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Although technical problems of thyroid testing have largely been resolved by modern
assay technology, biological variation remains a challenge. This applies to subclinical
thyroid disease, non-thyroidal illness syndrome, and those 10% of hypothyroid patients,
who report impaired quality of life, despite normal thyrotropin (TSH) concentrations
under levothyroxine (L-T4) replacement. Among multiple explanations for this condition,
inadequate treatment dosage and monotherapy with L-T4 in subjects with impaired
deiodination have received major attention. Translation to clinical practice is difficult,
however, since univariate reference ranges for TSH and thyroid hormones fail to deliver
robust decision algorithms for therapeutic interventions in patients with more subtle thy-
roid dysfunctions. Advances in mathematical and simulative modeling of pituitary–thyroid
feedback control have improved our understanding of physiological mechanisms govern-
ing the homeostatic behavior. From multiple cybernetic models developed since 1956,
four examples have also been translated to applications in medical decision-making and
clinical trials. Structure parameters representing fundamental properties of the processing
structure include the calculated secretory capacity of the thyroid gland (SPINA-GT), sum
activity of peripheral deiodinases (SPINA-GD) and Jostel’s TSH index for assessment
of thyrotropic pituitary function, supplemented by a recently published algorithm for
reconstructing the personal set point of thyroid homeostasis. In addition, a family of
integrated models (University of California-Los Angeles platform) provides advanced
methods for bioequivalence studies. This perspective article delivers an overview of
current clinical research on the basis of mathematical thyroid models. In addition to a
summary of large clinical trials, it provides previously unpublished results of validation
studies based on simulation and clinical samples.

Keywords: thyroid hormones, homeostasis, SPINA-GT, SPINA-GD, set point, feedback control, thyroid’s secretory
capacity, sum activity of peripheral deiodinases
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INTRODUCTION

Thanks to the advent of sensitive assays for TSH and free thy-
roid hormones, the diagnosis of classical forms of overt hypothy-
roidism and hyperthyroidism has become a straightforward task
(1). Differential diagnosis may still be difficult, however, in some
cases with subclinical forms of thyroid failure (2, 3), hypothalamic
or pituitary dysfunction (4), and in situations of allostatic load,
e.g., starvation and non-thyroidal illness syndrome (NTIS) (2,
5, 6). A therapeutic challenge arises from the fact that current
standard treatment of hypothyroidism with levothyroxine (-T4)
fails to raise the quality of life (QoL) in patients to a level observed
in a normal population (7). Rather, they display symptoms
that are compatible with either hypothyroidism and hyperthy-
roidism, and a fraction of 5–15% of hypothyroid patients on -T4
replacement continue to complain about impaired QoL, despite
documented biochemical euthyroidism as defined by reference
intervals (7, 8).

Reasons for low health-related QoL in treated hypothyroidism
may include inadequate dosage of substitution therapy with -
T4, inadequate treatment modality, systemic sequelae of thyroid
autoimmunity, concomitant other autoimmune diseases, and psy-
chological phenomena, especially in form of a nocebo effect (7).
Additionally, low reported QoL might ensue from some selec-
tion bias, since in most countries thyroid disease is treated by
primary care physicians, who may refer “difficult cases” to aca-
demic centers, and since most functional thyroid disorders are
diagnosed because patients report elements of lower QoL (9–
11). According to the topic of this perspective article, we will
focus our subsequent considerations to the former two possible
mechanisms.

Inadequate treatment modality refers to potential adverse
effects of monotherapy with -T4, e.g. in a subgroup of hypothy-
roid patients, who are affected by reduced deiodination due to
polymorphic variants with lower enzyme activity (12, 13). In
this group, additional replacement with -T3 (and also, possibly,
low doses of other classical and non-classical thyroid hormones)
may be beneficial. Due to disruption of the thyroid-mediated
TSH–T3 shunt (14, 15), inefficient conversion of T3 from T4
may also arise in the subgroup of -T4-treated athyreotic patients
(16, 17). Narrow individual tolerance to hormone concentra-
tions around the personal set point of thyroid homeostasis
may also contribute to considerable variation in the treatment
response (18–21). These observations have stimulated a recent
debate, whether universal reference ranges for TSH and periph-
eral thyroid hormones are appropriate (14). Improved diagnos-
tic efficiency has also been observed using multivariate anal-
ysis rather than the conventional univariate approaches (22).
Based on recent research, we and others have propagated a more
comprehensive systems-based approach. This includes the use
of homeostatically defined structure parameters (6). Mathemat-
ical modeling of pituitary–thyroid feedback control has deliv-
ered functional insights beyond the scope of univariate reference
ranges (14, 20, 23, 24).

