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Abstract

Cervical cancer (CC) patients have a poor prognosis due to the high recurrence rate. However, there are still no effective
molecular signatures to predict the recurrence and survival rates for CC patients. Here, we aimed to identify a novel signature
based on three types of RNAs [messenger RNA (mRNAs), microRNA (miRNAs), and long non-coding RNAs (lncRNAs)]. A total
of 763 differentially expressed mRNAs (DEMs), 46 lncRNAs (DELs), and 22 miRNAs (DEMis) were identified between recurrent
and non-recurrent CC patients using the datasets collected from the Gene Expression Omnibus (GSE44001; training) and The
Cancer Genome Atlas (RNA- and miRNA-sequencing; testing) databases. A competing endogenous RNA network was
constructed based on 23 DELs, 15 DEMis, and 426 DEMs, in which 15 DELs, 13 DEMis, and 390 DEMs were significantly
associated with disease-free survival (DFS). A prognostic signature, containing two DELs (CD27-AS1, LINC00683), three
DEMis (hsa-miR-146b, hsa-miR-1238, hsa-miR-4648), and seven DEMs (ARMC7, ATRX, FBLN5, GHR, MYLIP, OXCT1,
RAB39A), was developed after LASSO analysis. The built risk score could effectively separate the recurrence rate and DFS of
patients in the high- and low-risk groups. The accuracy of this risk score model for DFS prediction was better than that of the
FIGO (International Federation of Gynecology and Obstetrics) staging (the area under receiver operating characteristic curve:
training, 0.954 vs 0.501; testing, 0.882 vs 0.656; and C-index: training, 0.855 vs 0.539; testing, 0.711 vs 0.508). In conclusion,
the high predictive accuracy of our signature for DFS indicated its potential clinical application value for CC patients.
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Introduction

Cervical cancer (CC) is one of the most common
gynecological cancers worldwide. According to statistics
using the Global Cancer Observatory database, there
were approximately 570,000 cases of CC in 2018 (1).
Among all countries, China contributed with the highest
incidence burden (106,430 cases) (1). Although great
advances have been made in the therapeutic options
(such as surgery, radiotherapy, and chemotherapy), a
considerable proportion of patients can develop relapse or
metastasis, which may be the possible reason associated
with a high mortality-to-incidence ratio in CC (about 30–
50%) (1,2). Hence, how to early screen out patients at a
high risk of poor prognosis may be a significant issue for
gynecologists.

Accumulating evidence has demonstrated that the
advanced International Federation of Gynecology and

Obstetrics (FIGO) stage correlates with a high risk of
recurrence and shorter length of 5-year survival (3). Thus,
the FIGO staging system has been well recognized
as a prognostic biomarker for CC in clinically. However,
some studies indicate that the prognostic effectiveness of
the FIGO staging system should be improved because
survival differences could also be observed in patients
within the same stage (4). Thus, identification of a more
effective prognostic biomarker has become the main
research focus. With the recent developments in sequenc-
ing technology and bioinformatics, identification of molec-
ular biomarkers has gained much attention. Some molec-
ular biomarkers were proven to have better predictive
abilities than the FIGO staging system for survival in CC
patients. For example, Zhao et al. (5) identified a prog-
nostic signature that consisted of five protein-encoding
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messenger RNAs (mRNAs) (ITM2A, DSG2, SPP1, EFNA1,
and MMP1) and found that only the molecular signature
(Po0.05), but not the FIGO staging (P40.05), was an
independent indicator for the prediction of survival in CC
patients. This conclusion was also seen in a study by Ju
et al. (6) in which a five-mRNA signature (GALNTL6, ARSE,
DPAGT1, GANAB, and FURIN) was shown to predict
disease-free survival (DFS). Both univariate and multivariate
Cox regression analyses revealed that a three-microRNA
(miRNA) signature (miR-145, miR-200c, and miR-218-1)
was significantly associated with overall survival (OS) of CC
patients, while the FIGO staging was reported to be a
significant prognostic factor only in univariate analysis (7).
Mao et al. (8) screened nine long non-coding RNAs (lnc
RNAs) (ATXN8OS, C5orf60, DIO3OS, EMX2OS, INE1, KC
NQ1DN, KCNQ1OT1, LOH12CR2, and RFPL1S) together
as a single prognostic signature and demonstrated the
predictive accuracy of this lncRNA signature for DFS was
higher than that of the FIGO staging (area under the ROC
(receiver operating characteristic) curve (AUC): training
dataset, 0.793 vs 0.537; validation dataset, 0.780 vs 0.529;
testing dataset, 0.742 vs 0.589). Based on the Harrell’s
Concordance Index (C-index), Cheng et al. (9) also showed
the prediction ability of the six-lncRNA signature (LINC00619,
FGF13-AS1, EMX2OS, WT1-AS, C9orf147, and LINC00908)
for survival was higher than that of the FIGO staging (0.648 vs
0.516). However, the prediction power of the known signature
remains relatively low (AUCo0.8 in most of studies) (6,8–10),
suggesting other candidate prognostic predictors are neces-
sary for CC.

