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During the last 30 years it has become commonplace for epidemiological studies to collect
locational attributes of disease data. Although this advancement was driven largely by the
introduction of handheld global positioning systems (GPS), and more recently, smart-
phones and tablets with built-in GPS, the collection of georeferenced disease data has
moved beyond the use of handheld GPS devices and there now exist numerous sources
of crowdsourced georeferenced disease data such as that available from georeferencing
of Google search queries or Twitter messages. In addition, cartography has moved beyond
the realm of professionals to crowdsourced mapping projects that play a crucial role in dis-
ease control and surveillance of outbreaks such as the 2014 West Africa Ebola epidemic.
This paper provides a comprehensive review of a range of innovative sources of spatial
animal and human health data including data warehouses, mHealth, Google Earth,
volunteered geographic information and mining of internet-based big data sources such
as Google and Twitter. We discuss the advantages, limitations and applications of
each, and highlight studies where they have been used effectively.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last 30 years it has become commonplace for
epidemiological studies or surveys to collect locational
(spatial) attributes for disease data (Pfeiffer et al., 2008).
Although this advancement has been driven largely by
the introduction of handheld global positioning systems
(GPS), and more recently, smartphones and tablet comput-
ers with built-in GPS that facilitate geo-tagged data collec-
tion, it also highlights the increased awareness of the
importance of the spatial aspect when developing effica-
cious animal disease surveillance and control strategies
(Table 1). Unfortunately, as a result of the particular chal-
lenges currently facing health workers and researchers,
for spatial disease data to be able to effectively inform
innovative surveillance and disease control strategies, it
needs to move beyond the fundamentals of collecting geo-
referenced disease event data in individual studies and
instead focus on an inclusive approach that Eysenbach
(2001), in his definition of eHealth, referred to as ‘a
state-of-mind, a way of thinking, an attitude, and a commit-
ment for networked, global thinking, to improve health care
locally, regionally, and worldwide by using information and
communication technology’.

This collective, crowdsourced approach was aptly illus-
trated during the 2014 West Africa Ebola crisis when, faced
with only a few rudimentary topographical maps of Guinea
but no useful maps upon which to base control and surveil-
lance efforts, Médecins Sans Frontières (MSF) personnel
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Table 1
Using spatial analysis to inform risk-based animal disease surveillance and control.

Mapping disease
distribution

Disease distribution maps range from simple dot maps showing the location of disease events to predictive risk maps
created using statistical algorithms that combine disease occurrence data with environmental covariates (Pigott et al.,
2014). But no matter what form they take, visualizing the spatial pattern of disease – be it at a global, national or local scale
– is fundamental for informing risk-based disease surveillance and control strategies in several ways.
Simple visualizations allow the extent of the disease to be delineated and disease frequency monitored, and when
combined with maps of environmental factors or those highlighting the spatially heterogeneous distribution of at-risk
populations, they can also be used to estimate disease burden (Hay et al., 2010; Robinson et al., 2002) and identify target
populations for intervention (Tatem et al., 2011; Guerra et al., 2010, 2008, 2006). Visualizing disease distribution can also be
fundamental in directing control and elimination efforts. Clements et al. (2013) describe how measures to eliminate malaria
from endemic countries have generally adopted a spatially progressive elimination approach referred to as shrinking the
malaria map in which eradication efforts initially focus on the geographical perimeter of endemic areas and work inwards,
effectively localizing disease distribution which allows for more efficient treatment and control (Feachem et al., 2010)
Apart from the key role maps play in informing risk-led decision making, they also serve a more practical purpose such as
facilitating integration and synthesis of data from a wide range of diverse sources, each possibly capturing information
about disease and relevant risk factors at different scales (Bergquist and Tanner, 2012; Bennema et al., 2014). As a result,
cartographers need to decide on the most appropriate scale at which to present the data for it to be useful; data presented at
administrative level 1 (province or region) inevitably cannot capture the fine-scale heterogeneity of most infection patterns
and so estimates of numbers of individuals requiring treatment tend to be incorrect (Brooker et al., 2010).

Cluster detection A clustered spatial arrangement of disease events suggests the presence of a contagious process or localised risk factor.
Apart from the fact that spatial targeting of interventions at high-risk areas is more cost-effective than uniform resource
allocation (Stark et al., 2006) and therefore such identification is essential for informing risk-based disease surveillance and
control efforts. Identification of significant disease clusters can also advance our understanding of a disease in several ways
including suggesting potential risk factors for further investigation either directly (Calistri et al., 2013; French et al., 2005;
Sinkala et al., 2014; Kelen et al., 2012; Nogareda et al., 2013; Poljak et al., 2007; Le et al., 2012; Vigre et al., 2005; Ward and
Carpenter, 2000), or indirectly when analysis of model residuals indicates the modelled predictors do not explain fully the
spatial heterogeneity in disease distribution (Méroc et al., 2014; Borba et al., 2013), or by defining the scale of disease
clustering (French et al., 2005; Le et al., 2012; French et al., 1999; Wilesmith et al., 2003; Picado et al., 2007; Picado et al.,
2011; Porphyre et al., 2007; Sanchez et al., 2005; Minh et al., 2009; Minh et al., 2010; Xu et al., 2012; Métras et al., 2012;
Abatih and Ersbøll, 2009) and thereby indicate likely transmission mechanisms involved in disease spread (Sinkala et al.,
2014; Ward et al., 2013; Loobuyck et al., 2009; Ohlson et al., 2014; Rosendal et al., 2014; Poljak et al., 2010). Cluster
detection can also be used identify areas where vectors and hosts coincide resulting in potentially increased risk of disease
transmission (Shaman, 2007; Hennebelle et al., 2013; Swirski et al., 2007), highlight possible regional differences in disease
transmission (Kelen et al., 2012), or track the direction and geographical extent of disease spread (Wilesmith et al., 2003;
Denzin et al., 2013; Lian et al., 2007)

Spatial modelling Spatial modelling techniques can be divided into data- and knowledge-driven methods (Stevens and Pfeiffer, 2011), the
former characterised by the use of statistical methods for defining relationships between risk factors and disease risk, while
knowledge-driven modelling approaches are based on existing knowledge about the causal relationships associated with
the disease risk of interest. Statistical analysis is used to generate data-driven models from information collected through
surveillance and other means. Such models generate quantitative estimates of risk and the relative weights of risk factors.
The results of such models are used for a variety of purposes including targeting areas for disease surveillance, risk
management, simulating different control scenarios, or predicting what will happen under different environmental
conditions such as those resulting from climate change (i.e. temporal prediction), or identifying new geographical areas
suitable for the introduction of diseases (i.e. spatial prediction)
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enlisted the help of the Humanitarian OpenStreetMap
Team (HOT) to map Guéckédou - the main city in Guinea
affected by the outbreak (Hodson, 2014). Within 20 h of
receiving the request, online volunteers had mapped three
cities in Guinea based on satellite imagery of the area, pop-
ulating them with over 100,000 buildings; information
that proved crucial for door-to-door canvassing of inhabi-
tants and mapping the spread of disease.

