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Abstract

Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of
large populations of neurons relates to what an observer actually perceives. Since neurophysiological differen-
ces must underlie differences among percepts, differentiation analysis—quantifying distinct patterns of neuro-
physiological activity—has been proposed as an “inside-out” approach that addresses this question. This
methodology contrasts with “outside-in” approaches such as feature tuning and decoding analyses, which are
defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of
both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neu-
ronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolat-
eral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find
that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and
anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding
performance was far above chance and did not vary substantially across areas and layers. Differentiation also
differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the
ethological relevance of individual stimuli.
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Significance Statement

Much is known about how neurons encode stimuli in the visual system, yet it remains unclear how their ac-
tivity generates conscious percepts. Recent studies have linked differentiation of neural activity to subjec-
tive ratings of stimulus “meaningfulness” and the presence of consciousness itself. We systematically
surveyed different neuronal populations in mouse visual cortex and showed that activity in layers (L)2/3 of
the anterolateral and anteromedial areas is more differentiated in response to naturalistic movie stimuli com-
pared with meaningless phase-scrambled stimuli. Contrariwise, decoding performance was high and did
not vary substantially across populations. These findings advance our understanding of functional differen-
ces among layers and areas and highlight differentiation analysis as a theoretically-motivated approach that
can complement analyses that focus on stimulus encoding.
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Introduction
The visual system acts on incoming stimuli to extract

meaningful features and guide behavior, a process that
transforms physical input into conscious percepts. Since
the early experiments of Hubel and Wiesel (1959), neuro-
science has yielded considerable insight into the visual
system by analyzing neural response properties to un-
cover which features cells are tuned to and how their ac-
tivity relates to behavior. Modern decoding approaches
have revealed stimulus information in population re-
sponses (Quiroga and Panzeri, 2009). However, that a
population of neurons represents stimulus information
does not imply that this information is used to generate
conscious percepts (Brette, 2019). Consequently, despite
the success of these “outside-in” methods (Buzsáki,
2019) in understanding neural coding, it remains unclear
how the coordinated activity of large neuronal populations
relates to what the observer actually sees.
Is there an objective approach that can shed light on

this question? Differentiation analysis—measuring the ex-
tent to which a population of neurons expresses a rich
and varied repertoire of states—has been proposed as
one such approach (Boly et al., 2015; Mensen et al., 2017,
2018). Differentiation analysis exemplifies “inside-out”
methodology in that the spatiotemporal diversity of neural
activity (neurophysiological differentiation; ND) is quanti-
fied without reference to the stimulus or other experimen-
tal variables imposed a priori by the investigator, in
contrast to feature tuning or decoding analyses.
A visual stimulus can be considered meaningful to the

observer if it evokes rich and varied perceptual experien-
ces (phenomenological differentiation). For example, an
engaging movie is meaningful in this sense, as it evokes
many distinct percepts with high-level structure; con-
versely, flickering “TV noise” essentially evokes a single

percept with no high-level structure to a human observer,
although, at the level of pixels, any two frames of noise
are likely to be more different from each other than a pair
of frames from a movie (stimulus differentiation; SD).
Since conscious percepts are determined by brain states,
physical differences must underlie phenomenological dif-
ferentiation. Thus, one can expect measures of ND to cor-
relate with subjective perception of the “richness” or
“meaningfulness” of stimuli to the extent that such meas-
ures capture the relevant physical, i.e., neuronal, differen-
ces. This has indeed been shown in human studies using
fMRI and EEG (Boly et al., 2015; Mensen et al., 2017,
2018). Moreover, integrated information theory (IIT) posits
a fundamental relationship between ND and subjective
experience itself (Tononi, 2004; Oizumi et al., 2014;
Marshall et al., 2016; Tononi et al., 2016), and several
studies have shown that loss of ND is implicated in loss of
consciousness (Casali et al., 2013; Barttfeld et al., 2015;
Hudetz et al., 2015; Wenzel et al., 2019).
Although studies in human subjects suggest that ND

can provide a readout of stimulus-evoked phenomeno-
logical differentiation (Boly et al., 2015; Mensen et al.,
2017, 2018), the low spatial resolution of fMRI and EEG
has precluded identifying the cell populations that under-
lie this correspondence. A longstanding fundamental
question is which neuronal populations contribute directly
to generating conscious percepts (Koch et al., 2016;
Tononi et al., 2016; Mashour et al., 2020). Differentiation
analysis may shed light on this question, but to do so, it
must be applied to signals from specific populations of
neurons.
To address this gap, we used in vivo two-photon cal-

cium imaging in mice to measure ND evoked by naturalis-
tic and phase-scrambled movie stimuli in excitatory cell
populations in cortical layers (L)2/3, L4, and L5, across
five visual cortical areas: primary (V1), lateromedial (LM),
anterolateral (AL), posteromedial (PM), and anteromedial
(AM). We hypothesized that unscrambled naturalistic
stimuli, which presumably elicit meaningful visual per-
cepts, would evoke greater ND than their meaningless
phase-scrambled counterparts.
We find that unscrambled stimuli evoke greater ND than

scrambled stimuli specifically in L2/3 of areas AL and AM
and not in the other neuronal populations. We contrast
this layer-specific and area-specific finding with a decod-
ing analysis that shows that information about the stimu-
lus category, whether meaningful or meaningless, is
present in most populations. This highlights a key differ-
ence: ND is more plausibly correlated with stimulus mean-
ingfulness than the information measured by decoding,
since the latter may not be functionally relevant (Brette,
2019). Furthermore, we find differences in evoked ND
among the unscrambled stimuli that suggest that differen-
tiation analysis can probe meaningfulness of individual
stimuli.

