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Abstract
A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along 
the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in 
charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology 
and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS 
pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is 
less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental 
evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, 
and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derange-
ment of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, 
pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous 
diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neu-
ropathies, disorders of gut–brain interaction, inflammatory bowel diseases, and colorectal cancer.
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Introduction

Evolution has endowed the gastrointestinal tract with its own 
dedicated nervous system. In mammalians, the enteric nerv-
ous system (ENS) consists of millions of neurons and glial 
cells that are organized into interconnected ganglia embed-
ded within the gut wall. The ENS has the ability to autono-
mously command gastrointestinal tissue dynamics and gut 

homeostasis, devoid of input from the brain or spinal cord, 
earning it the sobriquet ‘second brain’ [1]. As the great-
est division of the autonomic nervous system and rivalling 
the spinal cord in terms of complexity, ENS components 
form integrated circuits which independently or in concert 
with extrinsic parasympathetic and sympathetic innervation 
regulate a myriad of gut processes including bowel motility, 
transmucosal movement of fluids, immune responses, and 
local blood flow [2]. Positioned in the largest sensory organ 
of the body, the ENS also works alongside the intestinal 
epithelia, immune system, enteroendocrine system and intes-
tinal microbiome to allow the absorption of nutrients, water, 
and electrolytes while at the same time to prevent  access to 
harmful substances present in the lumen [3, 4].

In vertebrates, the majority of enteric neurons and glia 
develop from neural crest cells originating from the vagal 
level of the neural tube which invade the foregut and rostro-
caudally migrate culminating in the quasi-uniform coloniza-
tion of the gastrointestinal tract [5, 6]. The constellation of 
intrinsic primary afferent neurons, interneurons, and motor 
neurons, with distinct neurochemical coding and functional 
roles are surrounded by 1–7 times as many enteric glial 
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cells (EGCs) [7] and generally configured within two major 
ganglionated and interconnected plexus layers: the myen-
teric and submucosal plexus. Enteric neuron cell bodies 
are located in the myenteric and submucosal ganglia while 
their processes extend throughout the external muscle lay-
ers, submucosa and mucosa [2]. In addition, EGCs also 
reside in extraganglionic spaces and are embedded within 
the intestinal mucosa and muscle layers [7]. Although evi-
dence for functional specialization is rather limited, much 
like enteric neurons, EGCs can be classified into distinct 
subtypes based on their morphology and location within the 
gut wall and along the gastrointestinal tract [8]. Of late, the 
established classification schemes for ENS cells have been 
complemented with data from single-cell sequencing analy-
ses that further unravel the identity of enteric neuron and 
EGC subpopulations [9–13]. The heterogeneous populations 
of enteric neurons and glia closely interact to coordinate 
the stereotypic patterns of gut motility and secretion which 
are key to gastrointestinal homeostasis. To guide some of 
these processes, the ENS is assisted by different types of 
enteroendocrine cells, which are scattered throughout the 
epithelium and monitor the gut lumen [14, 15]. Among these 
are enterochromaffin cells, a particular serotonin-producing 
enteroendocrine cell type thought to be crucial for conveying 
luminal information to the ENS [16–18]. For a detailed pres-
entation on functional circuits and ENS signaling the reader 
is directed to recent literature [19, 20]. Given its central role 
as an integrating hub for controlling gastrointestinal physi-
ology [21], it is unsurprising that alterations in ENS func-
tion are concomitant with disruptions of gut homeostasis, 
resulting in both gastrointestinal and extra-gastrointestinal 
diseases [22, 23]. The complexity of ENS architecture is 
paralleled by the overarching adverse consequences that can 
result from perturbations of genes critical for ENS develop-
ment to subtler alterations in its connectivity and its cross-
talk with neighboring cellular systems involved in gut func-
tion [24, 25]. In this review, we present the latest evidence 
for ENS involvement in disorders that strike the gastroin-
testinal tract. We discuss both experimentally established 
and hypothesized roles for enteric neurons and EGCs in the 
pathogenesis of enteric neuropathies, disorders of gut–brain 
interaction (DGBIs), inflammatory bowel disease (IBD), and 
colorectal cancer (CRC).

Enteric neuropathies

Enteric neuropathies emanate from loss, degeneration, 
and/or functional impairment of enteric neurons [26–28]. 
They are caused by congenital defects in ENS development, 
acquired through the effect of infectious agents or toxins, or 
secondary to other pathological conditions such as diabetes 
and neurodegenerative disorders [22, 29]. ENS defects vary 

from subtle alterations in the biochemistry or connectivity 
within the neural network to a complete loss of ganglia from 
entire segments of the bowel. The latter of which can result 
in life-threatening conditions such as Hirschsprung disease 
(HSCR), where survival of patients depends on early diag-
nosis and surgical intervention [30, 31].