In recent studies on other cancers, we noticed that some
scholars recommended integrating various RNA types to
identify prognostic biomarkers. Also, they demonstrated that
the multi-RNA-based classifier model was more effective to
separate the survival of patients with different risks than
lncRNA, miRNA, or mRNA alone (11,12), which has not been
reported for CC patients. Therefore, the goal of this study was
to develop a novel lncRNA-miRNA-mRNA prognostic signa-
ture to predict recurrence and DFS for CC patients.

Material and Methods

Data resource
One microarray dataset was downloaded from the

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/) database under accession number GSE
44001 (13) on April 8, 2019 (ID seen in Supplementary
Table S1). GSE44001 dataset was run on the platform of
Illumina HumanHT-12 WG-DASL V4.0 R2 expression
beadchip (GPL14951, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GPL14951). GSE44001 included 300
CC samples with recurrence (n=38, recurrent; n=262,
non-recurrent) and DFS information and thus was set as
the training dataset. During the corresponding period,
matched RNA sequencing (RNA-seq; level 3, fragments
per kilobase of exon per million fragments mapped value),

miRNA-seq (level 3), and clinical data (recurrence status:
n=28, recurrent; n=211, non-recurrent; and DFS time) of CC
samples (ID seen in Supplementary Table S1) were also
obtained from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) database. TCGA data were obtained
on the platform of Illumina HiSeq 2000 RNA Sequencing
(https://tcga-xena-hub.s3.us-east-1.amazonaws.com/down
load/probeMap%2Fhugo_gencode_good_hg19_V24lift37_
probemap) and selected as the testing dataset.

Identification of differentially expressed RNAs
Gene symbol annotation was performed using HUGO

Gene Nomenclature Committee (HGNC; http://www.gene
names.org/) to identify gene classes (mRNAs, lncRNAs,
and miRNAs). The RNAs with the median expression level
of zero or only annotated in one dataset were deleted.
The Linear Models for Microarray Data (LIMMA) package
(v3.34.7; https://bioconductor.org/packages/release/bioc/
html/limma.html) for R was used for differential analysis.
|log2FC(fold change)|40.5 and false discovery rate (FDR)
o0.05 were defined as the threshold value to identify
significantly differentially expressed mRNAs (DEMs), lnc
RNAs (DELs), and miRNAs (DEMis) between recurrent
and non-recurrent samples of the GSE44001 dataset. The
heatmap of DEMs, DELs, and DEMis was generated
using the R packages of ‘‘pheatmap’’ (v1.0.8; https://cran.
r-project.org/web/packages/pheatmap).

Construction of a competing endogenous RNA
(ceRNA) regulatory network

The ceRNA network was constructed based on the
theory that lncRNAs can act as miRNA sponges and com-
pete for miRNA binding to protein-coding mRNAs, influenc-
ing the negative regulation of miRNAs on the expression of
mRNAs (14). Based on this hypothesis, the lncRNA-
miRNA-mRNA ceRNA network was constructed following
the steps below: 1) DIANA-LncBase (v2.0; http://carolina.
imis.athenainnovation.gr/diana_tools/web/index.php?r=lnc
basev2/index-predicted) was used to screen interactions
between DELs and DEMis. Only the pairs with the oppo-
site expression in DELs and DEMis were left; 2) starBase
(v2.0; http://starbase.sysu.edu.cn/) database was used to
retrieve the interactions between DEMis and DEMs. The
starBase database included the prediction results from
five databases (targetScan, picTar, RNA22, PITA, and
miRanda). The interaction pairs predicted by any one
database were included. Only the pairs with the opposite
expression in DEMis and DEMs were retained; 3) lncRNA-
miRNA-mRNA interaction axes were selected according
to the intersected miRNAs interacted with DEMs and
DELs; and 4) the ceRNA network was visualized using
Cytoscape (v3.6.1; www.cytoscape.org/).

Functional enrichment analysis
To understand the underlying functions of DEMs in

the ceRNA network, Kyoto Encyclopedia of Genes and
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Genomes (KEGG) pathway and Gene Ontology (GO)
biological process enrichment analyses were performed
using the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) (v6.8; http://david.abcc.ncifcrf.
gov). A P-value o0.05 served as the cut-off point.