Materials and Methods
Our experimental design is summarized in Figure 1. We

collected calcium imaging data from L2/3, L4, and L5 in
each of five visual areas (V1, LM, AL, PM, and AM) across
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Figure 1. Experimental design. A, Data were acquired using a standardized two-photon calcium imaging pipeline based on that de-
scribed in de Vries et al. (2020) and Groblewski et al. (2020; Materials and Methods). Briefly, a custom headframe was implanted;
ISI was performed to delineate retinotopically mapped visual areas; the mouse was habituated to the passive viewing paradigm
over the course of approximately twoweeks; and two-photon calcium imaging was performed in the left visual cortex while animals
viewed stimuli presented to the contralateral eye in several experimental sessions. B, Example of an ISI map. C, Schematic of the
two-photon imaging rig (reproduced with permission from Fig. 1D in de Vries et al. 2020). During the imaging sessions, head-fixed
mice were free to run on a rotating disk. Locomotion velocity was recorded and pupil diameter was extracted from video of the
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45 experimental sessions (nine mice, three per layer; L2/
3, two males; L4, three males; L5, one male; 15 sessions
per transgenic line; 9 sessions per area; 561 sessions
per mouse; number of cells shown in Extended Data Fig.
1-2). Areas V1, LM, AL, PM, and AM respectively corre-
spond to areas VISp, VISl, VISal, VISpm, and VISam in the
Mouse Brain Common Coordinate Framework v3 (Wang
et al., 2020). The two-photon calcium imaging pipeline is
described in detail in de Vries et al. (2020) and Groblewski
et al. (2020). All animal procedures were performed in ac-
cordance with the Allen Institute animal care committee’s
regulations.
Our sample size was selected on the basis of a pilot

study using existing, publicly available calcium imaging
data from the Allen Institute Brain Observatory (de Vries et
al., 2020). We measured spectral differentiation of re-
sponses to a movie stimulus (clips from the film Touch of
Evil) versus artificial stimuli (drifting gratings and locally
sparse noise) across eight experimental sessions, from
which we estimated that we required at least three ses-
sions per layer/area pair to have statistical power of at
least 0.8.

Transgenic mice
We maintained all mice on reverse 12/12 h dark/light

cycle following surgery and throughout the duration of the
experiment and performed all experiments during the
dark cycle. We used the transgenic mouse line Ai93, in
which GCaMP6f expression is dependent on the activity
of both Cre recombinase and the tetracycline controlled
transactivator protein (tTA; Madisen et al., 2010). Triple
transgenic mice (Ai93, tTA, Cre) were generated by first
crossing Ai93 mice with Camk2a-tTA mice, which prefer-
entially express tTA in forebrain excitatory neurons.
Cux2-CreERT2;Camk2a-tTA;Ai93(TITL-GCaMP6f) ex-

pression is regulated by the tamoxifen-inducible Cux2
promoter, induction of which results in Cre-mediated ex-
pression of GCaMP6f predominantly in superficial cortical
L2/3 and L4. Rorb-IRES2-Cre;Cam2a-tTA;Ai93 exhibit
GCaMP6f in excitatory neurons in cortical L4 (dense
patches) and L5 and L6 (sparse). Rbp4-Cre;Camk2a-tTA;
Ai93 exhibit GCaMP6f in excitatory neurons in cortical L5.
Calcium indicator kinetics did not differ between cell pop-
ulations (Extended Data Fig. 1-3).

Surgery
Transgenic mice expressing GCaMP6f were weaned

and genotyped at ;P21, and surgery was performed

between P37 and P63. The craniotomy was centered at
X = –2.8 mm and Y=1.3 mm with respect to lambda (cen-
tered over the left mouse visual cortex). A circular piece of
skull 5 mm in diameter was removed, and a durotomy was
performed. A coverslip stack (two 5-mm and one 7-mm glass
coverslips adhered together) was cemented in place with
Vetbond. Metabond cement was applied around the cranial
window inside the well to secure the glass window.

Intrinsic imaging
To define area boundaries and target in vivo two-photon

calcium imaging experiments to consistent retinotopic lo-
cations, retinotopic maps for each animal were created
using intrinsic signal imaging (ISI) while mice were lightly
anesthetized with 1–1.4% isoflurane. This procedure and
data processing pipeline are described in detail in de
Vries et al. (2020).

Habituation
Following successful ISI mapping, mice spent two

weeks being habituated to head fixation and visual stimu-
lation. During the second week, mice were head-fixed
and presented with visual stimuli, starting with 10min and
progressing to 50min of visual stimuli by the end of the
week. During this week they were exposed to the “mouse
montage 2” stimulus (see below, Stimuli).