HSCR is the best known congenital enteric neuropa-
thy affecting 1 in 5000 individuals, in which the absence 
of ganglia in distal portions of the gut results in difficult 
expulsion of meconium, causing life-threatening intestinal 
occlusion, and over time intractable constipation due to 
the lack of peristalsis in this intestinal region. Collectively, 
genetic studies of patients with HSCR [32–34] and in vivo 
transgenic animal models [35–37] have identified multiple 
genes involved in the development of the ENS, including 
the receptor tyrosine kinase (RET) [38, 39] and endothelin 
receptor type B (EDNRB) [40] and their family members as 
major players for the HSCR phenotype, together with muta-
tions in SOX10 [41, 42], PHOX2B [43], semaphorins [44, 
45], among other genes [46]. Interestingly, recent studies 
revealed other molecular HSCR candidates [47] and genetic 
variants, including pathogenic genes, alleles and loci that 
can exacerbate the susceptibility of HSCR patients in mani-
festing the disease phenotype [48, 49]. Highly conserved 
among species, deficiencies along the signaling pathways 
of these genes may result in failure of ENS progenitors to 
migrate, proliferate, differentiate or survive within the distal 
intestine and cause congenital bowel obstruction [5, 50]. Of 
note, novel work by Chatterjee et al. [51], identified special-
ized genetic programs active in ENS cells during critical 
stages of gastrointestinal organogenesis that also control epi-
thelial, endothelial and muscle cell specification. Therefore, 
such impaired gene networks not only impel ENS precur-
sor cells to colonize the distal gut, causing aganglionosis, 
but also influence the development of non-neural intestinal 
tissues [52]. Remarkably, even after the aganglionic intes-
tine has been surgically removed, patients often experience 
functional abnormalities which fluctuate from severe consti-
pation to fecal incontinence [53]. Although the pathophysi-
ological mechanisms behind these symptoms are not clear, 
recent work reported histopathological disturbances in the 
ganglionic bowel of patients who had previously undergone 
optimal pull-through surgery [54]. Moreover, fatty acid 
binding protein 7 (FABP7), a marker of immature enteric 
glia, was significantly upregulated in the myenteric plexus 
and resulted in a higher ratio of FABP7 to S100 calcium-
binding protein B (S100B) expression as compared to con-
trols, signifying a higher proportion of immature EGCs in 
the ganglionic bowel of HSCR patients [55]. These findings 
support the notion that megacolon can be associated with 
impaired differentiation of ENS precursors, or perhaps, with 
defective enteric gliogenesis. Cumulatively, HSCR substan-
tiates the role of the ENS in survival, as the formation of 
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neural circuits adroit at executing motility need to be pre-
natally assembled. In the absence of effective interventions, 
elucidating the subtype composition of enteric ganglia in 
the ganglionated intestinal segments could help to gain fur-
ther insight on how to recover aganglionic functionality in 
HSCR. Additionally, and as the cause of the variable HSCR 
phenotypes remains elusive, elucidating the contribution of 
the intestinal milieu for ENS development might indicate 
that next to genetic and epigenetic factors, environmental 
cues are also important to determine or attenuate HSCR 
pathology [56–58]. Indeed, vitamin A deficiency, exposure 
to high concentrations of drugs such as ibuprofen, mycophe-
nolate, statins, and artemisinin during the critical window 
of ENS development have been reported to induce a HSCR 
phenotype in animal models [50]. Also, alterations in epi-
thelial integrity, in the mucosal immune system and in gut 
microbiota have been put forward as plausible candidates 
contributing to HSCR [59]. Although direct evidence for a 
role of the immune system in the onset of HSCR is absent, 
RET and its pathway members are expressed by type 3 innate 
lymphoid cells (ILC3) and are involved in the organogenesis 
of intestinal Payer’s patches [60, 61]. Additionally, while it 
is clear that HSCR patients present with intestinal dysbiosis 
[62], further investigation would enlighten the paradoxical 
proposition of whether dysbiosis can contribute to HSCR, 
or if it is a consequence of impaired elimination mecha-
nisms due to defective intestinal motility [63, 64]. The role 
of microbes in HSCR pathogenesis is intriguing, yet not 
entirely surprising, since collective efforts have explored 
and divulged the important contribution of the gut microbi-
ome in fine-tuning the ENS development and homeostasis 
[65–72], and vice versa [73].

While significant progress has been made in the genet-
ics and pathophysiology of ENS constituents in HSCR, a 
detailed understanding of the role of ENS defects in other 
gastrointestinal disorders sometimes classified as enteric 
neuropathies remains limited, and their etiology in many 
cases is defined as idiopathic. For example, a prominent 
reduction in enteric neuronal cells in the lower esophagus, 
especially of inhibitory neurons can be a primary cause of 
achalasia, which is characterized by an absence of esopha-
geal peristalsis and failure of the lower esophageal sphinc-
ter to relax upon swallowing [74, 75]. The neuronal loss is 
believed to be caused by an autoimmune reaction, possibly to 
a viral infection, in patients with a particular immunogenetic 
background, and biopsies from patients with achalasia dis-
played marked immune cell infiltration within the myenteric 
plexus and increased production of autoantibodies [76–78]. 
Moreover, genetic factors such as polymorphisms of the 
protein tyrosine phosphatase N22 (PTPN22), interleukin-23 
receptor (IL-23R), and interleukin-10 (IL-10) promoters 
related to immune cell regulation were reported to contribute 
to the heterogeneity of disease pathogenesis [79]. Another 