In addition to this collective approach, for spatial dis-
ease data to be effective in the 21st century, it needs to
meet certain requirements. Firstly, the increasing number
of transboundary disease epidemics has emphasized the
need for animal and human health information systems
that are no longer circumscribed by regional or national
borders; transparent collection and sharing of disease data
needs to occur at a global scale. Secondly globalization has
substantially increased the speed and magnitude of disease
spread. In the 2001 UK foot and mouth disease (FMD) out-
break it was estimated that at least 57 premises from 16
counties were infected before the first case was reported
(Gibbens and Wilesmith, 2002) while in 2007, equine
influenza spread rapidly throughout two Australian states
as a result of infected horses attending an equestrian event
(Cowled et al., 2009); approximately 70,000 horses on over
9000 premises were infected with most of the geographic
dissemination occurring within the first ten days of the
epidemic. For containment to be effective, reporting of dis-
ease events needs to be as rapid as possible. This is of par-
ticular concern in developing countries where reporting of
animal disease events can be delayed by months
(Karimuribo et al., 2012) while lag times for such reports
as the Centers for Disease Control and Prevention (CDC)
US Influenza Sentinel Provider Surveillance reports are cur-
rently in the order of 1–2 weeks (Ginsberg et al., 2009).

During the past decade, collecting spatial disease data
has moved beyond the use of handheld GPS devices and
there now exist numerous sources of crowdsourced geo-
referenced disease data such as that available from georef-
erencing Google search queries or Twitter messages. Not
surprisingly, the focus so far has been on human health,



Table 2
A selection of global animal-health geodata warehouses and global disease
reporting systems.

Data warehouse (URL) Description

Disease BioPortal; (http://
bioportal.ucdavis.edu) (Perez
et al., 2011)

Provides real-time or near real-
time access to local, regional and
global disease information and
data for more than 40 animal
diseases and syndromes. Set of
techniques for cluster detection
and phylogenetic analysis of
sequences is available for the
user

EMPRES Global Animal Disease
Information System
(EMPRES-i); (http://empres-
i.fao.org/eipws3g/) (FAO:
EMPRES transboundary
animal disease bulletin,
2011; Farnsworth et al.,
2010; Martin et al., 2007)

EMPRES-i provides up-to-date
information on global animal
disease distribution and current
threats at national, regional and
global level. Disease events can
be presented on a map and data
may also be exported for further
analysis

EMPRES-i genetic module (Claes
et al., 2014)

This genetic module of the
EMPRES-i internet-based
application combines
epidemiological outbreak
information (EMPRES-i) with
genetic characteristics of
influenza viruses (OpenFluDB)

FAO GeoNetwork (http://
www.fao.org/geonetwork/
srv/en/main.home)

Provides access to interactive
and downloadable maps,
satellite imagery and related
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driven to some extent by US President Barack Obama’s
Global Health Initiative (Initiative GH, 2009) and the
World Health Organisation’s (WHO) concerted efforts
regarding neglected tropical diseases (Cringoli et al.,
2013; The Global Network for Neglected Tropical
Diseases; Brooker and Utzinger, 2007; van Lieshout and
Yazdanbakhsh, 2013; Malone and Bergquist, 2012;
Brooker and Smith, 2013; King et al., 2013; Brooker et al.,
2006). Also, by their very nature, citizen and
internet-based health approaches lend themselves to
human rather than animal-health problems and similarly,
to developed countries that have the necessary internet
infrastructure, rather than developing nations. As a result,
internet-based animal-health initiatives currently lag
behind those of human health, yet it is to these initiatives
that we must look to see how such systems can be best
adapted for use in animal health and in developing
nations; countries that carry the highest burden of emerg-
ing and zoonotic infectious diseases in the world yet fre-
quently have the least capacity for cost-effective risk-led
decision making.

This paper reviews a range of sources and features of
spatial disease data currently available, discussing their
advantages and limitations, and highlighting studies where
they have been used. Although the focus is on animal dis-
eases, relevant advancements in human health that could
be adopted for animal health purposes are discussed.
spatial databases maintained by
the Food and Agricultural
Organization of the United
Nations (FAO) and its partners

Global Livestock Production and
Health Atlas (GLiPHA);
(http://kids.fao.org/glipha/)
(Clements et al., 2002;
Franceschini et al., 2009)

GLiPHA is an interactive,
electronic atlas containing
global animal production and
health statistics. Sub-national
statistics relating to the
livestock sector can be viewed
cartographically, against a back-
drop of selected maps such as
livestock densities, land-use and
topography. Data may either be
displayed or exported as tables
and charts

World Animal Health
Information Database
(WAHID); (http://www.oie.
int/wahis_2/public/wahid.
php/Wahidhome/Home)
(Jebara et al., 2012)

Provides access to all data held
within OIE’s World Animal
Health Information System
(WAHIS). Together with global
disease distribution and
outbreak maps, WAHID also
includes country-level
information on exceptional
disease events and animal
health status together with
country-level maps of the
prophylactic and control
measures in use
2. Sourcing spatial disease data