Imaging
Calcium imaging was performed using a two-photon-

imaging instrument (Nikon A1R MP1). Laser excitation
was provided by a Ti:Sapphire laser (Chameleon Vision –

Coherent) at 910 nm. Mice were head-fixed on top of a ro-
tating disk and free to run at will. The screen center was
positioned 118.6 mm lateral, 86.2 mm anterior, and 31.6
mm dorsal to the right eye. The distance between the
screen and the eye was 15 cm. Movies were recorded at
30Hz using resonant scanners over a 400-mm field of
view.

Locomotion
Locomotion velocity was recorded from the running

wheel and preprocessed as follows. First, artifacts were
removed using custom code that iteratively identified
large positive or negative peaks (indicative of artifactual
discontinuities in the signal) in several passes of scipy.
signal.find_peaks (specific parameters were man-
ually chosen for each session). Remaining artifacts were

continued
animal’s right eye. D, Example frame from a two-photon movie. Imaging data were processed as described in de Vries et al. (2020)
to obtain DF/F0 traces. E, Schematic of the five visual areas targeted in this study. F, Ten randomized blocks of 12 30-s movie stim-
uli were presented; 4 s of mean-luminance gray was presented between stimuli. The first 60-s period was mean-luminance gray
(spontaneous activity); the second 60-s period was a high-contrast sparse noise stimulus (not analyzed in this work). G, Still frames
from the eight naturalistic (left) and four artificial (right) movie stimuli (see Materials and Methods, Stimuli). Two of the naturalistic stimu-
li, “mouse montage 1” and “mousecam,” were phase-scrambled to destroy high-level image features while closely matching low-
order statistics (see Materials and Methods, Phase scrambling; Extended Data Fig. 1-1). H, Representative calcium imaging and be-
havioral data. A heatmap of DF/F0 values is shown for 228 neurons simultaneously imaged in L2/3 of AL during presentation of four
stimuli, with locomotion velocity and normalized pupil diameter plotted below. Numbers of cells recorded from each layer and area are
listed in Extended Data Figure 1-2. Calcium indicator kinetics did not differ across cell populations (Extended Data Fig. 1-3).
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then manually removed by inspecting the resulting times-
eries and visually identifying clear discontinuities. The re-
moved samples were filled using linear interpolation
(pandas.Series.interpolate).
The resulting signal was then low-pass filtered at 1Hz

using a zero-phase fourth-order Butterworth filter
[scipy.signal.butter(2, 1/15, btype=’lowpass’,
output=’ba’, analog=False) applied with scipy.
signal.filtfilt].
For the effect size analysis, the fraction of time spent

running was calculated by binarizing the preprocessed
velocity timeseries at a threshold of 2.5 cm/s.

Pupillometry
Pupil diameter was extracted from video of the mouse’s

ipsilateral eye (relative to the stimulus presentation moni-
tor) using the AllenSDK (https://github.com/AllenInstitute/
AllenSDK) as described in de Vries et al. (2020).
Briefly, for each frame of the video an ellipse was fitted

to the region corresponding to the pupil as follows: a seed
point within the pupil was identified via convolution with a
black square; 18 rays were drawn starting at this seed
point, spaced 20° apart; the candidate boundary point be-
tween the pupil and iris along that ray was identified by a
change in pixel intensity above a session-specific thresh-
old; a RANSAC algorithm was used to fit the an ellipse to
the candidate boundary points using linear regression
with a conic section constraint; and fitted parameters of
the regression were converted to ellipse parameters (co-
ordinates of the center, lengths of the semi-major and
semi-minor axes, and angle of rotation with respect to the
x-axis). Pupil diameter was taken to be twice the semi-
major axis of the fitted ellipse.
The resulting timeseries contained some artifacts,

which we removed by the same combination of auto-
mated and manual methods used for the locomotion
timeseries (see above, Locomotion). Each pupil diameter
timeseries was then normalized by dividing by the maxi-
mum diameter that occurred within the 10 blocks of stim-
ulus presentations during that session.

Event detection
Discrete calcium events were detected from the DF/F0

traces using the L0-penalized method of Jewell and
Witten (2018) and Jewell et al. (2020). This procedure,
which replaces the continuous relative changes in fluores-
cence with discrete, real valued events, is described in
detail in de Vries et al. (2020); code is available at https://
github.com/AllenInstitute/visual_coding_2p_analysis/blob/
master/visual_coding_2p_analysis/l0_analysis.py.

Stimuli
We created twelve 30-s greyscale naturalistic and artifi-

cial movie stimuli.
The eight naturalistic stimuli (Extended Data Fig. 1-1,

top) consisted of three montages of six 5-s clips, spliced
together with jump cuts, and four continuous stimuli.
The “mouse montage 1” stimulus contained clips of con-
specifics, a snake, movement at ground level through