enteric neuropathy, gastroparesis, is characterized by delayed 
gastric emptying in the absence of mechanical gastric outlet 
obstruction. Gastroparesis can be caused by complications 
of diabetes, and less commonly by medications and surgi-
cal interventions but the overwhelming majority of cases 
remains idiopathic [80, 81]. Studies using human gastric 
biopsies found a pronounced reduction in interstitial cells of 
Cajal (ICCs) and neuronal fibers in the circular muscle layer 
associated with increased immune cell infiltration in the 
myenteric plexus [82]. Whether gastroparesis can, therefore, 
be considered as a macrophage-driven ‘cajalopathy’, needs 
further experimental confirmation [83]. The initiation and 
progression of chronic intestinal pseudo-obstruction (CIPO), 
which is characterized by inefficient intestinal transit without 
any physical obstruction, may involve multiple congenital, 
acquired or idiopathic causes and distinct cell types includ-
ing smooth muscle and nerve cells [84]. CIPO is associ-
ated with the absence of normal migrating motor complexes 
that, depending on the underlying pathomechanism, follow 
a particular neuropathic or myopathic pattern. It can result 
from an underlying non-gastrointestinal disorder or condi-
tion, including a wide variety of systemic, metabolic and 
organic diseases, such collagen vascular diseases, neurologi-
cal disorders, or as paraneoplastic phenomenon caused by 
tumor-derived auto-antibodies [85]. Although CIPO mostly 
occurs in its sporadic form, it may be also associated with 
familial inheritance in other patients. For instance, CIPO 
symptoms can manifest as a result of recessive mutations 
in important mitochondrial genes (TYMP, POLG) [86, 87]; 
can be caused by mutations in SGOL1 in chronic atrial and 
intestinal dysrhythmia (CAID) [88]; and mutations in the 
ACTG2 gene in megacystis-microcolon-intestinal hypop-
eristalsis syndrome (MMIHS) [89]. Additionally, CIPO has 
been reported in patients with autosomal dominant muta-
tions in the SOX10 gene in Waardenburg-Shah syndrome 
[90], and is also related to sex chromosome inheritance in 
Xq28 with mutations in Filamin A and L1CAM genes [91, 
92]. Although abnormalities in gastrointestinal motility in 
patients with CIPO manifest in the presence of enteric gan-
glia [85], a neuronal deficit of approximately 50% associated 
with increased distance between ganglia, neuronal swell-
ing and axonal degeneration and which correlates with the 
degree of symptom severity has been reported [93]. This 
is also the case for slow transit constipation, defined by 
reduced and infrequent intestinal transit, sensation of ano-
rectal obstruction and solid fecal content [94]. Until now, 
defining the pathophysiology of slow transit constipation 
has been challenging as subtle alterations in the ENS are not 
necessarily detected. Nevertheless, a significant reduction in 
the size and number of enteric ganglia, and in the number 
of EGCs and neurons, atypical influx of lymphocytes to the 
ganglia, decreased numbers of ICCs, presence of intesti-
nal neuronal dysplasia type B, and reduced expression of 
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neurochemical markers [mainly vasoactive intestinal poly-
peptide (VIP) and Substance P (SP)] have been described in 
slow transit constipation [29, 95].

Several other neuropathies such as diabetic neuropathy, 
Chagas disease, hypertrophic pyloric stenosis, intestinal neu-
ronal dysplasia, toxic megacolon and internal anal sphincter 
achalasia affect the ENS [26, 29, 96] but because of their 
clear secondary origin are not discussed in this review. Also, 
neurodegenerative diseases including Alzheimer’s and Par-
kinson’s disease, and neurodevelopmental disorders such as 
autism spectrum disorder present with gastrointestinal symp-
toms linked to ENS dysfunction. We guide the interested 
reader to excellent literature discussing the role of the ENS 
in these disorders [22].

Regardless of the nature of the disorder, it is indisput-
able that the ENS performs a major role in the progression 
of enteric neuropathies, displaying mild to profound altera-
tions in its structure and causing modest to severe symptoms. 
However, for most enteric neuropathies other than HSCR, it 
still remains elusive whether the ENS itself has the ability 
to be the sole participant in disease initiation. Moreover, as 
preeminent performers of ENS physiology, studies on the 
influence of EGCs on the etiology of enteric neuropathies 
remain undervalued and scarce. Advanced high throughput 
technology has recently provided novel perspectives on pos-
sible functions the ENS may portray in disturbing gastro-
intestinal homeostasis [12, 48], for instance by expressing 
disease risk genes and through interactions with other cel-
lular systems.

Disorders of gut–brain interaction

Disorders of gut–brain interaction (DGBIs), previously more 
commonly known as functional gastrointestinal disorders 
(FGIDs), including functional dyspepsia (FD) and irritable 
bowel syndrome (IBS), define a spectrum of gastrointes-
tinal disorders associated with chronic or fluctuating gas-
trointestinal symptoms, such as abdominal pain, diarrhea, 
constipation, bloating and nausea, without harboring an 
apparent organic structural or biochemical explanation for 
these symptoms [97, 98]. With evidence in support of a more 
organic basis accumulating, the most recent iteration of the 
Rome diagnostic criteria has facilitated a gradual shift from 
the ‘functional’ nature of these gastrointestinal disorders. 
Although the pathogenesis of DGBIs remains ill-defined, 
dysbiosis, visceral hypersensitivity, intestinal dysmotility, 
and gut–brain axis dysregulation interplays are likely mecha-
nisms responsible for DGBIs [99–104]. Still, their hetero-
geneous identity makes it unlikely that disease mechanisms 
can be narrowed down to a single pathophysiological pro-
cess. Nevertheless, with 40% of persons worldwide antici-
pated to meet the criteria for DGBIs [105], DGBIs are the 