2.1. Data warehouses

Although animal disease surveillance has traditionally
been implemented at national and sub-national levels,
the increasing number of transboundary animal disease
epidemics has highlighted the need for establishing such
systems at broader scales. As a result, data warehouses
and disease reporting systems such as World Animal
Health Information Database (WAHID) (Jebara et al.,
2012) and EMPRES Global Animal Disease Information
System (EMPRES-i) (FAO: EMPRES transboundary animal
disease bulletin, 2011; Farnsworth et al., 2010; Martin
et al., 2007) were launched to encourage and facilitate data
collection and sharing at a global level (Table 2). However,
in addition to their original role, such data warehouses also
provide researchers with cost-effective access to regularly
updated spatial disease data, potentially leading to
increased knowledge gains, without the need for costly
and time-consuming primary research. Moreover, integra-
tion of databases from different sources offers researchers
a more extensive and comprehensive collection of infor-
mation than if individual data sources were used with
the possibility of better understanding issues at the popu-
lation level. However, researchers using this data need to
remember that although the provenance of national dis-
ease surveillance data ensures that specificity is reasonably
high, sensitivity is likely to be low and undoubtedly exhi-
bits considerable spatio-temporal heterogeneity with
respect to bias and sensitivity (Perez et al., 2011). Users
should also bear in mind the limitations of using data that
have generally been spatially referenced to administrative
centroids rather than exact outbreak locations; in addition
to the possibility of ecological fallacy, Stevens et al. (2013)
showed that using outbreak data georeferenced to admin-
istrative centroids for spatial modelling purposes can be
problematic when either constraining the study area or
working at relatively low spatial resolutions.
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Table 2 contains details of the main animal disease geo-
data warehouses. EMPRES-i data is obtained from both for-
mal (e.g. reports from the OIE, World Health Organization,
national authorities, FAO country or regional projects, field
missions and field officers, non-governmental organiza-
tions, laboratories and reference centers) and informal
sources (e.g. media reports and those disseminated by
the Global Public Health Intelligence Network and
ProMED) (Farnsworth et al., 2010; Martin et al., 2007),
and all outbreaks appearing in the database are
followed-up until either confirmed or denied (Farnsworth
et al., 2010). WAHID, on the other hand, comprises official
information submitted by OIE member countries regarding
immediate and follow-up notifications of exceptional dis-
ease events, or semester and annual reports on OIE-listed
diseases together with background information on animal
health and control programs. Alternatively, Disease
BioPortal is an unrestricted, public web site created and
maintained by the Center for Animal Disease Modeling
and Surveillance (CADMS) at the University of California,
Davis (Disease BioPortal) incorporating multiple streams
of information including WAHID (Jebara et al., 2012),
EMPRES-i (FAO: EMPRES transboundary animal disease
bulletin, 2011; Farnsworth et al., 2010; Martin et al.,
2007), GenBank, the World Reference Laboratory for
Foot-and-Mouth Disease (WRLFMD), weekly reports on
vesicular-like diseases from Centro Panamericano de
Fiebre Aftosa (PANASFTOSA) and the Foot-and-Mouth
disease (FMD) News and Rift Valley fever (RVF) News
produced by CADMS.

In additional to global information systems, it is also
useful for decision makers to have access to national data
warehouses. Denmark was the first country to make all
animal husbandry data from a range of sources and depart-
ments related to Danish production animals available in a
single online geodata warehouse (Nielsen, 2011). Disparate
databases can be linked at the individual animal level or
aggregated at farm, postcode or administrative level.
However, the difficulties associated with standardizing
and combining a range of data sources – each involving
potentially dissimilar unique identifiers, data structures,
languages and semantics – limits the development of ani-
mal health geodata warehouses and results in bias. Data
adapters (applications that convert attributes of one data-
base into attributes compatible with another database) are
integral to the creation of such information systems as
they can be used to relate diverse databases through the
identification of fields containing equivalent information
(Perez et al., 2011).

Data quality is of primary concern with data ware-
houses and assessing the validity of the data is paramount.
GLiPHA, which merges livestock health and production
data from multiple sources, incorporates a system of error
checking rules to help identify inaccuracies and inconsis-
tencies in the data (Clements et al., 2002) while the
Danish system uses a number of different tools such as
continuous reporting of data, systematic control of entries
and irregularities and cross-control of data with other
sources (Nielsen, 2011).

Although the logistics involved in linking a range of dis-
parate datasets partly hinders the development of national
or global animal health data warehouses, the reluctance of
certain agencies and organisations to share disease data
freely, transparently and in a timely fashion (Perez et al.,
2011) is an additional impediment to the development of
a valuable resource that should be integral to 21st century
risk-led disease management and decision making. Buy-in
from all parties is therefore essential if such information
systems are to be successfully established.

2.2. mHealth

While developed nations generally have access to a
wide range of good quality georeferenced health-related
data, collection, processing and dissemination of such data
in resource-poor locations remains challenging owing to
lack of the necessary technological infrastructure as well
as issues with familiarity and usability (Betjeman et al.,
2013). In such countries data is generally still collected
via paper-based forms despite associated inefficiencies
such as data entry errors and long delays before the pro-
cessed data is available to decision makers (Anokwa
et al., 2009). In fact, a survey of selected human and animal
health surveillance systems in different regions of
Southern Africa found obvious spatial heterogeneity in
the delivery of monthly animal health reports to the cen-
tral epidemiological department; wards closer to the head-
quarters submitted reports more regularly than those
further away while delivery of all reports could be delayed
by as much as six to nine months (Karimuribo et al., 2012).

There is thus an urgent need for resource-poor settings
to implement alternate surveillance systems and although
lack of technological resources and infrastructure may pre-
clude the use of novel internet-based surveillance
approaches, mobile devices such as the now out-of-date
personal digital assistants (PDAs) Shirima et al., 2007; Yu
et al., 2009; Seebregts et al., 2009; Dale and Hagen, 2007
and more recently mobile phones (Robertson et al., 2010;
Jean-Richard et al., 2014; Thinyane et al., 2010), smart-
phones (Forsell et al., 2011) and tablet computers, are play-
ing an increasingly fundamental role in the collection and
processing of animal and human health surveillance data
in resource-poor locations (Betjeman et al., 2013;
Chretien et al., 2008; Mwabukusi et al., 2014; Istepanian
et al., 2004). This is, in part, a result of the extensive pene-
tration of mobile phone use in developing countries over
the last decade; estimated to be 63% in sub-Saharan
Africa in 2013 and projected to pass 70% by 2015
(Betjeman et al., 2013).

Initially restricted to simple yet effective features such
as short messaging service (SMS) and voice calling, the
value of mHealth – using mobile devices to collect or dis-
tribute health-related information (Istepanian et al.,
2004) – for health care workers in developing countries
increased immeasurably following the development of
smartphones. In addition to the variety of data that can
be collected – text, audio, video, photographs and barcode
scans – other key benefits of smartphones over
non-internet based models include the built-in GPS and
accelerometer which allow detailed locational data and
changes in movement to be documented (Anokwa et al.,
2009). Images, in the form of photographs and videos,
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can also be sent which may allow remote diagnoses based
on gross pathology.