Establishment of a prognostic signature based on the
ceRNA network genes

Univariate Cox regression analysis was performed to
analyze the association between DEMs/DELs/DEMis in
the ceRNA network and DFS using ‘‘survival’’ package in
R (v2.41-1; http://bioconductor.org/packages/survivalr/).
DEMs/DELs/DEMis that were significantly related with
DFS (log-rank P-valueo0.05) were entered into the multi-
variate Cox regression analysis to confirm their indepen-
dence. The selected feature genes by the multivariate
analysis (log-rank P-value o0.05) were used to fit a least
absolute shrinkage and selection operator (LASSO)-Cox
proportional hazards model (Cox-PH) model to further obtain
an optimal gene panel using the Penalized package (v0.9-
5; http://bioconductor.org/packages/penalized/). The risk
score was built according to the expression levels of the
RNAs (ExpRNAs) and their corresponding LASSO coefficients
(
P

bRNAs): Prognostic risk score=
P

bRNAs � ExpRNAs.
Based on the median risk score, CC patients in the

training dataset (GSE44001) were divided into two groups:
the ‘‘low-risk’’ group and the ‘‘high-risk’’ group. Kaplan-
Meier (K-M) survival curves were conducted using the
‘‘survival’’ package in R to identify the DFS differences
between two groups. The ROC curve within 5 years was
plotted and the AUC was computed to estimate the
predictive ability of the risk score. To demonstrate the
predictive accuracy of the risk score better than the FIGO
staging for DFS prediction, several analyses were per-
formed, including stratification with K-M curves, estimation
of AUC for time-dependent ROC curves, and calculation
of C-index for various survival models using survcomp
package in R (http://www.bioconductor.org/packages/
release/bioc/html/survcomp.html). The robustness of the
prognostic signature for predicting DFS in CC patients was
subsequently assessed in the testing dataset (TCGA).

Results

Identification of DEMs, DELs, and DEMis
By HGNC annotation, 11,187 mRNAs, 249 lncRNAs,

and 229 miRNAs were found in the GSE44001 dataset.
According to the cut-off threshold (FDRo0.05 and
|log2FC|40.5), 763 DEMs (409 upregulated and 354
downregulated), 46 DELs (3 upregulated and 43 down-
regulated), and 22 DEMis (16 upregulated and 6 down-
regulated) were identified by comparing recurrent and
non-recurrent CC samples (Figure 1A and B; Supplemen-
tary Table S2). The heat map showed that these DEMs,
DELs, and DEMis can provide a clear separation for the
recurrent and non-recurrent samples (Figure 1C).

Construction of a ceRNA network
A total of 63 interaction pairs between 23 DELs and 15

DEMis were predicted by the DIANA-LncBase database
(such as CD27-AS1-hsa-miR-1275, LINC00683-hsa-miR-
146b, EMX2OS-hsa-miR-1238/4648, LINC00265-has-miR-
128-1/604/1304, EMX2OS-hsa-miR-29b-1), while 1,038
paired interactions between 15 DEMis and 426 DEMs
were predicted by the starBase database [such as
hsa-miR-1275-ANKRD6 (ankyrin repeat domain 6), hsa-
miR-595/4648-GHR (growth hormone receptor), hsa-miR-
1238-FBLN5 (fibulin 5), hsa-miR-146b-ACAP2 (ArfGAP
with coiled-coil, ankyrin repeat and PH domains 2), has-
miR-128-1-ATRX (ATRX chromatin remodeler), hsa-miR-
29b-1-MYLIP (myosin regulatory light chain interacting
protein), hsa-miR-604-ARMC7 (armadillo repeat contain-
ing 7)/OXCT1 (3-oxoacid CoA-transferase 1), and hsa-miR-
1304-RAB39A (RAB39A, member RAS oncogene family)].
According to the intersected miRNAs, an lncRNA-miRNA-
mRNA ceRNA network was constructed (Figure 2).

Functional enrichment analysis
To further understand the functions of DEMs in the

ceRNA network, functional enrichment analysis was per-
formed. The results showed that 16 GO biological process
terms were enriched, including GO:0033554Bcellular
response to stress (ATRX), GO:0009967Bpositive regula-
tion of signal transduction (GHR), GO:0006259BDNAmetab-
olic process (ATRX), GO:0006974Bresponse to DNA
damage stimulus (ATRX), GO:0010647Bpositive regula-
tion of cell communication (GHR), GO:0051336Bregula-
tion of hydrolase activity (ACAP2), and GO:0006928B
cell motion (MYLIP) (Figure 3; Table 1). Also, four KEGG
pathways were enriched, such as hsa04144:Endocytosis
(ACAP2) (Figure 3; Table 1).