This perspective article gives an overview of current methodol-
ogy and established and possible future applications of modeling-
based diagnostic investigation in vivo.

APPLYING CYBERNETIC MODELS OF
THYROID HOMEOSTASIS

Over the past 60 years, a plethora of mathematical or simula-
tive models of pituitary–thyroid interaction has been published
(6, 14). Only a small subset, however, has been translated into
applications for clinical decision-making or research (beyond the
scope of modeling itself). These modeling platforms include the
logarithmic standard model of thyroid homeostasis (25), com-
partment analytical models, which were originally developed at
the Biocybernetics Laboratory of the University of California-Los
Angeles (subsequently referred to as UCLA platform) (26–31),
non-linear models combining Michaelis–Menten kinetics in the
feedforward path and non-competitive inhibition in the feedback
direction (aka MiMe-NoCoDI models) (32, 33), and a so-called
“minimal model” that combines Michaelis–Menten kinetics with
a logarithmic model of hypothalamic–pituitary function (20, 23,
24). Thanks to both sufficient empirical foundation and some
physiological justification, models derived from these platforms
are able to deliver meaningful measures of homeostatic func-
tion. Where biochemical knowledge is (or was) insufficient for
the development of well-justified models, simple equations, e.g.,
ratios, have been introduced to deliver an estimate for basic
processes of conversion or signal transduction.

APPLICATIONS OF THE UCLA PLATFORM

This family of models is based on separation of source and
sink organ components, implemented as at least three source
(organ) and three sink (distribution and elimination) subsystems.
Dating back in its origin to 1966 (34–36), it was successively
improved to incorporate current findings of basic and clini-
cal research. The most recent implementations of this platform
combine Michaelis–Menten kinetics (deiodination) with a three-
parameter time-delay model (thyroid), a negative exponential
model for feedback inhibition of TSH release, and a non-linear
description of plasma protein binding (26–31).

Models of this platform were applied to pharmacokinetic (PK)
and pharmacodynamic questions concerning substitution ther-
apy with -T4 (37). By mathematical modeling and computer
simulations, it could be demonstrated that for the majority of
hypothyroid patients standard -T4-only therapy should be suffi-
cient to reach normal triiodothyronine tissue concentrations (28,
29), but that substitutionwith -T3may be beneficial to reduce the
withdrawal period before 131I remnant ablation in patients with
thyroid cancer (26).

Additionally, this platform paved the way for the development
of an improved protocol for bioequivalence studies. Thyroid hor-
mones are critical dosage drugs, i.e., small changes in concentra-
tion may exert major metabolic effects, and the absorption rate is
highly sensitive to multiple influencing factors including meals,
coffee, concomitant medication, and gastrointestinal disease (38).
Moreover, -T4 preparations of different brands cannot be con-
sidered bioequivalent (39, 40). Traditionally, bioequivalence is
assessed by PK studies as required by the FDA and other regu-
latory authorities. Standard protocols are faced with the problem
that they ignore the existence of functional feedback in healthy
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volunteers, however. Models based on the UCLA platform deliv-
ered an improved baseline correction method that is less prone to
this kind of interference (27, 28).

MEASURES OF THYROID FUNCTION AND
PERIPHERAL HORMONE METABOLISM

Circulating T4 is actively taken up by cells and biologically acti-
vated by enzymatic monodeiodination before exerting (mostly
genomic) intracellular effects. The molar T3/T4 ratio may there-
fore serve as a simple measure of deiodinase activity and con-
version efficiency. Numerous studies investigated the T3/T4 ratio
in various conditions. They found it to be increased in iodine
deficiency (41) and other settings of hyperdeiodination (42–44) –
possibly accompanied by intrathyroidal hypoiodination and rep-
resenting an iodine recovery mechanism – and to be decreased in
NTIS (45, 46), central hypothyroidism ensuing from thyrotropic
insufficiency (47, 48), congenital thyroid hypoplasia (47), treat-
ment with propranolol (49) and, compared with cases of true
hyperthyroidism, in the acute phases of postpartum thyroid dys-
function, subacute, and painless thyroiditis (50–53). It is increased
in Graves’ disease compared to multinodular toxic goiter and
toxic adenoma (51) and decreased in athyreotic patients receiving
substitution therapy with -T4 (54). An observation study found a
negative correlation of T3/T4 ratio with age and positive correla-
tion with serum selenium concentration (55). A report on strong
negative correlation between FT4 index and T3/T4 ratio remains
questionable, since the results were not corrected for spurious
correlations (56).