most frequent cause of gastroenterological consultations; 
thus, resulting in major economic effects on global health 
care systems [106]. Their symptom complex is indicative 
of altered ENS function. However, only minor evidence of 
ENS pathology, such as lymphocyte infiltration in myen-
teric ganglia and increased neurite density in the intestinal 
mucosa, as well as production of auto-antibodies against 
neural antigens have been reported, thwarting efforts to iden-
tify their intrinsic neurogenic origin [107–110]. Although 
a pioneering study by Cirillo and colleagues demonstrated 
that live cell imaging can be used to probe neuronal func-
tion in intestinal biopsies [111], ENS defects are not simple 
to diagnose if ganglia are present, that is not to say that 
the presence of ganglia averts gastrointestinal anomalies. 
Consistent with this idea, the disturbed gastrointestinal 
function in DGBIs could result from subtle alterations in 
ENS circuitry that have gone undetected in routine clinical 
diagnosis [6, 25]. However, to date, only a few studies have 
focused on mechanistic defects in ENS connectivity that 
manifest later in ENS ontogeny and are unaccompanied by 
aganglionosis. Inactivation of Celsr3, a planar cell polarity 
(PCP) gene critical for guidance and directional growth of 
neural processes during murine embryogenesis, in enteric 
neural crest cells, leads to moderate disruptions of axonal 
tract configuration in the mature ENS but elicits profound 
uncoordinated motor activity analogous of DGBIs [112]. 
Similar experimental strategies using novel ENS-specific 
transgenic models hold great promise to further refine our 
understanding of gut motility deficits that do not typify the 
downstream aftermath of malfunctioning gangliogenesis. 
Interesting candidates for such approaches include NXPH1 
(neurexophilin 1), SLC6A4 (serotonin re-uptake transporter, 
SERT) HTR3E (serotonin receptor type 3E) and HTR4 (sero-
tonin receptor type 4) [113–119]. Others might be identified 
from genome-wide association (GWA) studies [120–122]. It 
is plausible that in this way particular gastrointestinal disor-
ders now labeled as ‘functional’, will eventually be identified 
as enteric neuropathies.

Whilst the cellular outline of the ENS has mostly been 
configured by birth, the maturation of the neural circuits 
is finalized amidst > 100 trillion microbes harbored within 
the postnatal gut [64]. Although the exact means by which 
the microbiome shapes ENS circuits are unnamed, it is now 
well-established that the microbial composition impacts the 
ENS framework, and that the ENS-microbiome work along-
side in pathological conditions. Depletion of microbiota 
beget reductions in myenteric nerve fiber density, alterations 
in neurochemical coding, decreased excitability in intrinsic 
primary afferent neurons, defective EGC networks, changes 
in neurogenic colonic migrating motor complexes and pro-
tracted intestinal transit time [69, 72, 123–126], and these 
effects can be restored following recolonization of adult 
germ-free mice with conventional microbiota [65, 69, 72, 
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126]. The linking of microbiota to ENS regulation of motil-
ity is one that appears to be evolutionary conserved and 
can be traced back to 650 million years ago to cnidarians, 
such as the Hydra [127, 128]. In germ-free Hydra, there is a 
reduction in the spontaneous peristaltic movements which 
are under the regulation of neurons and restoration of these 
movements are observed following the reconstitution of 
germ-free Hydra with conventional microbiota [129–131]. 
These findings illustrate that the ENS has evolved to orches-
trate responses from microbes and relay them throughout 
the gastrointestinal tract to influence gut motility. Altered 
gastrointestinal motility is an important factor in DGBIs [97] 
and moreover, gut microbiota dysbiosis has been implicated 
in the onset and progression of DGBIs [132, 133]. Obata 
et al. [65], identified that enteric neuron-specific deletion 
of a microbiota-dependent gene, aryl hydrocarbon receptor 
(Ahr), reduced colonic peristaltic activity akin to microbi-
ota-depleted mice, and supplementation of Ahr ligands rec-
tified intestinal motility; alluding to Ahr as a biosensor in 
enteric neurons, therein fusing their functional output with 
the luminal environment. Interestingly, a GWA meta-anal-
ysis study identified a role for AHR in the biology of stool 
frequency, often altered in DGBIs [134], and deficiencies in 
tryptophan-derived Ahr ligands produced by microbiota may 
contribute to IBS [135, 136]. Furthermore, together with 
genetic changes in the serotonergic signaling system (see 
above), the alterations in enterochromaffin cells observed 
in IBS patients [137, 138] and the impact of the microbiota 
on this system [72, 139], highlight the importance of the 
ENS-microbiome dialogue. A dialogue that if perturbed may 
contribute to the pathogenesis of DGIBs.

The most well-recognized risk factor for DGBIs is pre-
vious acute gastrointestinal infection. Permutations in gut 
milieu post entero-invasive bacteria evasion are associ-
ated with remodeling of the neuronal circuitry [140–142], 
albeit the underlying mechanisms involved in this process 
are incompletely understood. Recently, Matheis et al. [143] 
showed that Salmonella enterocolitis induced preferential 
damage to glutamatergic myenteric neurons expressing spe-
cific non-canonical inflammasome machinery and pointed 
to a neuroprotective role of ENS-associated tissue-resident 
macrophages mediated through an arginase 1-polyamine 
axis. As targets of a vagal-cholinergic enteric neuron anti-
inflammatory pathway [144], and in keeping with their vital 
role in ENS survival and function [145, 146], this data touts 
that muscularis macrophages can temper with the enteric-
inflammasome circuit and ergo, prevent remolding of the 
neurochemical representation of enteric neurons. Defec-
tive maturation and altered numbers of macrophages have 
been documented in IBS [147, 148]. Among other func-
tions, macrophage-colony stimulating factor (M-CSF) gov-
erns survival, proliferation, and activation of macrophages, 
and while interstitial cells of Cajal also produce M-CSF, 

within the ENS, EGCs generate the vast majority of M-CSF 
[149–151]. Grubišić et al. [150] hindered enteric glial inter-
cellular communication mitigated through connexin-43 
hemichannels in a chronic inflammatory mouse model and 
found that curbing the EGC-regulated activation of mac-
rophages via M-CSF safeguarded against the development of 
visceral hypersensitivity, another key mechanism in DGBIs. 
This provides proof of the importance of EGCs in shaping 
neuronal transmission through the EGC-macrophage axis. 
Nevertheless, this does not exclude the odds that EGCs inter-
act with other immune entities to tweak ENS circuitry and 
their functions likely transcend across other gastrointestinal 
dysfunctions linked to DGBIs.

