

showed that most of the carbon signal seemed to originate from atmospheric contamination

or carbonate [23]. The C1s peak located at 284.8 eV corresponded to the carbon contamina-

tion on the surface. And the peak at 289.3 eV attributed to the presence of carbonate, which

can verify the statement of carbonic acid involved in the corrosion process.
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Fig 7. Optical images of AZ91D alloy under TEL after different time. a: 5min, b: 3 h, c: 6 h, d: 10 h.

https://doi.org/10.1371/journal.pone.0234981.g007
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4 Discussion

Metals normally oxidize rapidly when exposed to atmosphere. After a short time, a very thin

layer of MgO has formed. Under the electrolyte layer, some electrochemical corrosion cells

formed on the surface of the AZ91D alloy, which resulted in the random production of magne-

sium ions at local anodes and hydroxyl ions at local cathodes. Accompanied by the migration

of these ions, magnesium hydroxide corrosion product was generated and deposited on the

surface. The corrosion products contained considerable amounts of insoluble MgO and Mg

(OH)2.

Fig 8. SEM images of AZ91D alloy after different exposure time. a: 1 h, at the central zone; b: 1 h, near the TPB zone; c: 6 h, at the central zone; d: 6 h,

near the TPB zone.

https://doi.org/10.1371/journal.pone.0234981.g008

Table 1. EDS data of the AZ91D alloy surface for the major elements (atomic %).

Time Zone Mg O C Al Zn Mn

1 h TPB zone 64.42 18.71 11.79 3.53 0.92 0.07

1 h Center 74.12 11.24 11.31 2.87 0.59 0.02

6 h TPB zone 45.39 30.37 18.26 1.80 0.48 0.06

6 h Center 62.51 14.02 19.01 2.77 0.64 0.04

https://doi.org/10.1371/journal.pone.0234981.t001
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The schematic illustration of corrosion mechanism for Mg alloys under a heterogeneous

electrolyte layer was shown in Fig 10. Comparatively, the supply and diffusion of carbon diox-

ide was easier near the TPB zone, leading to the fast consumption of hydroxyl ions and a low

pH value. It could be deduced that the corrosion products were less stable near these zones,

and the anodic dissolution rate of magnesium was high. At the same time, the migration and

accumulation of chloride ions at the anodic sites enhanced the dissolution process of magne-

sium and caused serious corrosion to occur near the TPB zone (Fig 10A).

Fig 9. XPS analysis of corrosion products after exposure under TEL for 12 h. (a) general diagram, (b) Mg 1 s, (c) O 1s, (d) Al 2p,

(e) C 1s.

https://doi.org/10.1371/journal.pone.0234981.g009
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Fig 10. Schematic illustration of corrosion mechanism for Mg alloys under a heterogeneous electrolyte layer.

https://doi.org/10.1371/journal.pone.0234981.g010
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With the progress of corrosion, the accumulation of the less soluble corrosion products

provided a partly protective layer on the surface and inhibited corrosion by physically blocking

the anodic sites. Moreover, magnesium hydroxides and magnesium oxides are non-conduct-

ing and cannot serve as cathodes. Therefore, the propagation of active anodes cannot go deeply

under the less soluble product layer but can only expand along the surface. Because the stability

of the corrosion product layer was weak at low pH values, the active anodes preferred to propa-

gate near the TPB zone and moved forward to consume the intact surface. After a period of

time, filiform corrosion developed near the TPB zone under the electrolyte layer (Fig 10B and

10C).

It should be noted that the existence of TPB has important influences on the corrosion loca-

tions, the corrosion morphologies and the corrosion rate of the Mg alloy. The TPB zone

showed an impact on the anodic dissolution process of the Mg alloy, which was different from

that of carbon steel. For the corrosion of carbon steel, the TPB influences the cathodic reduc-

tion process by facilitating the mass transport of oxygen. However, here, TPB had an impact

on the anodic reaction of Mg alloy by assisting the mass transport process of carbon dioxide,

which lowered the pH value and accelerated the anodic dissolution process.

5 Conclusion

The corrosion behavior of an AZ91D magnesium alloy was investigated under a heteroge-

neous electrolyte layer, and the following conclusions were obtained.

1. Under a heterogeneous electrolyte layer, a number of shallow pits were formed randomly

on the surface of magnesium alloy. At the same time, serious localized corrosion preferred

to initiate and propagate near the TPB zone, which resulted in the formation of filiform cor-

rosion on the surface of the Mg alloy.

2. The TPB zone played a vital role in determining the locations of localized corrosion, the

corrosion morphologies and the corrosion rate. The TPB zone mainly influenced the

anodic corrosion process of the magnesium alloy by facilitating the mass transport process

of carbon dioxide, which lowered the pH value.
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