Construction of a prognostic signature
Univariate Cox regression analysis detected that

among 464 RNAs in the ceRNA network, 418 were signif-
icantly associated with DFS, including 390 DEMs
(i.e., ANKRD6, WWP1, ACAP2), 15 DELs (i.e., EMX2OS,
LINC00265), and 13 DEMis (i.e., hsa-miR-1275, has-miR-
128-1, hsa-miR-29b-1, hsa-miR-604) (Supplementary
Table S3). Of them, 29 (22 DEMs, two DELs, and five
DEMis) were screened as the independent predictors of
DFS by the multivariate Cox regression analysis. LASSO
Cox regression model analysis further showed that 12 of
these 29 RNAs were the optimal prognostic panel
(2 DELs: CD27-AS1, LINC00683; 3 DEMis: hsa-miR-146b,
hsa-miR-1238, hsa-miR-4648; 7 DEMs: ARMC7, ATRX,
FBLN5, GHR, MYLIP, OXCT1, RAB39A) (Table 2). Hence,
the risk score was built based on the expression of these
12 signature genes and their LASSO coefficients: risk
score=(–0.2223297) � ExpCD27-AS1 + (0.403561456) �
ExpLINC00683 + (1.275309117) � Exphsa-miR-146b + (–2.40
8082103) � Exphsa-miR-1238 + (–0.574392794) � Exphsa-
miR-4648 + (0.848557903) � ExpARMC7 + (0.868981201) �
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ExpATRX + (–0.573439111) � ExpFBLN5 + (–0.457116
812) � ExpGHR + (–0.56842456) � ExpMYLIP + (0.8729
44103) � ExpOXCT1 + (0.777716643) � ExpRAB39A.

The risk score was calculated for each sample in the
training set. According to the median risk score, patients
were divided into high- (n=150) and low-risk (n=150)
groups (Supplementary Table S1). The recurrence rate of
the patients in the high-risk group was significantly higher
than that in the low-risk group (34/150, 22.7% vs 4/150,
2.7%; chi-squared=27.029, Po0.001). K-M survival curve
analysis showed that the DFS time was significantly
shorter in the high-risk group relative to the low-risk group
[hazard ratio (HR)=9.356; 95%CI: 3.319–26.37; P=4.239
e-08] (Figure 4A). ROC survival curve analysis revealed
that this 12-gene signature exhibited a high accuracy to
predict the 5-year DFS of CC patients, with the AUC of

0.954 (Figure 4B). Stratification analysis demonstrated
that the DFS of patients with the same stage (1 or 2) could
be significantly distinguished when they were divided into
high- and low-risk groups by the risk score (Figure 5A and
B). Time-dependent ROC curve (AUC=0.954 vs 0.501)
and C-index (0.855 vs 0.539) analyses further confirmed
that the predictive accuracy of the risk score was better
than the FIGO staging for DFS prediction (Figure 6A and
C). Furthermore, we also evaluated the prognostic
robustness of this 12-gene signature by using the TCGA
as the testing dataset. In line with the results of the training
dataset, K-M survival curve analysis showed the high-risk
group was correlated with poorer DFS compared to that
of the low-risk group (HR=2.545; 95%CI: 1.172–5.526;
P=1.461e-02) (Figure 4C). The AUC was 0.882 in the
ROC survival curve analysis (Figure 4D). Stratification

Figure 1. Identification of differentially expressed RNAs between recurrent and non-recurrent cervical cancer samples. A, Volcano plot
to show the distribution of differentially expressed RNAs (green dots, downregulated; red dots, upregulated). FC: fold change; FDR:
false discovery rate. B, Upregulated and downregulated number of differentially expressed mRNAs, lncRNAs, and miRNAs. C, Heat
map of differentially expressed mRNAs, lncRNAs, and miRNAs. Red: high expression; green: low expression.
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Figure 2. Construction of a competing endogenous RNA network among differentially expressed lncRNAs, miRNAs, and genes. A,
Relationship pairs among upregulated lncRNA, downregulated miRNAs, and upregulated mRNAs; B, Relationship pairs among
downregulated lncRNAs, upregulated miRNAs, and downregulated mRNAs. Red: upregulated; green: downregulated.

Figure 3. Functional enrichment results for genes in the competing endogenous RNA network. GO: Gene Ontology.
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analysis showed a statistical difference in DFS between
patients at high and low risk, although they all belonged
to stage 4 (Figure 5F). The DFS in patients with stage
1 to 3 were not significantly different (Figure 5C–E).

Time-dependent ROC curve (AUC=0.882 vs 0.656) and
C-index (0.711 vs 0.508) analyses further confirmed the
higher predictive accuracy of risk score for DFS compared
with the FIGO staging (Figure 6B and C).

Table 1. Functional enrichment for genes in the ceRNA network.