Furthermore, a range of open-source mobile software
and tools such as EpiCollect (Aanensen et al., 2009;
EpiCollect) and Open Data Kit (ODK) (Anokwa et al.,
2009; Open Data Kit) allows for cheap, efficient and accu-
rate collection and dissemination of data. Both EpiCollect
and ODK allow for the generation of mobile-based forms
and for a range of data to be collected and stored on the
mobile device before being wirelessly transmitted to a cen-
tral database. Together with a map-based interface, such as
that located within spatialepidemiology.net (Anokwa et al.,
2009), data can be rapidly analysed, mapped and filtered
using Google Maps™ via both the web and mobile applica-
tions so that both office and field workers can display and
analyse data in real-time (Anokwa et al., 2009; Aanensen
et al., 2009). Real-time reporting and processing of disease
data, followed by rapid transmission of information to
decision makers, allows swift action to be taken against
possible outbreaks. For example, use of real-time reporting
and summarising of surveillance data via mobile devices
allowed a potential FMD outbreak in the Ngara district of
Tanzania to be rapidly contained (Mwabukusi et al., 2014).

Additional benefits of mobile-based forms include the
ability to customize voice-based questionnaires pro-
grammed into a smartphone or tablet computer which
allows questions to be administered in local languages or
dialects (Jandee et al., 2014) while programming the ques-
tionnaire to ask questions in sequence significantly
reduces the risk of missing data. Similarly, the use of
drop-down menus reduces the risk of data entry error
(Jandee et al., 2014). Moreover, time spent completing
smartphone-based questionnaire surveys is significantly
less than when completing paper-based surveys (King
et al., 2013; Anokwa et al., 2009; Jandee et al., 2014).
However, as availability of open-source mobile software
and tools increases – all differing with respect to accessi-
bility, visualization and cost – choosing the most appropri-
ate data-collection tool will depend largely on the type of
data being collected (Madder et al., 2012).

Although smart devices have overtaken simple mobile
phones restricted to sending voice calls or SMS messages,
when combined with applications such as GeoChat,
Ushahidi or RapidSMS, the technology can be highly effec-
tive. The Cambodian Ministry of Health uses GeoChat for
disease reporting and to send staff alerts in response to
potential outbreaks (Kamel Boulos et al., 2011).

Unfortunately, mHealth surveillance approaches are not
an automatic panacea to the problems associated with data
collection in resource-poor settings. The Southern African
Centre for Infectious Disease Surveillance (SACIDS;
Rweyemamu et al., 2013) used EpiCollect (Aanensen
et al., 2009) and ODK (Anokwa et al., 2009) to design an
mHealth surveillance strategy incorporating the human,
livestock, and wildlife sectors (Karimuribo et al., 2012;
Mwabukusi et al., 2014) but reported that for a mobile
technology-based disease surveillance system to be effec-
tive and sustainable it required three key elements: (i) par-
ticipatory epidemiological approaches; (ii) form-based
reporting; and (iii) resident ICT expertise at the discovery
end together with local support for database handling,
customized programming, trouble-shooting, and training
at the user end (Karimuribo et al., 2012; Mwabukusi
et al., 2014).

Although developing counties are the ideal focus for
mHealth data collection and disease control initiatives,
there are few published examples of such enterprises, par-
ticularly in the field of animal health. Successful mHealth
initiatives are more frequently documented in human
(Betjeman et al., 2013; Déglise et al., 2012; Shet and
Costa, 2011; Lee et al., 2011; Lozano-Fuentes et al., 2013;
Lozano et al., 2012) than in animal health, and in
developed (Raja et al., 2014) rather than developing
countries. However, practical applications of mobile device
use in animal disease control and surveillance in
developing countries have been described (Robertson
et al., 2010; Jean-Richard et al., 2014; Thinyane et al.,
2010; Mtema, 2013) and include enhanced reporting of
human rabies exposures at bite treatment centres in
Tanzania where mobile phone technologies allowed for
rapid communication between human and animal health
sectors to ensure follow up of animal cases (Mtema,
2013) and the collection of demographic data and move-
ment tracking of mobile pastoralists and their herds in
Chad (Jean-Richard et al., 2014). The real-time knowledge
on camp location and populations provided by such a
study facilitates health interventions, such as vaccination
delivery to both humans and animals, highlighting the
potential to develop One Health mHealth approaches.
Such an approach provides added value compared to
separate animal-human surveillance systems, especially
for zoonotic diseases.

However, as with any surveillance system, the success
of such efforts depends largely on the extent of local
buy-in at all levels, in particular those involved in feeding
information back to frontline workers and community
organisations; without an efficient two-way flow of infor-
mation the benefits of mHealth will be limited to having
made disease reporting more technologically advanced
(Madon et al., 2014).

2.3. Google Earth™ and remote sensing (RS) data

Compared with previous decades when the production
of paper-based disease atlases was limited by the expense
and inefficiency associated with producing something that
was effectively out of date almost before it was published,
the advent of interactive digital maps and virtual globes
such as Google Maps™ and Google Earth™ allows for easy
visualisation of disease data in real time as illustrated by
the integration of such digital platforms into an
ever-expanding number of animal and human-health pro-
jects (Table 3). The value of such technology in creating
effective information resources for decision makers is epit-
omised by Nature’s use of the platform to track the global
spatio-temporal spread of highly pathogenic avian influ-
enza (HPAI) H5N1 (Butler, 2006; Google Earth Avian Flu),
a project that won the Association of Online Publishers
(AOP) Use of a New Digital Platform Award in 2006. A list
of all current projects using Google Earth™ and Google
Maps™ can be found on theGoogle Earth Outreach™ web-
site. However, Google Earth™ is not only a visualization

http://spatialepidemiology.net


Table 3
A selection of internet-based animal and human-health projects using Google Maps or Google Earth™ to visualise disease data.

Project/Organisation (URL) Description

HealthMap and its mobile app Outbreaks Near Me; (http://www.
healthmap.org)

A global disease alert map which aggregates data from a wide range of
sources to deliver real-time intelligence on a broad range of emerging
infectious diseases. The app includes a participatory surveillance feature that
allows users to report outbreaks not yet shown on the map and be credited
for their contribution

Predict; (http://www.vetmed.ucdavis.edu/ohi/predict/index.cfm &
http://healthmap.org/predict)

Focuses on detection and discovery of zoonotic diseases at the wildlife-
human interface and through the HealthMap website provides a dynamic
visual display of surveillance data

Animal Disease Reporting System (TSN); (http://www.fli.bund.de/
en/startseite/institutes/institute-of-epidemiology/working-
groups/tierseuchennachrichten-tsn.html)

An electronic system for the registration of notifiable and reportable animal
diseases in Germany. Disease events can be visualized using Google Earth™
and Google Maps™

CONTRAST (Utzinger et al., 2013; Stensgaard et al., 2009) A multi-disciplinary research platform aimed at investigating control of
schistosomiasis

The Malaria Atlas Project (MAP); (http://www.map.ox.ac.uk) MAP uses innovative methods to produce a comprehensive range of malaria
maps and estimates to support effective planning of global malaria control at
national and international levels

Multi Locus Sequence Typing; (Databases: http://www.mlst.net
Maps: http://maps.mlst.net)

Provides basic epidemiological and molecular typing data for a number of
bacterial and fungal pathogens and maps the distribution of pathogen
genotypes
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tool; it can also be used to georeference spatial data in
situations that fall outside the commonplace.