the underbrush of a wooded environment, and a cat ap-
proaching the camera. The “mouse montage 2” stimulus
contained different footage of movement through the
wooded environment; different footage of a cat approach-
ing the camera; conspecifics in a home cage filmed from
within the cage; crickets in a home cage filmed from with-
in the cage; footage of the interior of the home cage with
environmental enrichment (a shelter, running wheel, and
nestingmaterial); and a snake filmed at close range orienting
toward the camera. The “human montage” contained clips
of a man talking animatedly to an off-screen interviewer; a
café table where food is being served; automobile traffic on
a road viewed from above; a woman in the foreground tak-
ing a photograph of a city skyline; footage of a road filmed
from the passenger seat of a vehicle; and a close shot of a
bowl of fruit being tossed. The four continuous stimuli were:
footage of a snake at close range orienting toward the cam-
era; crickets in a home cage filmed from within the cage; a
man writing at a table; movement through a wooded envi-
ronment at ground level; and conspecifics in a home cage.
No two stimuli contained identical clips.
The four artificial stimuli (Extended Data Fig. 1-1, bot-

tom) consisted of two phase-scrambled versions of the
“mouse montage 1” stimulus, a phase-scrambled version
of the “mousecam” stimulus (see below, Phase scram-
bling), and a high-pass-filtered 1/f noise stimulus.
Stimuli were presented in a randomized block design

with 10 repetitions, with 4 s of static mean-luminance
gray presented between stimuli (Fig. 1F). 60 s of mean-
luminance gray (to record spontaneous activity) and a
60-s high-contrast sparse noise stimulus were also pre-
sented in the beginning of each session (not analyzed in
this work).

Phase scrambling
Two methods of phase scrambling were used: temporal

and spatial, described in detail below. Briefly, for the tempo-
ral scrambling we independently randomized the phase of
each pixel’s intensity timeseries in contiguous, nonoverlap-
ping windows of 1 s. For the spatial scrambling, we
randomized the phase of the spatial dimensions of the
three-dimensional spectrum of each window. The “mouse
montage 1” stimulus was phase-scrambled using both pro-
cedures to obtain the “mouse montage 1, temporal phase
scramble” and “mouse montage 1, spatial phase scramble”
stimuli. The “mousecam” stimulus was scrambled using the
spatial procedure to obtain the “mousecam, spatial phase
scramble” stimulus.

Temporal phase scramble
First, the stimuli were windowed into contiguous, nono-

verlapping 1-s segments (30 frames each). For each 1-s
window, we applied the following procedure:
We estimated the one-dimensional spectrum of each

pixel’s intensity timeseries with the discrete Fourier trans-
form (DFT) using the NumPy function numpy.fft.fft.
The phase and magnitude of each spectrum were com-
puted with numpy.angle and numpy.abs, respectively.
For each pixel, we generated a 14-element random vector
drawn uniformly from the interval [0, 2p ]. A randomized
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phase was then obtained for that pixel by concatenating
the first element of the original phase, the random vector,
the 15th element of the original phase, and the negative
reversed random vector. This yielded a 30-element phase
vector with the required conjugate symmetry of the spec-
trum of a 1-s real-valued signal sampled at 30 frames per
second. The randomized phase was then combined with the
spectral magnitude and transformed back into the time do-
main with the inverse DFT using numpy.fft.ifft, yielding
a temporally phase-scrambled version of that pixel’s intensity
timeseries. Each pixel’s timeseries was independently phase-
scrambled in this fashion.
This resulted in 30 independently phase-scrambled 1-s

windows. These windows were then concatenated to ob-
tain the full 30-s temporally phase-scrambled stimulus.

Spatial phase scramble
First, the stimuli were windowed into contiguous, nono-

verlapping 1-s segments (30 frames each). For each win-
dow, we applied the following procedure. The three-
dimensional Fourier spectrum (frame, width, and height)
was estimated with the DFT using numpy.fft.fftn. The
phase and magnitude of the spectrum were computed with
numpy.angle and numpy.abs, respectively. To randomize
the phase in the spatial dimensions, we generated a random
signal in the time domain with the same dimensions as a
stimulus frame (192 pixels wide by 120 pixels high) and
computed its phase in the frequency domain as described
above. This two-dimensional random spatial phase was
added to the spatial dimensions of the three-dimensional
stimulus phase. After being randomized in this way, the
stimulus phase was recombined with the spectral magni-
tude and transformed back into a time-domain signal with
the inverse DFT using numpy.fft.ifftn. The 30 resulting
phase-scrambled 1-s windows were then concatenated to
obtain the full 30-s spatially phase-scrambled stimulus.

Effect of phase scrambling
The greyscale movie stimuli were represented in the

stimulus presentation software as arrays of unsigned
eight-bit integers. The limitations of this representation re-
sulted in phase-scrambled stimuli with power spectra that
were close but not identical to the power spectrum of
their unscrambled counterparts.
Specifically, although the phase scrambling procedures

described above leave the power spectrum unchanged, they
do not necessarily preserve the range of the resulting real-val-
ued signal. In our case, applying these procedures to our
stimuli resulted in phase-scrambled stimuli in which the pixel
intensities occasionally lay outside the range [0, 255]. Thus, to
represent the phase-scrambled stimuli with eight-bit integers,
we truncated the result so that negative intensities were set
to 0 and intensities .255 were set to 255. This operation
does affect the power spectra, and as a result the spectra of
the unscrambled and scrambled stimuli are closely matched
but not equal.