Category Term P-value Genes

GO BP GO:0009968Bnegative regulation

of signal transduction

1.070E-03 CAV1, PAK1IP1, TAOK3, SOX2, NFKBIA, SOCS7, PAWR, FRZB,

RGS14, ATXN1, PEG10, PPP2CA, RGS5, SKIL, IGFBP5

GO:0033554Bcellular response to

stress

3.092E-03 XRCC5, XRCC4, HMGB1, CLSPN, CAV1, HMGB2, ST8SIA1, RPS27L,

CEP164, MLH3, TPM1, RPS3, AQP2, NONO, TYMS, SLK, FAM129A,

CRY1, CCNA2, ATG9B, TAOK3, ATMIN, ATRX, HIF1A, RIF1, UBR5

GO:0010648Bnegative regulation

of cell communication

3.131E-03 CAV1, PAK1IP1, TAOK3, SOX2, NFKBIA, SOCS7, PAWR, FRZB,

RGS14, ATXN1, PEG10, PPP2CA, RGS5, SKIL, IGFBP5

GO:0043009Bchordate embryonic

development

3.217E-03 XRCC4, LIMS1, SYVN1, HTT, LMO4, GABPA, MYH9, GLI2, TPM1,

YBX1, MAN2A1, HIF1A, SLC30A1, GFPT1, GRN, HOXA7, POFUT1,

COL11A1

GO:0009792Bembryonic

development ending in birth or egg

hatching

3.511E-03 XRCC4, LIMS1, SYVN1, HTT, LMO4, GABPA, MYH9, GLI2, TPM1,

YBX1, MAN2A1, HIF1A, SLC30A1, GFPT1, GRN, HOXA7, POFUT1,

COL11A1

GO:0009967Bpositive regulation

of signal transduction

5.978E-03 MAVS, CAV1, F10, CSF1, KLK5, TAOK3, SOX2, IGF1, FURIN, SORBS3,

HIF1A, NOD1, MAP3K3, SLC35B2, MLST8, GHR

GO:0006357Bregulation of

transcription from RNA polymerase

II promoter

6.290E-03 HMGB1, HMGB2, CNBP, STAT5A, SOX2, NFKBIA, CBX2, PAWR, GLI2,

SORBS3, HOXA7, SMARCD1, SKIL, MYC, TFDP1, BRD8, DNMT3A,

ZBTB7A, TCF7, YY1, GABPA, IGF1, SNAI2, USF2, STAT3, ATXN1,

MED19, HIF1A, IRF2, TFAP2C

GO:0006259BDNA metabolic

process

6.387E-03 XRCC5, XRCC4, DNMT3A, CLSPN, HMGB1, HMGB2, DFFA, IGF1,

RPS27L, CEP164, MLH3, NONO, ATRX, TYMS, SLK, CDK2AP1,

PIWIL2, CRY1, MYC, XRN2, REPIN1, NYNRIN, DUT

GO:0006974Bresponse to DNA

damage stimulus

1.019E-02 XRCC5, XRCC4, HMGB1, CLSPN, HMGB2, RPS27L, CEP164, MLH3,

ATMIN, RPS3, NONO, ATRX, TYMS, RIF1, SLK, UBR5, CRY1, CCNA2

GO:0010647Bpositive regulation

of cell communication

1.534E-02 MAVS, CAV1, F10, CSF1, KLK5, TAOK3, SOX2, IGF1, FURIN, SORBS3,

HIF1A, NOD1, MAP3K3, SLC35B2, MLST8, GHR

GO:0008284Bpositive regulation

of cell proliferation

2.540E-02 COL18A1, XRCC4, CNBP, IL2RA, STAT5A, CSF1, SOX2, ST8SIA1,

IGF1, GLI2, PRKCQ, NCK2, TNFRSF11A, HIF1A, GRN, EIF5A2, MYC,

CCNA2

GO:0000902Bcell morphogenesis 2.860E-02 COL18A1, PARD6B, PLXNA3, LIMS1, UCHL1, MYH9, GLI2, CXCL12,

SLIT1, SLIT2, CDC42, SEMA6A, HIF1A, NUMB, CLASP1, SEMA3A

GO:0032989Bcellular component

morphogenesis

3.458E-02 COL18A1, PARD6B, PLXNA3, LIMS1, UCHL1, MYH9, GLI2, CXCL12,

SLIT1, TPM1, SLIT2, CDC42, SEMA6A, HIF1A, NUMB, CLASP1,

SEMA3A

GO:0051336Bregulation of

hydrolase activity

3.730E-02 CAV1, TBC1D10B, MYL3, ASAP1, RABGAP1L, FURIN, TPM1, RPS3,

TBC1D24, NOD1, ACAP2, CHM, MLST8, MYC, HIP1

GO:0010629Bnegative regulation

of gene expression

4.026E-02 DNMT3A, HMGB1, ZBTB7A, HMGB2, DICER1, SOX2, GABPA, CBX2,

PAWR, GLI2, SNAI2, STAT3, ATXN1, SORBS3, WWP1, HOXA7, PIWIL2,

IRF2, SKIL, MYC

GO:0006928Bcell motion 4.298E-02 PLXNA3, VIM, IGF1, SCYL3, CX3CL1, MYLIP, MYH9, GLI2, CXCL12,

SLIT1, TPM1, SLIT2, STAT3, SEMA6A, ARPC1B, NCK2, DAB1, HIF1A,

SEMA3A

KEGG pathway hsa04360:Axon guidance 7.635E-03 CDC42, NCK2, SEMA6A, PLXNA3, GNAI1, SEMA7A, SEMA3A, SLIT1,

CXCL12, SLIT2

hsa03010:Ribosome 8.594E-03 HNRNPH2, RPL27A, RPS27L, RPL5, RPL4, RPL10A, RPS8, RPS3

hsa04144:Endocytosis 2.593E-02 CDC42, PARD6B, IL2RA, HSPA2, ARRB1, CHMP6, RAB4A, WWP1,

ACAP2, ASAP1, HLA-B

hsa00510:N-Glycan biosynthesis 3.436E-02 MAN2A1, STT3A, MAN1A2, DPM2, DOLPP1

GO BP: Gene Ontology (GO) biological processes; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Table 2. The 12-gene-based signature.