Other measures related to conversion are FT3/reverse T3 (rT3)
ratio, an estimate for the proportion of step-up to step-down
deiodination, and 3,5-diiodothyronine (3,5-T2)/FT3 ratio. The
former parameter is decreased in NTIS (TACITUS), while the
latter is increased (57).

However, the simple ratios are conceptually incompatible with
known kinetic properties of enzyme-mediated processes, as they
wrongly assume linear relationships (6). Reference ranges for
ratios are also more difficult to define than for non-fractions
(58). These inherent deficiencies made it necessary to derivemore
robust structure parameters that describe the behavior of transfer
elements in homeostatic models (33, 59). The novel parameters
are based on the MiMe-NoCoDI platform, i.e., Michaelis–Menten
functions and PK data to deliver a structure parameter inference
approach (SPINA) that provides non-linear estimates of signal
transduction (32).

To implement this approach, we estimated the sum activity
of peripheral deiodinases (ĜD or SPINA-GD), which reflects
the maximum stimulated activity of step-up deiodination. It is
calculated with

ĜD =
β31 (KM1 + [FT4]) (1 + K30[TBG]) [FT3]

α31[FT4]

from equilibrium concentrations of FT4, FT3, and PK constants
(Table 1) (32, 60). A simpler version employs the concentration
of total T3 with

ĜD =
β31 (KM1 + [FT4]) [TT3]

α31[FT4]
.

TABLE 1 | Standard parameters used by the equations for SPINA-GT,
SPINA-GD, and Jostel’s TSH index (6, 32, 60).

Symbol Explanation Value

αT Dilution factor for thyroxine 0.1 L−1

βT Clearance exponent for T4 1.1e–6 s−1

DT EC50 for TSH 2.75mIU/L
K41 Dissociation constant of T4 at thyroxine-binding globulin 2e10 L/mol
K42 Dissociation constant of T4 at transthyretin 2e8 L/mol
α31 Dilution factor for triiodothyronine 0.026 L−1

β31 Clearance exponent for T3 8e−6 s−1

KM1 Dissociation constant of type 1 deiodinase 500 nmol/L
K30 Dissociation constant of T3 at thyroxine-binding globulin 2e9 L/mol
[TBG] Standard concentration of thyroxine-binding globulin 300 nmol/L
[TBPA] Standard transthyretin concentration 4.5μmol/L
β Correction coefficient of logarithmic model 0.1345

Dilution factors are defined as the reciprocal of apparent volume of distribution (VD).

The reference range for SPINA-GD is typically between 20
and 60 nmol/s (57), with some dependence on the assays used.
Since the dissociation constant of type 1 deiodinase is beyond
physiological plasma concentrations of FT4, SPINA-GD is nearly
linear in the euthyroid range, so that it has similarities to theT3/T4
ratio. Its non-linear properties are advantageous especially in cases
of high FT4 concentrations.

The thyroid’s secretory capacity (ĜT or SPINA-GT), also
referred to as thyroid output or thyroid capacity, provides an
estimate for the maximum secretion rate of the thyroid gland
under stimulated conditions. It is defined with

ĜT =
βT (DT + [TSH]) (1 + K41[TBG] + K42[TBPA]) [FT4]

αT[TSH]

as a function of equilibrium concentrations of TSH, free T4, and
constants or measured values for dissociation, protein binding,
distribution, and elimination (Table 1) (32, 60). A simpler version
utilizes total T4 concentration with

ĜT =
βT (DT + [TSH]) [TT4]

αT[TSH]
.

The reference range is usually between 1.4 and 8.7 pmol/s (57).
In silico evaluation with Monte Carlo simulations demon-

strates that both SPINA-GT and SPINA-GD can be sufficiently
reliably estimated, despite limited accuracy of laboratory assays
(Figures 1A,B). In vivo validation confirmed that SPINA-GT
is able to clearly differentiate between euthyroidism and func-
tional thyroid disorders of primary origin (32, 61, 62). How-
ever, unlike TSH, it is unaffected by hypothalamic–pituitary dys-
function (Figure 1C; Table S1 in Supplementary Material). This
translates to high specificity in thyroid disorders of secondary
or tertiary origin. Physiologically, SPINA-GD correlates with the
conversion rate of slow tissue pools (Figure 1D), as determined by
isotope-based measurements in healthy volunteers (63).