Although there is a vast amount of literature focusing 
on visceral hypersensitivity acting through extrinsic affer-
ent pathways [152–159], inflammatory mediators can also 
modify ENS components, thereby facilitating the develop-
ment of DGBIs [160, 161]. Increased infiltration and activa-
tion of mast cells [162–165], together with elevated levels of 
mast cell mediators, including histamine and proteases, but 
also relevant miRNAs and neurotrophins have been substan-
tiated in DGBIs [166–169]. A positive correlation between 
the number of mast cells in close contact with enteric neu-
rons and the degree of abdominal pain was demonstrated in 
IBS patients [170], albeit, this is not necessarily reflective of 
a causal relationship. Neurons can trigger mast cell degranu-
lation and mediator release by means of neuropeptides such 
as vasoactive intestinal peptide (VIP) [171] which, in turn, 
invoke the egress of histamine and other mediators from 
nearby mast cells [172], thus, driving neurogenic inflam-
mation [173]. Reciprocally, the vast quantities of mast cell-
derived mediators in mucosal supernatants obtained from 
IBS patients duly triggered enteric neuron excitability with a 
favored heightened activation of submucosal plexus neurons 
[174–176]. What is more, chronic exposure to mucosal mast 
cell-derived mediators from IBS patients not only stimulated 
neuronal activation and sprouting of enteric neurons but also 
evoked hyperexcitability of visceral and somatic pain path-
ways [107, 177–180]; this is suggestive of an association 
between visceral hypersensitivity and long-lasting enteric 
neuronal plasticity. Visceral afferent sensitization has been 
shown to act, for example, through changes in the expres-
sion and function of transient receptor potential vanilloid 
receptor type-1 (TRPV1) and t-type calcium Cav3.2 chan-
nels [181–183]. However, whether TRPV1, which has been 
the focus of many studies on visceral hypersensitivity [184], 
is expressed by enteric neurons is still a matter of debate 
[185–188]. Recent single-cell mRNA sequencing data and 
studies using transgenic Trpv1-Cre reporter mice seem to 
further support the notion that TRPV1 expression observed 
in the gut wall is of extrinsic neuronal origin [9, 12, 13, 189, 
190]. It, therefore, remains to be determined whether submu-
cosal enteric neurons are involved in the reduced abdominal 
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pain and visceral hypersensitivity observed in IBS patients 
after histamine receptor H1 (H1R) blocking [191]. Of 
interest, histamine, via H1R, mediated ATP-induced Ca2+ 
responses in EGCs and a reduction in S100B + EGCs in the 
colonic mucosa of IBS patients was inversely coupled with 
abdominal pain [192]. This study infers that restoring EGC 
network activity could provide an effective strategy to com-
bat pain in IBS patients. Additionally, tachykinins, neuro-
peptides primarily expressed by neurons in the gut [190], 
are also tied to distortions in both pain transmission as well 
as intestinal motility [193–196], and inhibition of tachy-
kinin pathways offers a potential target for treatment in IBS 
patients [197]. A tachykinin receptor named neurokinin-2 
receptor (NK2R) is chiefly expressed by enteric neurons; 
and stimulation of NK2R can function as a potent driver of 
neurogenic inflammation in the ENS through mechanisms 
that implicate intercellular enteric neuron-glia-nociceptor 
communication [190]. Mechanistically, antagonizing NK2R 
signaling restricted the occurrence of a reactive EGC phe-
notype and increased neurogenic contractions, raising the 
possibility of a role for EGCs in DGBIs [190, 192].

Going forward, by combining the recent advances that 
have been made in our understanding of ENS composition 
and function with the novel findings from DGBIs patient 
studies [198–201], it should be possible to further elucidate 
the ENS culprits in DGBIs and bring about therapies target-
ing the second brain.

Inflammatory bowel diseases

IBD, a collective term used to describe prolonged inflam-
mation of the gastrointestinal tract, primarily include 
Crohn’s disease (CD), which can present throughout the 
entire gastrointestinal tract (the most common localiza-
tion being the terminal ileum), and ulcerative colitis (UC), 
presenting in the mucosal layer of the colon. En masse, 
affecting 2.5–3 million people in Europe [202], IBD is uni-
vocally identified as an immune pathology and is believed 
to develop through interactions between environmental, 
microbial, and immune-mediated factors in a genetically 
predisposed host [203, 204]. Nonetheless, it has become 
apparent that the immune system alone may not account 
for all aspects of IBD pathology. Neural fiber hypertrophy 
and hyperplasia in the mucosa, submucosal and myenteric 
plexus concomitant with infiltration of inflammatory cells, 
submucosal structural defects, neural fiber retraction and 
neuromatous lesions have been observed in the inflamed 
gut of IBD patients. This brought into question whether 
ENS aberrations are mere epiphenomena related to the 
inflammatory reaction or that they are involved in IBD 
pathophysiology, or even, that they can act as predic-
tors of IBD recurrence [205–209]. Echoed by prevailing 

inflammation-induced derangement of intrinsic neural 
circuits [210], including neuronal hyperexcitability [211, 
212], increased synaptic facilitation [212, 213], reduced 
descending inhibitory neuromuscular transmission 
[214–216] and even neuronal death [217], long-lasting 
intestinal dysmotility can persist ensuing inflammation 
resolution [218]. Moreover, in vivo studies using trans-
genic mouse models for enteric hyper- and hypoinnerva-
tion indicate that the severity of intestinal inflammation is 
affected by the density of the enteric neurons [219].