Type/Symbol Expression Multivariate Cox regression LASSO coefficient

HR 95%CI P-value

lncRNA

CD27-AS1 Downregulated 0.799 0.541–0.981 2.610E-02 –0.2223297
LINC00683 Downregulated 1.856 1.125–3.062 1.554E-02 0.403561456

miRNA

hsa-miR-146b Upregulated 4.439 1.959–10.061 3.570E-04 1.275309117

hsa-miR-1238 Upregulated 0.339 0.105–0.969 4.103E-02 –2.408082103
hsa-miR-4648 Upregulated 0.888 0.431–0.931 4.733E-02 –0.574392794

mRNA

ARMC7 Upregulated 3.074 1.639–5.766 4.650E-04 0.848557903

ATRX Upregulated 3.285 1.518–7.108 2.533E-03 0.868981201

FBLN5 Downregulated 0.728 0.475–0.964 1.458E-02 –0.573439111
GHR Downregulated 0.478 0.338–0.675 2.810E-05 –0.457116812
MYLIP Downregulated 0.644 0.439–0.946 2.474E-02 –0.56842456
OXCT1 Upregulated 3.228 1.444–7.214 4.295E-03 0.872944103

RAB39A Upregulated 2.495 1.294–4.810 6.333E-03 0.777716643

HR: hazard ratio; CI: confidence interval; LASSO: least absolute shrinkage and selection operator.

Figure 4. Prognostic evaluation of the 12-multi-RNA-based risk score for cervical cancer patients. A, Kaplan-Meier curve of the training
dataset (GSE44001). B, Receiver operator characteristic curve of the training dataset (GSE44001). C, Kaplan-Meier curve of the testing
dataset (TCGA). D, Receiver operator characteristic curve of the testing dataset (TCGA). AUC: area under the receiver operator
characteristic curve; HR: hazard ratio.
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Discussion

Although studies have investigated a molecular signa-
ture to predict the recurrence and DFS (or recurrence free
survival, RFS) for CC patients (6,8), the known signature
was mainly composed of 5 mRNAs (6), 9 lncRNAs (8),
or 9 miRNAs (15). No studies focused on identification
of a combined-RNA signature. In the present study, we
attempted to develop a novel signature to distinguish the
CC patients having a high risk to recurrence and poor DFS
from those with a low risk based on the lncRNAs, miRNAs,
and mRNAs in the ceRNA network. This analysis flow
may be beneficial to identify some mechanism-clear, prog-
nostic associative biomarkers. As expected, our identified

prognostic signature included two lncRNAs (CD27-AS1,
LINC00683), three miRNAs (hsa-miR-146b, hsa-miR-1238,
hsa-miR-4648), and seven mRNAs (ARMC7, ATRX, FBLN5,
GHR, MYLIP, OXCT1, RAB39A). Almost all of their related
ceRNA interactive axis genes (CD27-AS1-hsa-miR-1275-
ANKRD6, LINC00683-hsa-miR-146b-ACAP2, EMX2OS-
hsa-miR-1238-FBLN5, EMX2OS-hsa-miR-4648-GHR, EM
X2OS-hsa-miR-29b-1-MYLIP, LINC00265-has-miR-128-1-
ATRX, LINC00265-hsa-miR-604-ARMC7/OXCT1, LINC00
265-hsa-miR-1304-RAB39A) were associated with DFS
except hsa-miR-1304. The risk score built by these
multiple-type RNAs showed good performance to predict
DFS, with an AUC of 0.954 and 0.882 in the training
dataset and the testing dataset, respectively. The predictive