Although the digital platform is useful for georeferenc-
ing remote locations, or those difficult to access, with suf-
ficient accuracy for it to be a viable alternative when other
forms of georeferenced data are unavailable – Carvalho
et al. (2012) used this method to georeference livestock
holdings in Brazil to within 31 m, – the real value of
Google Earth™ lies in its ability to georeference unconven-
tional locations. In informal settlements or rural areas in
developing countries, the lack of geolocation infrastructure
such as road names or house numbers precludes the use of
conventional mapping software for visualising disease
data. In such instances, Google Earth™ has proven invalu-
able; in a modern day reprise of John Snow’s 1856 cholera
investigation, use of the digital platform allowed Baker
et al. (2011) to map the spread of a typhoid outbreak in
Kathmandu – where street names are not used - and trace
the cause of the epidemic to low-lying public water
resources. Similarly, Wang et al. (2013) used the digital
platform to highlight apparent clustering of malaria cases
in rural China; information that proved useful in the
targeted allocation of limited resources.

Despite its usefulness as a visualisation tool, Google
Earth™ lacks the manipulation and analysis functions of
GIS software and researchers are therefore increasingly
combining the two approaches. In this way, human health
assessment programs have effectively created sampling
strategies and collected data on dengue fever (Chang
et al., 2009), schistosomiasis (Kun et al., 2012) and human
mortality (Galway et al., 2012) in areas with limited or no
geolocation infrastructure. For example, to evaluate how
proximity to a hospital influenced water quality percep-
tions and practices in Haiti, Wampler et al. (2013) com-
bined Google Earth™ and the geographic information
system software ArcGIS to generate a random sample of
households stratified by distance to the hospital. Using a
satellite image from EarthExplorer as a basemap in
ArcGIS, concentric 1 km buffer zones were created around
the hospital. The buffer polygons were then exported to
Google Earth™ where the high-resolution imagery allowed
individual households within each polygon to be accu-
rately identified and mapped using Google Earth™ push-
pins. These point locations were imported into ArcMap
where latitude and longitude were added to the dataset
and later uploaded into a handheld GPS which was used
to locate the households in the field for conducting field
surveys (Wampler et al., 2013).

However, remote sensing (RS) data is more often used
to provide spatial risk-factor information, particularly for
vector borne diseases such as Rift Valley fever (Lacaux
et al., 2007; Linthicum et al., 1999; Martin et al., 2007;
Pin-Diop et al., 2007; Sallam et al., 2013; Soti et al., 2013;
Tourre et al., 2008, 2009; Vignolles et al., 2009, 2010), blue-
tongue (Klingseisen et al., 2013; Purse et al., 2004; Tatem
et al., 2003; Guis et al., 2007; De La Rocque et al., 2004;
Capela et al., 2003), eastern encephalomyelitis virus
(Barrera et al., 2001; Freier, 1993) and African horse sick-
ness (Capela et al., 2003), where the disease vectors are
sensitive to changes in specific climatic and vegetation fac-
tors that can be captured usefully by satellite technology
(Rinaldi et al., 2006; Saxena et al., 2009). To extend the
usefulness of RS data for providing risk fact information,
image processing software such as ImageJ, can be used to
analyse the RS images. For example, to identify suitable
refuges for mosquitoes during hot, dry conditions, ImageJ
was used to analyse Google Earth™ satellite imagery
and the number of plants, total amount of vegetation
around a homestead and its percentage of the total area
were calculated and related to households that had
reported cases of malaria. In this way, ImageJ was used
to analyse freely-available Google Earth™ images of
malaria-endemic locations to identify potential risk factors
associated with vegetation cover (Ricotta et al., 2014).

http://www.healthmap.org
http://www.healthmap.org
http://www.vetmed.ucdavis.edu/ohi/predict/index.cfm
http://healthmap.org/predict
http://www.fli.bund.de/en/startseite/institutes/institute-of-epidemiology/working-groups/tierseuchennachrichten-tsn.html
http://www.fli.bund.de/en/startseite/institutes/institute-of-epidemiology/working-groups/tierseuchennachrichten-tsn.html
http://www.fli.bund.de/en/startseite/institutes/institute-of-epidemiology/working-groups/tierseuchennachrichten-tsn.html
http://www.map.ox.ac.uk
http://www.mlst.net
http://maps.mlst.net
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Recently, RS imagery has been used to predict areas of
highest risk for schistosomiasis infections in Kenya
(http://www.bbc.co.uk/news/science-environment-31 483
629). Using satellite imagery, the locations of suitable
waterbodies for the snail vector have been mapped and
compared with satellite imagery of human distribution,
to identify area of highest risk of infection.

2.4. Volunteered geographic information (VGI)

Volunteered geographic information (VGI) Goodchild,
2007; Goodchild and Li, 2012, also known as wikification
of GIS by the masses (Kamel Boulos et al., 2011) and
crowdsourced cartography, refers to ‘the harnessing of tools
to create, assemble, and disseminate geographic data
provided voluntarily by individuals’ (Goodchild, 2007). A
well-known example of VGI is OpenStreetMap (OSM), an
open, online, editable map of the world being created by
volunteers using a combination of local knowledge, GPS
tracks and aerial imagery. As an extension of the basic
community mapping effort, volunteers from HOT
(Geo-Wiki Project) travel the globe to create collaborative
maps of densely packed slums or remote villages, that
can be used by aid and development agencies when decid-
ing what infrastructure to build or in the event of a human-
itarian crisis. As mentioned in the introduction to this
paper, HOT played an important role in the 2014 West
Africa Ebola outbreak, rapidly mapping Guéckédou, a city
of around 250,000 people in southern Guinea, thereby pro-
viding field workers with crucial information they needed
to be able to assist with mapping the spatial distribution of
the disease and planning and implementing control efforts
(Hodson, 2014).