The fact that distinct immune cell subsets of the gut are 
equipped to respond to neuron-derived signals by expressing 
neurotransmitter and neuropeptide receptors and inversely, 
that enteric neurons can respond to inflammatory signals 
via, for instance, expression of cytokine receptors, posits 
the existence of functional ENS-immune interactions in the 
modulation of intestinal inflammation [220–223]. Decipher-
ing these neuro-immune units will likely generate important 
clues on the role of the ENS in IBD, but will also be relevant 
for post-infectious DGBIs and those associated with low-
grade inflammation. This is elegantly illustrated in a neoteric 
study from Jarret et al., in which deletion of enteric neuron-
derived interleukin-18 (IL-18), a pleiotropic cytokine in 
intestinal barrier homeostasis and combatting pathogenic 
infections [224], resulted in increased susceptibility to inva-
sive Salmonella typhimurium [225]. Intriguingly, IL-18 is 
elevated in patients with IBD and anti-IL-18 therapy has 
been proven efficient to reverse severe gastrointestinal symp-
toms [226, 227].

Several neuropeptides and neurotransmitters have been 
shown to govern immunological functions through discrete 
subsets of immune cells [228]. SP, a highly conserved neuro-
peptide that mediates ENS signaling as well as immune cell 
proliferation and cytokine production, is elevated in IBD and 
there is evidence of increased numbers of SP-positive neu-
rons in the myenteric plexus of UC patients [229–231]. VIP 
is also involved in a vast number of gastrointestinal functions 
mediated by the ENS and increased VIP-positive neurons in 
the submucosal plexus have been documented in CD patients 
[232, 233]. Notably, mast cells reside in close juxtaposition 
with intestinal peptide-producing neurons [234] and respond 
to neuron-derived SP and VIP secretion resulting in mast 
cell degranulation and cytokine production [235]. Recip-
rocally, enteric neurons are activated by mast cell-derived 
mediators inducing neuronal hyperexcitability [236–238]. 
Conforming to this, higher numbers of mast cells or mast 
cell mediators in immediate proximity to enteric neurons 
has been revealed in colonic biopsies of IBD patients relative 
to controls [239–242], mirroring observations in patients 
with IBS. Confirmed by live-cell imaging experiments in 
human intestinal preparations [173], these findings indicate 
that there is bidirectional communication between mast cells 
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and enteric neurons that might be significant in perpetuating 
ongoing inflammation.

VIP has also been implicated in the stimulation of innate 
lymphoid cells (ILC) [243], a rapid-responding, highly 
abundant group of immune cells found in gut tissues that 
play a sentinel role in intestinal barrier integrity [244]. Fol-
lowing microbial infection, ILC3, express high levels of the 
VIP receptor VIPR2, and are the first ILC responders to 
initiate immune responses in the gastrointestinal tract [245]. 
Analogously, VIP-producing enteric neurons enhance the 
release of tissue protective interleukin-22 (IL-22), thereby, 
serving broadly protective effects on the intestinal epithe-
lium [246]. Genetic deletion of VIP signaling disturbs ILC3 
production of IL-22 and leads to increased susceptibility to 
inflammation in experimental models of colitis [243], and 
accordingly, dysregulation of ILC3 content and function 
was also shown in IBD [247]. Enteric cholinergic neurons 
were also found to promote type 2 inflammation through the 
release of another highly conserved neuropeptide, neuro-
medin U (NMU) [248–250]. Interestingly, one of its recep-
tors, NMUR1, is selectively enriched in type 2 ILC (ILC2) 
and appears to be targeted by NMU-producing cholinergic 
neurons. The NMU-NMUR1 pathway has been shown to 
activate ILC2 to produce type 2 effector and tissue-repair 
cytokines in a Myd88-dependent manner.

Comparable to the NMU-mediated signaling from enteric 
neurons to ILC2, EGCs can respond to microbial-associated 
molecular patterns in a Myd88-dependent manner by releas-
ing the RET-ligand glial cell line-derived neurotrophic fac-
tor (GDNF), which stimulates neighboring ILC3s-expressing 
the RET receptor to release IL-22, thus, mediating epithelial 
repair [251]. This work suggests that, in concert with enteric 
neurons, EGCs also shape the gastrointestinal immunologi-
cal environment in the course of gut inflammation and aid in 
facilitating the maintenance of gut homeostasis. Although in 
experimental models of colitis and IBD-derived human sam-
ples the exact source of GDNF in the gut is not unequivocal, 
increased GDNF expression showed anti-apoptotic epithelial 
effects [252, 253], and is strongly upregulated in inflamed 
areas of CD and UC [252, 254] lending further support to 
the beneficial role of EGCs in modulating epithelial barrier 
function. However, reminiscent of astrocytes of the CNS, 
EGCs also undergo phenotypic alterations in response to per-
sistent hyperinflammatory insults, inter alia an upregulation 
of glial fibrillary acidic protein (GFAP) [255] and may con-
tribute to the influx of microbial infection by reducing their 
release of beneficial factors that enhance gut barrier function, 
such as 15-hydroxyeicosatetraenoic (15-HETE) [256] and 
S-nitrosogluthathione (GSNO) [257]; although, it is unknown 
whether this defective gliotransmitter release is causal or con-
sequential of disease progression. Aside from a reduction in 
beneficial gliotransmission, the gut microenvironment can 
also shift EGCs towards a phenotype that releases specific 