Differentiation analysis
Spectral differentiation
Our analysis of the responses to the stimuli follows the

techniques developed in previous work in humans (Boly

et al., 2015; Mensen et al., 2017, 2018). The spectral dif-
ferentiation measure of ND used by Mensen et al. (2018)
was designed for analysis of timeseries responses to contin-
uous movie stimuli, and was found to be positively corre-
lated with subjective reports of stimulus “meaningfulness.”
We employed this measure with our calcium imaging data
on single-trial responses: (1) the DF/F0 trace of each cell dur-
ing stimulus presentation was divided into 1-s windows;
(2) the power spectrum of each window was estimated
using a Fourier transform; (3) the “neurophysiological
state” during each 1-s window was defined as a vector
in the high-dimensional space of cells and frequencies
(i.e., the concatenation of the power spectra in that win-
dow for each cell); (4) the ND in response to a given
stimulus was calculated as the median of the pairwise
Euclidean distances between every state that occurred
during the stimulus presentation. A schematic illustra-
tion is shown in Figure 2, and an illustration of how the
measure behaves for different types of signals is shown
in Extended Data Figure 2-1.
The relationship between action potentials and the re-

sulting calcium imaging signal is complex (Chen et al.,
2013; Deneux et al., 2016; Pachitariu et al., 2018;
Ledochowitsch et al., 2019; Wei et al., 2020; Huang et al.,
2021; Siegle et al., 2021a). The DF/F0 signal approxi-
mately represents a convolution of the underlying spike
train with the calcium-dependent fluorescence response
kernel, which depends nonlinearly on the spike rate. A
consequence of the nonlinearity is that calcium imaging is
much more sensitive to burst-like activity than to isolated
spikes. Since this convolution affects the spectral proper-
ties of the signal, some discussion of its impact on the
spectral differentiation measure is warranted. The energy
of the GCaMP6f response is concentrated in low frequen-
cies, so for our purposes, the effect of the convolution is
that differences among the spectral states are amplified
at lower frequencies and attenuated at higher frequen-
cies. Thus, when applied to the DF/F0 signal, the measure
will be less sensitive to short-timescale differences
between activity patterns than it would if it were applied
directly to the ground-truth spike train. This is not neces-
sarily a disadvantage, as our aim in using a spectral mea-
sure in the first place was to achieve temporal smoothing
to detect differences in temporal structure on the scale of
the state window size.
We normalized spectral differentiation values by the

square root of the number of cells in the recorded popula-
tion, reasoning as follows. Consider a hypothetical popu-
lation of cells that each exhibit the same temporal pattern
of activity. The spectral differentiation of such a popula-
tion will be proportional to the square root of its size
because the Euclidean distance is used to compare neu-
rophysiological states. If we have two such populations
differing only in the number of cells, their activity should
be considered equally differentiated for our purposes,
since their temporal patterns are identical; any differences
in spectral differentiation would be due to the (arbitrary)
number of cells captured in the imaging session. Thus, we
divided by the square root of the population size to re-
move this dependency.
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To investigate the properties of the signal that drive
differences in spectral differentiation, we applied the
measure to discrete L0 calcium events detected from the
DF/F0 traces (see above, Event detection) and obtained
similar results as in the main analysis (Extended Data Fig.
3-8). This indicates that the observed differences in spec-
tral differentiation are driven by differences in the large-
timescale patterns of responses rather than small-time-
scale spectral differences within the windows, consistent
with the sparsity of calcium responses in this dataset. We
also measured ND of DF/F0 traces with transients re-
moved. Transients were defined as the 200ms (six imag-
ing samples) following a L0 calcium event. This analysis
yielded similar results as well (Extended Data Fig. 3-9), in-
dicating that ND differences are not driven solely by initial
transients in the calcium response.
For the analysis of SD (Fig. 8), stimuli were first blurred

with a circular Gaussian filter whose half width at half
maximum was set to the median radius of a L2/3 V1 re-
ceptive field (RF) as measured by de Vries et al. (2020;
8.92°) to account for the coarseness of mouse vision. SD
was then calculated by treating each pixel of the stimulus
as a “cell” and applying the spectral differentiation mea-
sure to the traces of pixel intensities over time.

Multivariate differentiation
We also measured ND using a multivariate approach

that considers spatiotemporal differences in activity pat-
terns. For each experimental session, we selected DF/F0
traces recorded during presentations of unscrambled stimuli
and their scrambled counterparts and concatenated them to
obtain an m� n matrix of responses, where m is the num-
ber of two-photon imaging samples and n is the number of
traces. We used a nonlinear dimensionality reduction pro-
cedure, Uniform Manifold Approximation and Projection
for Dimension Reduction (Python package umap-learn;

McInnes et al., 2020), to reduce this matrix to m� 8 with
parameters UMAP(n_components =8, metric=“eu-
clidean”, n_neighbors=50, min_dist=0.5). Each
row of the resulting matrix was an 8-dimensional vector
that represented the state of the cell population during
the corresponding two-photon sample. We then
grouped the rows of the resulting matrix by stimulus pre-
sentation. Each row vector can be thought of as a point
in R8, so that each trial was associated with a cloud of
points corresponding to the population states that the
stimulus evoked during that presentation.
The intuition motivating this approach is that we can

operationalize the notion of ND by measuring the disper-
sion of this point cloud. The more distant two points are,
the more different are the corresponding responses of the
cell population; thus, if a stimulus evokes many different
population states, the point cloud will be more spread out
in response space. Therefore, we measured ND evoked
during each stimulus presentation by finding the centroid
of the associated point cloud and taking the mean
Euclidean distance of each point to the centroid.
In the multivariate differentiation analysis of calcium

events, population response vectors were obtained by sum-
ming event magnitudes within 1-s bins to match the defini-
tion of the neurophysiological state of the population used in
the spectral differentiation analyses. Because the event data
were sparse and because including many duplicate instan-
ces of the zero vector will reduce the sensitivity of the multi-
variate differentiation measure to differences among bins in
which the population was active, bins with no events were
discarded before the dimensionality reduction step.