SPINA-GT and SPINA-GD have been validated in numerous
clinical trials. In a retrospective comparison with normal controls,
SPINA-GT was significantly elevated in patients with toxic ade-
noma, Graves’s disease, and even euthyroid diffuse and nodular
goiter and significantly reduced in autoimmune thyroiditis (32).
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FIGURE 1 | (A,B) Reliability of SPINA-derived parameters is higher than that of measured hormone concentrations. Shown are results of Monte Carlo evaluation of
SPINA-GT and SPINA-GD based on simulated imprecise hormone assays. Hormone concentrations were modeled in SimThyr 4.0 (64) with different pre-defined
values for GT and GD, respectively. Subsequently, absolute hormone levels were converted to measurements by means of an S script (see supplementary code for
an introductory example) that injected additive and multiplicative noise, in order to get vendor-reported concentration-dependent coefficients of variations (CV) (65,
66). The lines show mean±SD of hormone concentrations predicted by structure parameters calculated from simulated noisy measurements. CVs as markers for
measurement reliability (67) of SPINA-GT and SPINA-GD are below 10% in all cases, although CVs of corresponding hormone assays exceed 20% in low
concentrations. (C) SPINA-GT is sensitive for thyroid disorders of primary origin and specific with respect to secondary dysfunction. The plot shows distribution of
hormone concentrations in certain primary and secondary thyroid conditions compared to normal percentiles of SPINA-GT. The green crossing rectangles define
univariate reference ranges for TSH and FT4, respectively. The purple lines represent FT4 concentrations at the 2 and 97% percentiles of SPINA-GT. Data from
RUBIONERVE (registration number 4905-14 at RUB ethics committee) and NOMOTHETICOS studies (UTN U1111-1122-3273, ClinicalTrials.gov ID NCT01145040).
(D) SPINA-GD is an estimate for deiodination. Shown is correlation between SPINA-GD and conversion rate in slow tissue pools. Data from Pilo et al. (63).

In the same study, it had a higher specificity for hyperthyroidism
in toxic adenoma than TSH, FT4, or FT3 concentrations (32). A
small trial with 20 healthy volunteers revealed the re-test reliability
of SPINA-GT to be higher than that of every other parameter (6,
32). SPINA-GT was also shown to correlate with thyroid volume
(32) and creatinine clearance (68).

Multiple trials demonstrated SPINA-GD to be reduced in NTIS
(57, 69–71). One of these trials also reported that SPINA-GD
predicts postoperative atrial fibrillation and correlates to age, total
atrial conduction time (PA-TDI interval), as well as to concentra-
tions of B-type natriuretic peptide (BNP) and 3,5-T2 (57). Two
large trials together covering >3,500 participants independently
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revealed SPINA-GD to correlate with TSH concentrations and
to be significantly reduced after initiation of substitution therapy
with -T4 (16, 57, 72). Strong correlation with TSH levels seems
to depend on the presence of residual thyroid tissue, since it was
preserved in patients with autoimmune thyroiditis, but lacking
in a cohort with thyroid cancer after surgery and radioiodine
ablation (17). Conversely, FT3 concentrations correlated with -
T4 supply in treated cancer patients, while they remained constant
over a broad range of SPINA-GT or -T4 dosage in groups with
remaining thyroid tissue. These observations suggest the existence
of a thyroid-mediated TSH–T3 shunt, which might represent a
compensatory mechanism, mitigating the effects of decreasing
thyroid output in onset hypothyroidism (15, 17). In patients
on -T4 replacement therapy, SPINA-GD was an independent
predictor of -T4 dose (73).

If confirmed by sufficiently powered clinical trials, possible
future applications of the SPINA methodology might include dif-
ferential diagnosis of primary functional thyroid disorders from
dysregulations of secondary or tertiary origin or from thyrotropic
adaptation, i.e., transient alterations of TSH concentrations in
cases of NTIS (5, 60), screening for iodine deficiency, and identifi-
cation of patients who would benefit from additional substitution
therapy with -T3 (12, 13).