gliomediators, such as nitric oxide (NO) [258]. IBD is associ-
ated with a discernible NO-dependent inflammatory response 
within the intestinal milieu; mucosal inducible nitric oxide 
synthase (iNOS) and neuronal nitric oxide synthase (nNOS) in 
patients with inflamed and non-inflamed UC were upregulated 
and downregulated, respectively [259]. Pursuant to this, there 
have been reports of EGCs coordinating the NO-dependent 
inflammatory response through the circulation of their sign-
aling molecule, S100B, contending that S100B release may 
antedate the onset of inflammation [260, 261]. Deconstruct-
ing the mechanisms by which EGCs and S100B modulate the 
inflammatory scenario in IBD warrants further research; how-
ever, one emerging theme is through the activation of toll-like 
receptors (TLRs) [262–265]. Differential expression of TLR 
subtypes has been reported in IBD patients [266, 267] and 
strikingly, absence of TLR4, for which polymorphisms have 
been documented in IBD [268, 269] and which is expressed 
by enteric neurons and EGCs [270–272], affects S100B and 
GFAP expression and enhances inhibitory neurotransmission 
and neuronal death through the interaction of NO with puriner-
gic signaling in murine models [273, 274].

From a clinical standpoint, studies highlighting a mech-
anistic role for the ENS in IBD are rather scarce. Recent 
profiling of human intestinal tissue at single-cell resolution 
discerned that IBD risk genes along with multiple genes 
related to cytokine signaling were enriched in the ENS [12]. 
Interestingly, a transcriptomic study from the same labora-
tory identified differential gene expression in a glial subset 
present in mucosal biopsies obtained from UC patients and 
suggests glial involvement in both the regulation of T cells 
and M-like cells together with changes in tumor necrosis 
factor (TNF) signaling [275].

It is clear that specific neuro-immune units act to inte-
grate immune control in the intestine, a partnership which 
can be traced back to organisms as primitive as C. elegans 
[276]. For example, recent work revealed a role for sensory 
neurons in the regulation of innate immunity during larval 
development by promoting immune effector transcription, 
clearance of an intestinal pathogen and resistance to bac-
terial infection [277]. Increasing evidence also pinpoints 
the ENS as a crucial player in the interaction between the 
intestinal microbiome and host defense mechanisms [278], 
albeit, for now, not in the specific context of IBD. Nonethe-
less, dysregulation of such interplay likely contributes to 
intestinal inflammation and further interrogation of the cel-
lular players and mediators perhaps will shed light on the 
neuro-immune and neuro-microbiome scaffolds conducive 
to sustaining tissue homeostasis.
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Colorectal cancer

Therapeutic developments and screening measures for early 
detection have improved survival rates for CRC patients. 
However, the fact that CRC remains the third most common 
malignancy and the second leading cause of cancer mortal-
ity [279] has prompted for a deeper understanding of cancer 
progression; shifting the focus from genetic and epigenetic 
aberrations to the contribution of the tumor microenviron-
ment [280–283]. The composition of the tumor microen-
vironment contains an assortment of cellular players such 
as endothelial cells, pericytes, fibroblasts, myofibroblasts, 
immune cells and neural cells [284, 285]. Although research 
on the role of nerves in cancer is a growing topic in the 
oncology field [286] and increased neural markers in colo-
rectal tumors converge with poorer prognosis [287], enteric 
neurons and glial cells have been largely neglected. The rel-
evance of neural infiltration for tumor progression was first 
believed to be a passive process in which nerves act as roots 
for cancer cell migration. This has mainly been studied in 
the context of perineural invasion (PNI), which in CRC, is 
associated with a reduced disease-free survival and can serve 
as an independent prognostic marker for patient outcome 
[288, 289]. However, active crosstalk contributing to cancer 
growth, mostly involving paracrine signaling between neu-
rons and cancer cells has been described for several cancer 
types including pancreatic and gastric cancer [286]. This 
involves the expression of neurotrophins and axon guidance 
molecules by cancer cells to induce their own innervation, 
and active communication from neurons to cancer cells 
[290–294].

To date, several lines of evidence hint towards a role 
of the ENS in colorectal carcinogenesis [295, 296]. For 
instance, the expression of netrin-1, a tumor suppressor pro-
tein synthesized by enteric neurons during gastrointestinal 
organogenesis [297], is found to be reduced in CRC [298, 
299]. Also, although the increased cholinergic innervation 
observed in later phases of CRC indicating poorer prognosis 
was attributed to parasympathetic extrinsic nerves [300], the 
extensive population of intrinsic cholinergic neurons could 
be involved in exacerbating CRC. Interestingly, reduced 
risk of CRC is observed in patients with megacolon pre-
senting with intrinsic colonic denervation of the intestine 
[301], suggestive of a protective role of diminished intestinal 
innervation. This is also in line with a study where chemical 
ablation of neurons in rats is correlated with a lower inci-
dence of CRC [302]. Proof of tumor epithelial cells docking 
and migrating along enteric neuronal fibers was reported 
by Duchalais et al. [303], highlighting the potential of the 
ENS in steering the migration of CRC. Accounting for the 
vastness of ENS networks and its extensive interactions 
with the extrinsic nervous system, it is tentative to speculate 

that the extra physical support from the ENS could enable 
tumor cells to travel large ranges and penetrate neighbor-
ing tissues, which is consistent with the prognostic value of 
perineural invasion in CRC [288, 289]. Recent findings by 
Valès and colleagues indicate that, next to enteric neurons,  
EGCs could also play a role in the CRC tumor microenvi-
ronment [304]. In response to tumor-derived ligands, EGCs 
converted towards a pro-tumorigenic phenotype, stimulated 
the activation of cancer stem cells which present tumor-
initiating capacities, and in turn promoted tumorigenesis. 
Additionally, elevated levels of S100B observed in CRC 
patients might foster a pro-malignant micro-environment, 
regulating various pro-inflammatory, angiogenic and anti-
apoptotic factors [305]. Remodeling of EGCs in the earlier 
stages of colon carcinogenesis is not unforeseen, weighing 
the extensive phenotypic plasticity of EGCs in the face of 
a dynamic environment [8]. Despite preliminary, the above 
findings herald the ENS as an active player in CRC. From a 
therapeutic perspective, understanding the molecular mecha-
nisms that allow functional adaptations of ENS signaling 
during tumorigenesis represents an exciting challenge.