Statistical analyses
All analyses were performed with custom Python and R

code, using numpy (Harris et al., 2020), scipy (Virtanen
et al., 2020), pandas (Reback, 2020), scikit-learn

Figure 2. Spectral differentiation analysis. ND was computed as follows. A, For each cell, the DF/F0 trace during stimulus presentation was
divided into 1-s windows. B, The power spectrum of each window was estimated. C, The “neurophysiological state” during each 1-s window
was defined as a vector in the high-dimensional space of cells and frequencies (i.e., the concatenation of the power spectra in that window
for each cell). D, The ND of the response to a given stimulus was calculated as the median of the pairwise Euclidean distances between every
state that occurred during the stimulus presentation. An illustration of how the measure behaves is shown in Extended Data Figure 2-1.
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(Pedregosa et al., 2011), matplotlib (Hunter, 2007),
seaborn (Waskom, 2020), lme4 (Bates et al., 2015),
multcomp (Hothorn et al., 2008), and emmeans (Lenth,
2020). See Table 2 for distributions of data, types of sta-
tistical test used, and confidence intervals.

Linear mixed effects (LME) models
For analysis of ND across all experimental sessions (Figs.

3, 5; Extended Data Figs. 3-1, 3-8, 3-9, 5-1), we employed
LMEmodels using the lmer function from the lme4 package
in R with REML = FALSE (Bates et al., 2015). The distributions
of ND values for both spectral and multivariate differentiation
measures were well-approximated by log-normal distribu-
tions, so we applied a logarithmic transformation to ND val-
ues before statistical modeling.
First, we fit a LME model with cortical layer, stimulus

category (unscrambled or scrambled), and their

interaction as fixed effects, with experimental session as
a random effect [lme4 formula: “differentiation ;
11layer * stimulus_category 1 (1 | session)”].
To test layer specificity, we then fit a reduced model
with the interaction removed [“differentiation ;
11layer 1 stimulus_category 1 (1 | session)”]
and used a likelihood ratio test to compare the two
models.
Next, we fit an LME model with cortical area, stimulus

category, and their interaction as fixed effects, with
experimental session as a random effect [lme4 for-
mula: “differentiation ; 11area * stimulus_-
category 1 (1 | session)”]. To test area specificity,
we fit a reduced model with the interaction removed
[“differentiation ; 11area 1 stimulus_cate-
gory 1 (1 | session)”] and used a likelihood ratio test
to compare the two models.

Figure 3. ND elicited by unscrambled versus scrambled stimuli is higher in L2/3 of areas AL and AM. The difference in ND of re-
sponses to unscrambled versus scrambled stimuli is plotted for each session by layer (A), area (B), and layer-area pair (C). Each
point represents the difference between the mean ND of responses to the two unscrambled and the three scrambled stimuli during
a single experimental session. Similar results were found contrasting naturalistic versus artificial stimuli across the entire stimulus
set (Extended Data Fig. 3-1). To demonstrate the robustness of this effect, we conducted several further analyses. Sensitivity analy-
ses showed similar findings for various choices of analysis parameters (Extended Data Figs. 3-2, 3-3, 3-4) and when pupil diameter
and locomotion were included as covariates in the LME models (Extended Data Figs. 3-5, 3-6, 3-7). We found similar results when
we performed the same analysis on discrete calcium events detected from the DF/F0 traces with an L0-regularized algorithm (see
Materials and Methods, Event detection), indicating that the effect is driven by differences in the large-timescale patterns of re-
sponses rather than small-timescale spectral differences within windows (Extended Data Fig. 3-8). Finally, we also found similar re-
sults when we removed event-triggered transients from the DF/F0 traces, indicating that the effect is not driven solely by initial
transients in the calcium response (Extended Data Fig. 3-9). A, B, Asterisks indicate significant post hoc one-sided z-tests in the
layer (A) and area (B) interaction LME models (*p,0.05; ***p, 0.001). Boxes indicate quartiles; whiskers indicate the minimum and
maximum of data lying within 1.5 times the interquartile range of the 25% or 75% quartiles; diamonds indicate observations outside
this range. C, Mean values are indicated by bars.
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To test for differences in ND among the unscrambled
continuous stimuli [“snake (predator),” “crickets (prey),”
“man writing,” “mousecam,” and “conspecifics”; Fig. 7],
we fit an LME model with stimulus as a fixed effect and
experimental session as a random effect [lme4 formula:
“differentiation ; 11stimulus 1 (1 | ses-
sion)”] and used a likelihood ratio test to compare this
to a reduced model without the stimulus term.
We visualized these results by plotting the difference in

mean ND for each experimental session; however, no
averaging was performed in the statistical analyses.