Figure 5. Stratification analysis according to the FIGO staging. Kaplan-Meier survival curve for A, patients with stage 1 (GSE44001);
B, patients with stage 2 (GSE44001); C, patients with stage 1 (TCGA); D, patients with stage 2 (TCGA); E, patients with stage 3 (TCGA);
F, patients with stage 4 (TCGA). HR: hazard ratio.
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accuracy of our signature was obviously higher than that of
previously identified signatures for CC, such as 9-lncRNA
(training GSE44001 dataset, AUC=0.793; testing TCGA
dataset, AUC=0.742) (8) and 5-mRNA (TCGA dataset,
AUC=0.792) (6). The predictive superiority of multiple-
type RNA to single RNA type was also confirmed by our
analysis (training: AUC=0.954 vs 0.659 for lncRNAs, 0.63
for miRNAs, 0.939 for mRNAs; testing: AUC=0.882 vs
0.602 for lncRNAs, 0.608 for miRNAs, 0.808 for mRNAs;
training: C-index=0.855 vs 0.646 for lncRNAs, 0.628 for
miRNAs, 0.806 for mRNAs; testing: C-index=0.711 vs
0.469 for lncRNAs, 0.606 for miRNAs, 0.703 for mRNAs).
These findings were in agreement with the study of Zhang
et al. (11) and Wang et al. (12). More importantly, we also
found that the risk score had the ability for predicting the
DFS within each FIGO stage and the AUC (training: 0.954
vs 0.501; testing: 0.882 vs 0.656) and C-index (training:
0.855 vs 0.539; testing: 0.711 vs 0.508) of the risk score
were higher than those of the FIGO staging. Combination
of the FIGO staging with the risk score did not obviously
improve the predictive power, it even slightly decreased
due to the fact that the FIGO staging was not an inde-
pendent prognostic factor (data not shown). These conclu-
sions were also observed in the study of Mao et al. (8).
These findings indicated our risk score may be a more
promising, effective, independent predictor for DFS in CC
patients.

All our identified ceRNA axes were not reported
previously, indicating they were novel insights to explain
the mechanisms of recurrence and unfavorable prognosis

in CC. However, the individual studies on these lncRNAs,
miRNAs, and mRNAs may indirectly suggest their func-
tions for CC. For example, Roychowdhury et al. (16) iden-
tified CD27-AS1 as a downregulated lncRNA in cervical
carcinoma by microarray expression profile analysis. MiR-
1275 was found to be upregulated in cancer cell lines and
tissues of lung adenocarcinoma (17,18). High expression
of miR-1275 was associated with shorter OS and RFS in
lung cancer patients (17). Overexpression of miR-1275
promoted cancer cell migration, invasion, and proliferation
(18), which may be related to its negative regulation on the
downstream target genes (such as leucine zipper putative
tumor suppressor 3) and then to enhance the stemness of
cancer cells (17). Knockdown of ANKRD6 was revealed to
increase melanoma cell proliferation and migration (19).
Consistent with these studies, we also identified CD27-
AS1 and ANKRD6 were downregulated, while miR-1275
was upregulated in recurrent CC tissues compared
with non-recurrent controls. The HRs were less than 1
for CD27-AS1 and ANKRD6 and larger than 1 for miR-
1275 in the DFS curve analysis (Supplementary Table
S3), further indicating their tumor suppressor and oncogen-
ic roles, respectively. Thus, theoretically, their related-
ceRNA theory (that is, downregulated CD27-AS1 may be
insufficient to sponge hsa-miR-1275 and then lead to the
inhibitory effects of hsa-miR-1275 on ANKRD6) may be
believable.

By analysis of the TCGA data, Liu et al. (20) showed
that LINC00683 was significantly downregulated in pros-
tate cancer samples, and high expression of LINC00683

Figure 6. Comparison of the prognostic power among the risk score model, the FIGO staging, and mRNA, miRNA, lncRNA alone.
A, Time-dependent receiver operator characteristic curves (ROC) using the training dataset (GSE44001). B, Time-dependent ROC
curves using the testing dataset (TCGA). C, Calculated results for ROC and C-index.
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was correlated with a more favorable OS compared with
lower levels. MiR-146b expression was increased in CC
tissues compared with paracancerous tissues (21). Down-
regulation of miR-146b strongly suppressed proliferation,
migration, and anchorage-independent growth of CC cells
(21). The study of Sullivan et al. (22) reported that ACAP2
expression was downregulated in esophageal cancer,
leukemias, and lymphoma. Knockdown of ACAP2 inhibited
cancer cell apoptosis. These results implied that LINC00
683 and ACAP2 exert tumor suppressor roles, while miR-
146b was pro-oncogenic. This conclusion was also proven
in our study, showing LINC00683 and ACAP2 were lower
expressed, while miR-146 was higher expressed in recur-
rent CC tissues than those in the non-recurrent samples.
Therefore, LINC00683-miR-146-ACAP2 ceRNA axis may
also be a verifiable mechanism for CC.