Other examples of crowdsourced cartography include
Geo-Wiki (Geo-Wiki Project), a global network of volun-
teers working to improve the quality of global land-cover
maps. The website allows volunteers to view land-cover
maps in real time, with Google Earth™ as a backdrop,
and to apply their local-area knowledge to determine
whether or not the classification is correct, and to amend
or update it if necessary. Within the main project are sub-
sidiaries such as Risk Geo-Wiki, AusCover Geo-Wiki and
Livestock Geo-Wiki, which also hosts the updated global
livestock distribution maps (Robinson et al., 2014). The
Global Geo-Referenced Field PhotoLibrary is a global repos-
itory of georeferenced field photos which allow land cover
changes to be tracked over time and provide ground truth-
ing for satellite imagery (Xiao et al., 2011).

Despite their usefulness in producing general maps, the
area in which VGI has so far proved most valuable is that of
crowdsourced disaster surveys where online volunteers
work from satellite imagery to identify buildings which
appear to be damaged or destroyed, and to create maps
of the disaster area by which aid workers can navigate.
This is an excellent example of ‘collective intelligence’
(Spielman, 2014), the premise being that, under the right
circumstances, collections of individuals are smarter than
even the smartest individuals in the group. Similarly, if
the collectively generated end-product is better than the
best individual contribution, then the aggregated is incred-
ibly valuable (Spielman, 2014); one of the reasons why the
most successful mapping projects often address a pressing
need (e.g. Haiti post-earthquake or Ebola outbreak in
Guinea) or concentrate on areas with poor geographic
coverage (e.g. slums) (Spielman, 2014).

However, these disaster surveys highlighted an impor-
tant limitation associated with using untrained volunteers
as, although the maps they created proved to be invalu-
able, damage assessments were poor (Zastrow, 2014) with
satellite judgements by HOT personnel corresponding with
a later ground survey only 36% of the time (Zastrow, 2014).
The question of VGI accuracy extends beyond that of disas-
ter situations and is particularly important when deciding
whether citizen scientists can provide information that is
of high enough quality to be used in formal scientific inves-
tigations. See et al. (2013) found that when using satellite
imagery to describe land cover and human impact on the
Geo-Wiki website, although there was little difference
between expert and non-expert responses when categoris-
ing degree of human impact, experts were better than
non-experts at identifying a range of land-cover types
(See et al., 2013). However, accuracy of VGI can be
improved by providing targeted training materials for vol-
unteers (e.g. providing volunteers with pre-disaster ima-
gery against which to compare current images (Zastrow,
2014), guidance on what features to look for (Zastrow,
2014; See et al., 2013) and instituting a continual learning
process by providing volunteers with feedback on their
contributions (See et al., 2013).

Unsurprisingly, not all crowdsourced information is of
equal quality; some data are of higher quality than others
just as some contributors are consistently better than
others (Haklay, 2010). Given that crowd sourced data are
of varying quality, when aggregating such data one has
to guard against regression to the mean. That is, a few
highly accurate or highly credible contributions should
not be degraded by being combined with many contribu-
tions of low quality, even if these exceptional contributions
are outliers (Spielman, 2014). This is aggravated by the fact
that participation in internet-based mapping systems is
highly skewed with a few contributors accounting for a
large proportion of contributions (Goodchild and Li,
2012; Sieber and Rahemtulla, 2010; Elwood et al., 2012).
Without effective means of aggregation maps will either
be shaped by the most active contributors, or map features
will simply reflect the average of contributions.

OSM works by assembling all volunteer data into a
patchwork map (Goodchild, 2007) which is in turn con-
verted into a single map by aggregating the data using
the following three review process; crowdsourced (other
users check contributions), social (a set of elite users adju-
dicate problems) and geographic (features are validated
based upon geographic context) (Goodchild and Li, 2012).
OSM contributions are aggregated primarily through
crowdsourced review following a last-in, first-out model;
users see only the most recent edit. Although this form of
aggregation relies heavily on trust and does not directly
leverage prior contributions, it has been shown that more
edits of an OSM feature generally leads to greater posi-
tional accuracy (Haklay, 2010). If conflicts arise, OSM uses
the social review process whereby a set of elite users adju-
dicate problems.

http://www.bbc.co.uk/news/science-environment-31%20483%20629
http://www.bbc.co.uk/news/science-environment-31%20483%20629
http://livestock.geo-wiki.org/
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As quality of VGI contributions vary, the addition of
robust measures of quality would be useful to indicate
the level of confidence associated with each piece of infor-
mation, and although traditional statistical concepts of
uncertainty and bias are hard to apply to VGI, other options
are available. For example, See et al. (2013) found that
when classifying land-cover, volunteer accuracy appeared
to be higher when responses for a given location were
more consistent and when the volunteers indicated higher
confidence in their responses, suggesting that these addi-
tional pieces of information could be used to develop asso-
ciated robust measures of quality (See et al., 2013).
Additional possibilities include the application of
Bayesian probability or Dempster-Shafer theory
(Eastman, 2009) to provide a measure of confidence.

2.5. Internet-based epidemic intelligence

Identification of outbreaks at their earliest stages – fol-
lowed by a rapid response – can substantially reduce the
impact of epidemics yet surveillance capacity for such
detection can be costly. The internet however is revolutio-
nizing how epidemic intelligence is gathered, particularly
in developed countries, allowing us to detect disease out-
breaks earlier than when using traditional surveillance
approaches, with the added bonuses of reduced costs and
increased reporting transparency. For obvious reasons
these approaches have, so far, focused on important
human diseases but there is potential for the development
of similar tools for surveillance of key animal diseases.

2.5.1. Mining primary internet-based data sources: big data
A huge volume of real-time information about infec-

tious disease outbreaks is to be found in various forms of
internet-based data streams (Brownstein et al., 2008;
Grein et al., 2000; Heymann and Rodier, 2001). Known as
internet-based big data, the term refers only partly to the
volume of data available for analysis and mainly to the fact
that access to the almost limitless body of internet data –
Google processes, on average, over 40,000 search queries
every second (Google Search Statistics) - allows us to learn
things that we could not when using smaller, limited
datasets (Cukier and Mayer-Schoenberger, 2013). Big data
are generally characterized by 3Vs: volume (relative
magnitude of dataset), velocity (rate at which new data
are generated) and variety (heterogenous structure of
dataset [e.g. text, video, audio]) (Gandomi and Haider,
2015). In addition, big data are also characterized by their
ability to convert many aspects of the world that have
never previously been quantified, into valuable data that
can be analysed; a process known as datafication (Cukier
and Mayer-Schoenberger, 2013).