Conclusions and future perspectives

The precise etiology of enteric neuropathies, IBD, DGBIs 
and CRC is unknown, and ascertaining if a malfunctioning 
cell type is the trigger in these disorders or instead a con-
sequence, is not always straightforward. Their heterogene-
ous presentation and multifactorial nature also withhold us 
from taking an ENS-centric view. However, alterations in 
the number of enteric neurons and neuronal subtype com-
position are implicated in enteric neuropathies, IBD, and 
DGBIs, though to a lesser extent, alluding that abnormali-
ties in genes or signaling pathways governing ENS circuits 
are universal across these disorders and may contribute 
to their pathogenesis. This is corroborated by the concur-
rence of IBD and IBS, the presence of IBS-like symptoms 
in IBD patients in apparent remission, the mutual mucosal 
immune activation and neurochemical coding alterations. 
Some of which is ultimately reflected in the interchange-
able application of in vivo models by researchers inves-
tigating both DGBIs and IBD. What is more, while it is 
well-established that the majority of mutations identified 
in HSCR are attributed to the RET signaling pathway, 
antagonizing RET signaling has now also been shown to 
attenuate post-inflammatory and visceral hypersensitiv-
ity in pre-clinical IBS studies [306]. Thus, by impacting 
motor, sensory and immune functions of the gut, albeit 
to a variable degree depending on the clinical phenotype, 
the absence or altered ratio of discrete ENS constituents 
seems to be a common denominator underpinning the 
characteristics of these disorders. This leads us to theorize 
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that the ENS may be accountable for a gamut of disorders 
extending from hypoganglionosis to conditions with an 
increased enteric neuron density (Fig. 1). Situated within 
the confines of this spectrum, subtle changes in the con-
nectivity of ENS circuits likely contribute to the patho-
physiology of gastrointestinal disorders. However, together 
with the arcane mechanisms of enteric neuron wiring, the 
ramifications of faulty ENS connections remain an under-
studied area. Carving a distinction between the involve-
ment of the ENS in these disorders is quite arduous as 
the functional-organic dichotomy between some enteric 
neuropathies, DGBIs and IBD is possibly archaic. Nev-
ertheless, a more comprehensive understanding of ENS 
development, function and its modes of failure could be 
crucial in our pursuit of establishing the foundations of 

some of these diseases and may point towards the endow-
ment of ENS factors responsible for their pathogenesis. 
Undeniably, gastrointestinal physiology is not solely reli-
ant on a normal ENS but is also influenced by multilateral 
interactions between the ENS and other systems such as 
the intestinal epithelia, immune system and microbiome. 
Evidence gathered in the past few years demonstrates that 
the neural-immune-microbiome entente, for which the 
assembly can be retraced to primitive species, is pivotal 
in a disease context as aberrations in their crosstalk result 
in variable degrees of abnormal gut function, exemplified 
in the described disorders.

Unified interdisciplinary efforts will be needed to fur-
ther disentangle the Daedalian biology of the ENS and its 
cross-talk with other cellular systems [21]. Coupling such 

Fig. 1   Graphical representation of gastrointestinal disorders from an 
enteric nervous system perspective. At homeostasis, enteric nervous 
system (ENS) components (enteric neurons and enteric glial cells) 
are exposed to and work in concert with the outer and inner microen-
vironment of the gut to regulate bowel motility, transmucosal move-
ment of fluids, immune responses and local blood flow. Dysfunctions 
in the ENS may be accountable for a gamut of disorders extending 
from hypoganglionosis (as observed in some enteric neuropathies) 
to conditions with a conceivable increased enteric innervation (colo-
rectal cancer). Within this spectrum, subtle changes in ENS circuits 
as well as alterations in the ENS-immune, ENS-epithelium/enter-

oendocrine axis and ENS-microbiota axis likely contribute to the 
pathophysiology of disorders of gut–brain interaction (DGBIs) and 
inflammatory bowel disorder (IBD). ENS-associated tissue resident 
macrophages are crucial for normal ENS function and play key roles 
across the disease spectrum. Defective maturation and altered num-
bers of macrophages have been documented in DGBIs and IBD. 
Also, higher mast cell numbers and mediators are present in DGBIs 
and IBD, while dysregulation of innate lymphoid cells-ENS circuits 
has been observed in IBD. Disturbances of the physiological microbi-
ome composition can be both a cause or consequence of these disor-
ders. Created with Biorender.com
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insights with in vivo gene editing strategies of candidate 
genes emanating from recent high-resolution transcrip-
tomic mapping and advances in human intestinal organoids 
[307, 308] together with novel live-cell imaging modali-
ties [309] will help consolidate the current platforms to 
model these disorders. In addition, the development of 
novel ENS-based therapeutic strategies warrants human 
studies to confirm the clinical relevance of experimental 
findings.
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