Using the data from TCGA database, Zheng et al. (23)
observed EMX2OS was significantly downregulated in the
CC tissues compared with normal controls. K-M survival
curve analysis showed CC patients with high expression
of EMX2OS had better OS compared with the low-
expression group. Univariate Cox analysis further vali-
dated that highly expressed EMX2OS was a protective
factor for poor OS (HR=0.91). Upregulated expression of
miR-1238 was indicated to confer chemoresistance for
glioblastoma cells, while loss of miR-1238 sensitized
resistant glioblastoma cells to temozolomide (24). The
expression of miR-4648 was shown to be higher in the
relapse cases of small cell carcinoma of the esophagus
compared with non-relapse cases (25). The oncogenic
activity of miR-29b-1-5p may result from the activation of
epithelial-mesenchymal transition in cancer cells (26).
Highly expressed miR-29b-1 was also proven to be
closely correlated with shorter OS time in non-small cell
lung cancer patients (27). High expression of FBLN5 was
significantly correlated with better OS and DFS in hepato-
cellular carcinoma patients (28). A recent case report
showed that GHR was very lowly expressed in patients
with adamantinomatous craniopharyngioma and defi-
ciency in growth hormone led to the development of
recurrence at 18 months after surgery (29). Inhibition of
MYLIP facilitated the growth and metastasis of CC cells
(30). In accordance with these reports, we also identified
that EMX2OS and FBLN5/GHR/MYLIP were downregu-
lated, while hsa-miR-1238/4648/29b-1 was upregulated in
recurrent CC tissues compared to those in the non-
recurrent samples. Also, they were all DFS-related
biomarkers. Accordingly, their-related ceRNA axes (EMX2O
S-hsa-miR-1238-FBLN5, EMX2OS-hsa-miR-4648-GHR, EM
X2OS-hsa-miR-29b-1-MYLIP) may be important targets for
preventing the occurrence of recurrence in CC patients.

Several studies demonstrated that LINC00265 was
significantly highly expressed in cancer patients and asso-
ciated with poorer prognosis (31). Functional analysis

revealed that depletion of LINC00265 impaired cell pro-
liferation and invasion, promoted cell cycle distribution and
apoptosis in vitro, and attenuated tumorigenesis in vivo
(32). miR128-1 was suggested to function as a tumor
suppressor because it was downregulated in glioblastoma
multiforme and glioma stem-like cells. Forced expression
of miR128-1 inhibited tumor cell proliferation, migration,
and invasion in vitro and blocked the growth of transplant
tumors in vivo (33). miR-604 also seemed to be a tumor
suppressor miRNA due to low expression in cisplatin-
resistant gastric cancer cells (34). miR-1304 was an
independent risk factor for recurrence of esophageal
carcinoma, showing that patients with high expression of
miR-1304 had a relatively lower survival rate (35). Patients
with a loss of ATRX expression were found to have longer
survival times (36). ARMC7 was found to be amplified
across several cancer tissues and cell lines (37). OXCT1,
which encodes a 3-oxoacid CoA transferase 1 enzyme
necessary for ketone catabolism and then involving in the
tricarboxylic acid cycle, was also expressed at higher
levels in metastatic colorectal cancer cell lines (38).
Similarly, RAB39A was highly expressed in sarcomas
and in malignancies of lymphoid, adrenal, and testicular
tissues. RAB39A may facilitate tumorigenesis by inter-
action with its downstream RXRB (39). In agreement with
these findings, we also identified LINC00265 and ATRX/
ARMC7/OXCT1 were upregulated in recurrent CC tissues
compared with those of the non-recurrent samples and
were risk factors for poor DFS (HR41), while hsa-
miR128-1/604/1304 were downregulated and protective
factors for DFS (HRo1). Hence, we predicted that
LINC00265 may be responsible for the recurrence and
the malignant phenotype of CC patients by functioning as
a ceRNA via sponging hsa-miR128-1/604/1304 to elevate
the expressions of ATRX/ARMC7-OXCT1/RAB39A.

There were some limitations in this study. First, the
prognostic signature was identified and validated based
on bioinformatics analyses of retrospective public data.
The prognostic value of our molecular model needs to be
further validated using larger clinical CC samples pro-
spectively collected from multiple hospitals. Second, the
identified ceRNA interactive axes of prognostic genes
should be demonstrated by in vitro or in vivo experiments.
Third, the roles of other genes that were not significantly
associated with RFS but were differentially expressed in
our study and previous reports (such as hsa-miR-196a)
(40) require further investigation. Fourth, in addition to
ceRNA, lncRNAs also could function by directly binding
with mRNAs (14). mRNAs did not independently play
important key roles in cancer, but by interaction with each
other (10). In subsequent studies, the lncRNA-mRNA
co-expression network or protein-protein interaction net-
work should be established to find other underlying
prognostic signatures for CC.
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Conclusion
In this study, we developed a novel risk score model

based on two-lncRNA-three-miRNA-seven-mRNA signa-
ture for CC patients. This signature not only discriminated
patients at a high risk of recurrence from patients at a low
risk of recurrence, but also accurately predicted the
outcomes of DFS for CC. Its predictive power for DFS
was higher than that of the FIGO staging and single RNA-
type model. This model was derived from genes in the
ceRNA network and, thus, this study sheds new light on
the molecular mechanisms of tumorigenesis and provided
promising therapeutic targets for CC patients.
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