Post hoc tests
We performed post hoc one-sided z-tests to reject the

null hypothesis that mean ND for scrambled � mean ND
for unscrambled in favor of the alternative hypothesis that
mean ND for scrambled , mean ND for unscrambled
using the glht function from the multcomp package in R
on each LME model with contrasts between stimulus cat-
egories (unscrambled or scrambled) within each layer and
area, respectively. P values were adjusted for multiple
comparisons using the single-step method in multcomp
(Hothorn et al., 2008).
Post hoc two-sided z-tests for pairwise differences

among the unscrambled continuous stimuli were per-
formed with the emmeans function from the emmeans
package in R [“emmeans(model, pairwise ;
stimulus)”, with p values adjusted for multiple compari-
sons using Tukey’s method; Lenth, 2020].
For all post hoc tests, simultaneous 95% confidence in-

tervals (CIs) were obtained using the confint methods
of the respective model objects. Effect sizes are reported
as the Cohen’s d value for each pairwise comparison.
Cohen’s d was calculated with the pooled SD:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 � 1ð Þs 2
1 1 ðn2 � 1Þs 2

2

n1 1n2 � 2

s
:

Permutation tests
Permutation tests were performed for each experimen-

tal session to test whether spectral differentiation evoked
by unscrambled stimuli was greater than that evoked by
scrambled stimuli (Table 1). We obtained a null distribu-
tion by randomly permuting the trial labels (unscrambled
or scrambled) 20,000 times and computing the difference
in mean spectral differentiation on unscrambled and
scrambled trials for each permutation. P values were
computed as the fraction of permutations for which the
permuted difference was greater than the observed differ-
ence, and significance is reported at the level of a = 0.05.

Mediation analyses
Mediation analyses were conducted using the

mediation package in R (Tingley et al., 2019).
We analyzed whether the mean event magnitude during

a trial mediated the effect of stimulus category on differen-
tiation values by fitting LMEmodels for the mediator and out-
come, including arousal variables as covariates, and using
the mediate function [mediator model: “mean_magnitude;
11stimulus_type1 pupil_diameter1 locomotion

1 (1 | session)”; outcome model: “differentiation
; 11mean_magnitude 1 stimulus_type 1 pupil_-
diameter 1 locomotion 1 (1 | session)”; treatment:
“stimulus_category”; mediator: “mean_magnitude”].
This analysis assesses the contribution of the treatment varia-
bles on the outcome variable via each of two causal paths: (1)
stimulus category and arousal level affect the mean event
magnitude, which then in turn affects the measured ND
(mediated); and (2) stimulus category and arousal directly af-
fect the measured ND (direct).
For the analysis shown in Extended Data Figure 7-1, we fit

LME models for each arousal variable (locomotion and pupil
diameter) as a mediator, in each case including the other
arousal variable as a covariate [e.g., “locomotion ;
11stimulus 1 pupil_diameter 1 (1 | session)”],
and an outcome model [“differentiation ;
11stimulus 1 locomotion 1 pupil_diameter
1 (1 | session)”]. Mediation for a particular pair
was evaluated using the mediate function with the
“treat.value” and “control.value” arguments.
For each stimulus pair identified as eliciting signifi-
cantly different ND in our post hoc LME analyses, and
for each arousal variable, this analysis assesses the
contribution of the effect of stimulus on ND via each of
two causal paths: (1) the stimulus affects arousal as
measured by pupil diameter or locomotion, which then
in turn affects ND (mediated); and (2) stimulus directly
affects ND, independent of arousal level (direct).

Decoding analyses
For each experimental session, we decoded stimulus

category (unscrambled or scrambled) using linear dis-
criminant analysis with the Python package scikit-
learn (Pedregosa et al., 2011). First, the responses to
each category were concatenated to form an s � (n · t)
matrix, where s is the number of stimulus presentation tri-
als, n is the number of cells recorded, and t is the number
of two-photon imaging samples in a single trial. To obtain
a tractable number of features for linear discriminant
analysis, we used PCA to reduce the dimensionality of the
matrix such that the number of components c was suffi-
cient to retain 99% of the variance along the rows,
yielding an s� c matrix [sklearn.decomposition.
PCA(n_components = 0.99)]. This was then used to

Table 1: Permutation tests show increased ND for un-
scrambled versus scrambled stimuli in L2/3 of AL and AM
at the level of individual experimental sessions

V1 LM AL PM AM All areas
L2/3 1/3 1/3 3/3 0/3 3/3 8/15
L4 0/3 1/3 0/3 0/3 0/3 1/15
L5 0/3 0/3 0/2 0/3 0/3 0/14
All layers 1/9 2/9 3/8 0/9 3/9