However, there are several limitations associated with
big data, of which researchers accustomed to working with
smaller, conventional datasets, need to be aware (Cukier
and Mayer-Schoenberger, 2013). Firstly, when working
with big data researchers need to accept that the data will
not be pristine; however, working with vast quantities of
data of slightly questionable quality invariably trumps
using small amounts of very exact data. Secondly, big data
requires a move from causation to correlation, so rather
than trying to identify why something happens, big data
allows us to search mammoth amounts of information
about an event and anything associated with it, in order
to identify patterns that might help predict future occur-
rences. In the words of Cukier and Mayer-Schoenberger
(2013), ‘big data helps answer what, not why, and often
that’s good enough’.

If mined using internet-based tools, these big data are
often capable of detecting the first evidence of a disease
outbreak. Such systems are based on the assumption that
changes in information and communication patterns on
the Internet can act as early warning of changes in popula-
tion health (Wilson and Brownstein, 2009) and comprise
automated biosecurity intelligence text-mining systems
that continuously query, filter, integrate and visualise
infectious disease data from myriad primary or secondary
data sources. Two such sites that have received a lot of
attention are Google and the social-media platform,
Twitter.

The immediacy of Twitter offers health officials an
enormous advantage as both a surveillance and research
tool. For example, emergency departments in Boston
learned about the 2013 marathon bombings through
Twitter before announcements from conventional sources
such as the media or established emergency service com-
munication channels (Cassa et al., 2013). While terrorist
attacks are an extreme case, the general principle also
holds true for early warning of disease epidemics.
Similarly, in addition to posting information about their
health on social-media sites such as Twitter, data from
search-queries have been found to be highly predictive of
a wide range of population-level health events. For exam-
ple, trends in Google and Yahoo search-queries have been
used to predict influenza and dengue fever outbreaks
(Chan et al., 2011) and estimate the prevalence of Lyme
disease (Seifter et al., 2010). In addition, the relative imme-
diacy of internet-based surveillance systems also allows
for much quicker targeting of infection hot-spots in pan-
demic situations, as was done by companies such as
Google during the 2009 swine-flu pandemic (Chew and
Eysenbach, 2010; Signorini et al., 2011; St Louis and
Zorlu, 2012).

2.5.1.1. Search-term surveillance. Google’s Flu Trends (GFT)
(Ginsberg et al., 2009; Google Flu Trends) is perhaps the
most well-known of the search-term surveillance systems.
Combining data-mining of Google search queries and sta-
tistical modelling to provide a baseline indicator of the
trend or changes in the rate of influenza, GFT provides esti-
mates of weekly regional US influenza activity with a
reporting lag of only one day compared with the 1–2 week
delays associated with the CDC Influenza Sentinel Provider
Surveillance reports (Ginsberg et al., 2009). GFT has been
extended to include surveillance for dengue – Google
Dengue Trends (GDT) (Chan et al., 2011; Google Dengue
Trends) – and also been used to develop early warning sys-
tems for influenza epidemics (Pervaiz et al., 2012; Dugas
et al., 2013; Cook et al., 2011).

Implemented in 29 countries, with a focus on Europe
(Google Flu Trends; Eurosurveillance Editorial Team,
2009; Valdivia et al., 2009), GFT is currently best suited



K.B. Stevens, D.U. Pfeiffer / Spatial and Spatio-temporal Epidemiology 13 (2015) 15–29 23
to track disease activity in developed countries as the sys-
tem requires large populations of web-search users in
order to be most effective (Carneiro and Mylonakis,
2009) and a robust existing surveillance system to provide
data for calibration (Wilson et al., 2009). However, even in
countries where GFT is not yet officially available, such as
China (Kang et al., 2013) and South Korea (Cho et al., 2013),
the system has been shown to complement the country’s
traditional influenza surveillance systems although an
inability to search in the local languages remains a prob-
lem. In addition, analysis of the Google Trends’ search fre-
quency for the term ‘Ebola’ in Guinea, Liberia and Sierra
Leone showed a moderate-to-high correlation with epi-
demic curves for the outbreak in those respective countries
(Milinovich et al., 2015) suggesting that internet-based
surveillance systems have the potential to form an
early-warning system in developing, as well as in devel-
oped countries.

However, opinion is divided on the accuracy of GFT;
certain studies have shown its prevalence estimates to be
highly correlated with actual disease risk (Cook et al.,
2011; Wilson et al., 2009; Ortiz et al., 2011; Dugas et al.,
2012; Thompson et al., 2014) while others suggest GFT is
not as reliable as CDC estimates (Lazer et al., 2014; Olson
et al., 2013; Butler, 2013). The fact remains that GFT has
twice been caught out by the US annual flu season both
under (2009) and overestimating (2013) national flu peaks
(Butler, 2013). A similar approach to GFT which uses
Wikipedia searches to estimate US influenza prevalence,
was recently shown to be more accurate than GFT, per-
forming well through both the 2009 and 2013 epidemics
that tripped up GFT (McIver and Brownstein, 2014).
Similarly, GDT estimates have been shown to be highly
correlated with actual dengue incidence on a large
(national) spatial scale (Chan et al., 2011; Althouse et al.,
2011), yet results varied on a small (state) scale Gluskin
et al., 2014. Gluskin et al. (2014) attributed this variation
to the fact that GDT appears to work best in areas with
intense transmission, particularly where local climate is
well suited to this.

2.5.1.2. Crowdsourced tracking systems. Crowdsourced
tracking surveillance systems, such as data-mining of
Twitter posts, apply algorithms to filter tweets by specific
keywords, assess their relevance and accuracy, geo-tag
tweets and compare this information to other surveillance
data. For example, NowTrending uses Twitter to track dis-
ease trends at both regional and national levels, presenting
the most commonly tweeted diseases in a WordCloud.
These metrics are intended to serve as an indicator of
potential emerging health issues to spur further investiga-
tion and collection of direct measures of disease. In addi-
tion, recent studies demonstrate the value of combining
social media with routine epidemiological data to detect
or predict disease outbreaks, including influenza and cho-
lera (Chew and Eysenbach, 2010; St Louis and Zorlu,
2012; Broniatowski et al., 2013; Chunara et al., 2012;
Abrams et al., 2013) and to estimate weekly levels of
influenza-like illness (Signorini et al., 2011).

Although one of the main advantages of crowd-sourced
tracking surveillance systems is that of timeliness through
the availability of real-time, georeferenced data (Stoové
and Pedrana, 2014), a major limitation is the large amount
of unrelated ‘noise’ (Chew and Eysenbach, 2010;
Broniatowski et al., 2013; Denecke et al., 2013), although
Broniatowski et al. (2013) appear to have developed an
algorithm that can successfully distinguish relevant tweets
from noise. The lack of specificity caused by noise may be
less of an obstacle if the analysis is supported by trained
public health officials who can investigate signals as they
develop; Barboza et al. (2014) showed that systems includ-
ing human moderation were found to have a 53% higher
specificity after adjustment for other variables.