ESTIMATED PARAMETERS FOR
PITUITARY FUNCTION

Jostel’s TSH index (TSHI) was introduced as a quantitativemarker
for pituitary thyrotropic function (74). Based on the logarithmic
standard model of thyroid homeostasis (25), it is calculated as

TSHI = ln([TSH]) + β[FT4]

from measured concentrations of TSH and free T4 and a cor-
rection coefficient β (Table 1). The TSHI has been calibrated
in a large sample of >9,500 subjects with and without anterior
pituitary insufficiency. A z-transformed version of the parameter
was defined as standardized TSH index (sTSHI) that results with

sTSHI =
TSHI − 2.7

0.676

from mean (2.7) and SD (0.676) of the TSHI in a normal popula-
tion. Accordingly, its reference range is between−2 and+2. In the
original validation study, gonadotropic insufficiency and lower
peak concentrations of growth hormone and cortisol in pituitary
stimulation tests were associated with significantly diminished
TSHI (74). Recently, it was demonstrated that the TSHI is also
reduced in patients with NTIS and thyrotropic adaptation (69).

Another estimate for thyrotropic function, the thyrotroph thy-
roid hormone resistance index (TTSI, also referred to as thy-
rotroph thyroxine resistance index or TT4RI), results with

TTSI =
100[TSH][FT4]

lu

from equilibrium concentrations of TSH and free T4 and the
upper limit of the reference interval of FT4 (lu) (75). This

screening parameter is elevated in cases of resistance to thyroid
hormone due to mutations in the THRB gene (RTH Beta, Refetoff
syndrome) (75). It may also be a valuable marker for monitoring
central response to substitution therapy with triiodothyroacetate
(TRIAC) inRTHbeta (76). In a large cohort of twin pairs TTSIwas
strongly influenced by genetic factors (77). A variant of the TTSI
(without correction for the upper limit of the reference range)
was significantly increased in offspring from long-lived siblings
compared to their partners (78). This observation suggests slight
resistance to thyroid hormone to be beneficial with respect to
longevity.

RECONSTRUCTING THE SET POINT OF
THYROID HOMEOSTASIS

Intra-individual variation of TSH and T4 concentrations is con-
siderably lower than inter-individual variation (18, 21). This
observation gave rise to the set point theory of thyroid home-
ostasis, i.e., to the assumption that serum levels of TSH and FT4
are controlled to match a personal, genetically encoded reference.
The region around the individual set point is the obvious target
for substitution therapy with -T4. Unfortunately, however, the
location of the set point is unknown and inaccessible in the situa-
tion of hypothyroidism (6, 19). It may also vary in thyroid health,
-T4 treatment (79) and NTIS/TACITUS (2, 5, 80, 81). Recently,
an algorithm was published that allows for reconstructing the set
point, even in an open-loop situation (20, 23, 24). The method
is based on the minimal model of thyroid–pituitary interaction
and on the observation that, in healthy volunteers, the set point
is located in the region of the highest curvature of the pituitary
response curve. It requires a minimum of two TSH–FT4 pairs,
which were obtained with a latency of at least 4 weeks. Then, two
parameters, S (multiplier) and ϕ (slope of exponential function),
are determined, either algebraically or via regression, to fit the
negative exponential function

[TSH] = Se−ϕ[FT4]

to the data. The next step is to find the root of the third derivative
of the pituitary function, where the curvature

K =
ϕ2Se−ϕ[FT4](

1 + ϕ2S2e−2ϕ[FT4]
)3�2

is at its maximum. From this, the set point components for FT4
and TSH can be obtained with

[FT4]SP =
ln

(
ϕS

√
2
)

ϕ

and
[TSH]SP =

1
ϕ
√

2
.

The algorithm has been validated in a small trial, which
revealed in all examined cases a goodness-of-fit between 95 and
99% (20). It has still not been investigated, however, if a set
point-based dose titration regime leads to a better QoL compared
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with the standard strategy on the premise of population-derived
reference ranges.

CLOSING REMARKS AND FUTURE
PERSPECTIVES

In this brief overview, we have described several calculated param-
eters derived from mathematical modeling that have emerged
from recent clinical studies, as helpful tools in defining thyroid
function. By extending the classical concept of separate mea-
surements of thyroid hormone parameters these markers add
new qualitative and quantitative dimensions to the evaluation of
thyroid homeostasis.

Multivariate methods should improve diagnostic discrimi-
nation, as they account for interrelationships between thyroid
parameters and permit determination of personal set points
that are more narrowly defined than population-based reference
ranges. Measuring conversion efficiency may particularly benefit
the subgroup of patients with reduced QoL, despite normal TSH
concentrations.

The use of structure parameters offers a more integrated and
systemic view and has already delivered important insights into
the physiology of pituitary–thyroid feedback control. Clinical
applications are still experimental at present, and more trials are
required to prove their utility for medical decision-making.
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