An additional weakness of Twitter is that its users do
not represent a random sample of the population; the
majority of Twitter users are aged between 18 and 50
(http://www.pewinternet.org/fact-sheets/social-networking-
fact-sheet/) and therefore, drawing conclusions without
considering the primary population demographic can be
problematic. Furthermore, these surveillance tools appear
to be most effective in developed countries; in Turkey a
comparison of flu-related tweets with real world records
showed no strong correlation (Bilge et al., 2012).
However, language does not appear to be an issue as
attested by a Portuguese study that successfully trained a
Naïve Bayes classifier to identify tweets mentioning flu or
flu-like illness or symptoms (Santos and Matos, 2014).

Despite limited evidence of internet-based surveillance
systems to detect emerging threats before more traditional
systems (Heymann and Rodier, 2001; Zeldenrust et al.,
2008; Cowen et al., 2006), their primary value currently
lies in their ability to act as an early-warning system
thereby lessening the consequences of an outbreak
(Wilson and Brownstein, 2009; Hartley et al., 2013). As
such, although novel surveillance systems are still a long
way from replacing traditional surveillance methods, they
can usefully complement conventional approaches
(Milinovich et al., 2014), to the extent that they have
become an important component of the influenza surveil-
lance scene. For example, WHO’s Global Outbreak Alert
and Response Network uses such data as part of its
day-to-day surveillance activities (Grein et al., 2000;
Heymann and Rodier, 2001) and is authorized to act on this
information (Wilson et al., 2008). In addition,
internet-based data sources exist outside traditional
reporting channels and as such, are invaluable to
public-health agencies that rely on the timely flow of infor-
mation across administrative borders.

However, search-term surveillance and crowdsource
tracking systems clearly require in-depth evaluation, espe-
cially with respect to false positives and gaps in coverage
and further work is necessary to determine how much of
a change from baseline warrants further investigation.

2.5.2. Mining secondary internet-based data sources
In contrast to the surveillance systems that mine the

primary data available through tweets and Google
searches, there are also a number of surveillance systems
that mine secondary data systems such as internet-based
media sites; for example BioCaster (Collier et al., 2008,
2006; BioCaster), EpiSPIDER (Keller et al., 2009; Tolentino
et al., 2007), HealthMap (Brownstein et al., 2008; Wilson

http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/
http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/
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and Brownstein, 2009; Keller et al., 2009; Brownstein et al.,
2010, 2009; Freifeld et al., 2008; HealthMap), ProMED-mail
(Zeldenrust et al., 2008; Cowen et al., 2006; Tolentino et al.,
2007; ProMED-mail) and Canada’s Global Public Health
Intelligence Network (GPHIN) Mykhalovskiy and Weir,
2006.

The value of such systems for flagging potential health
threats is evidenced by the fact that GPHIN identified the
2002 severe acute respiratory syndrome (SARS) outbreak
in Guangdong Province, China, more than two months
before the World Health Organisation’s (WHO) official
announcement (Mykhalovskiy and Weir, 2006). Similarly,
HealthMap identified news stories reporting a strange
fever in Guinea nine days before official notification of
the 2014 West Africa Ebola outbreak (Milinovich et al.,
2015). Developing country initiatives include India’s
Media Scanning & Verification Cell (MSVC) which scans
global and national media sources and flags unusual health
events, and has successfully flagged a number of outbreaks
before they were identified by traditional surveillance
systems (Sharma et al., 2012).

Although a comparison of BioCaster, EpiSPIDER and
HealthMap identified significant differences in their ability
to obtain relevant disease information (Lyon et al., 2012) –
owing mainly to differences in sources searched, languages
read, regions of occurrence and types of cases (Lyon et al.,
2012; Barboza et al., 2014) – running the three surveillance
systems in parallel has been shown to enhance early detec-
tion of disease anomalies over traditional surveillance
approaches (Barboza et al., 2014). However, such auto-
mated systems are not without problems; for example,
the location detection tool of all three systems assumed
that the number of articles plotted for a country reflected
the number of articles found about that country, which
was not necessarily true (Lyon et al., 2012).

2.5.3. Active participatory online surveillance
In addition to the passive internet-based surveillance

systems there are a number of active participatory surveil-
lance systems that capture voluntarily submitted symptom
data from the general public and can aggregate and com-
municate that data in near real-time thereby providing
unique disease information that is not available through
traditional surveillance sources. To date, such systems
exist only for human diseases with a focus on influenza.
Examples include Influenzanet, (FluTracking), Reporta, Flu
Near You, Dengue na Web and SaludBoricu.

These systems show a high degree of accuracy and
increased sensitivity and timeliness relative to traditional
healthcare-based systems (Wojcik et al., 2014) and have
proven useful for identifying risk groups, assessing disease
burden, evaluating vaccination coverage and effectiveness,
and informing disease transmission models (Marquet et al.,
2006; Paolotti et al., 2010, 2014; Van Noort et al., 2012;
Van Noort et al., 2007; Parrella et al., 2009; Friesema
et al., 2009; Brooks-Pollock et al., 2011). In addition, they
are cheaper and more flexible than traditional systems.
Nevertheless, they present important challenges including,
biases associated with the population that chooses to par-
ticipate, difficulty in adjusting for confounders due to
patients’ unwillingness to complete long surveys, and
limited specificity because of reliance on syndromic
disease definitions (Wojcik et al., 2014).
3. Conclusion

As a result of 21st century challenges, such as globaliza-
tion and global warming, health officials and researchers
are faced with increasingly complex and challenging dis-
ease problems which demand access to new and different
types of data in order to inform effective risk-based disease
surveillance and control strategies. The increasingly wide
range of available spatial disease data may allow us to
meet those challenges, assuming we see them as opportu-
nities rather than problems; opportunities to convert
aspects of the world that have never previously been quan-
tified into valuable data that can shine a new light on
health problems. Opportunities to develop timely and
cost-effective online disease surveillance systems for
developing nations that lack the necessary resources and
infrastructure to implement traditional surveillance sys-
tems. Opportunities to transpose novel human health
surveillance systems for use in animal health situations.
And opportunities to respond to the increasingly complex
disease problems facing us with state-of-the-art and
spatially-explicit, risk-based disease surveillance and
control strategies.
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