Entries contain the fraction of sessions in which the mean ND of responses to
unscrambled stimuli was significantly greater than responses to their
scrambled counterparts at a threshold of a = 0.05. For each session, a null
distribution was obtained by randomly permuting trial labels (unscrambled or
scrambled) 20,000 times and computing the difference in mean ND on un-
scrambled and scrambled trials for each permutation. P values were com-
puted as the fraction of permutations for which the permuted difference was
greater than the observed difference.
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train a shrinkage-regularized LDA classifier with fivefold
cross-validation [sklearn.discriminant_analysis.
LinearDiscriminantAnalysis(solver=’lsqr’,
shrinkage=’auto’)]. We report the mean balanced ac-
curacy score (sklearn.metrics.balanced_accuracy_
score) on the heldout test data across cross-validation
folds. Chance performance is 0.5.
For Extended Data Figure 6-1, we used the same pro-

cedure as described above, but the classifier was trained
to decode stimulus identity rather than category; chance
performance is 1/12. For Extended Data Figure 7-2, we
used the same procedure but trained the classifier using
only responses to the five continuous naturalistic stimuli,
and classifier performance was evaluated for each stimu-
lus separately with the F1 score.

Code accessibility
The analysis code used in this work is freely available online

at https://github.com/wmayner/openscope-differentiation.
The code is also available as ExtendedData 1.

Results
Using in vivo two-photon calcium imaging (Fig. 1A–D),

we recorded from the left visual cortex of awake mice
while they passively viewed stimuli presented to the
contralateral eye. We used the transgenic mouse lines
Cux2, Rorb, and Rbp4, in which GCaMP6f is expressed in
excitatory neurons predominantly in L2/3, L4, and L5, re-
spectively (three mice each; Cux2, two males; Rorb, three
males; Rbp4, one male; see Materials and Methods,
Transgenic mice). Visual cortical areas were delineated
via ISI (Fig. 1B). Data were collected from L2/3, L4, and L5
in each of five areas (V1, LM, AL, PM, and AM; Fig. 1E)
across 45 experimental sessions (15 sessions per trans-
genic line; 9 sessions per area; 56 1 sessions per mouse;
number of cells shown in Extended Data Fig. 1-2). Mice
were head-fixed and free to move on a rotating disk while
pupil diameter and running velocity were recorded.
During each 70-min session, 12 30-s movie stimuli were
presented in a randomized block design with 10 repeti-
tions, with 4 s of mean-luminance gray shown between
stimulus presentations (Fig. 1F,G; Extended Data Fig. 1-
1). Stimuli were presented in greyscale but were not
otherwise modified (in particular, it should be noted that
spatial frequencies beyond the mouse acuity limit will ap-
pear blurred to the mice). Representative DF/F0 traces and
behavioral data are shown in Figure 1H. One imaging session
in L5 of AL was excluded from our analyses because of tech-
nical problems with the two-photon recording.
To measure ND, we employed a method from Mensen

et al. (2018) for analyzing a set of timeseries recorded dur-
ing the presentation of a continuous stimulus (Fig. 2).
Briefly, the power spectrum of each cell’s DF/F0 trace was
estimated in 1-s windows. The cells’ power spectra during
simultaneous windows were concatenated to form a vec-
tor representing the neurophysiological state of the popu-
lation during that window. We calculated ND for each trial
as the median Euclidean distance between the 30 popula-
tion states elicited over the course of the 30 s stimulus.
We computed distances in the frequency domain rather

than the time domain to focus on differences in overall
population state rather than differences in precise timing
of DF/F0 transients. To account for variability in the size of
the imaged populations we divided ND values by the
square root of the number of cells (see Materials and
Methods, Spectral differentiation). Spectral differentiation
is zero when the set of DF/F0 traces is perfectly periodic
with a period of 1 s (the window size), and it is high when
many traces exhibit temporally varied patterns across the
30 s (Extended Data Fig. 2-1). The measure scales with
the magnitude of the signal and thus has no well-defined
maximum.
To compare the differentiation of responses to naturalistic

and artificial stimuli, we generated Fourier phase-scrambled
versions of two of our movie stimuli. Phase-scrambling de-
stroys the naturalistic structure of the stimulus while closely
matching the power spectrum (the spectrum was not con-
served exactly because of numerical representational limita-
tions of the stimulus format; see Materials and Methods,
Phase scrambling). Note that operations that leave the
power spectrum of a signal unchanged will not affect its
spectral differentiation.
For the “mouse montage 1” stimulus (a montage of six

5-s naturalistic movie clips), we performed the phase-
scrambling in two ways: (1) along the temporal dimension,
on each pixel independently; and (2) along the two spatial
dimensions, on all pixels. For the “mousecam” stimulus (a
continuous 30-s clip of movement at ground level through
the underbrush of a forest) we performed only the spatial
phase-scrambling. This yielded two unscrambled stimuli
and three scrambled stimuli (Extended Data Fig. 1-1). The
full set of twelve stimuli was designed to span different
levels of putative ethological relevance; here, we focus on
the comparison of the unscrambled stimuli to their
scrambled versions because low-order stimulus statistics
are controlled and thus the contrast can be more easily
interpreted.

Unscrambled stimuli elicit more differentiated
responses compared with scrambled stimuli
We hypothesized that the unscrambled stimuli would

elicit higher ND than their phase-scrambled counterparts.
We tested this by fitting LME models with experimental
session as a random effect (see Materials and Methods,
LME models); mean differences in ND of responses to un-
scrambled versus scrambled stimuli are shown in Figure
3. We obtained similar results contrasting naturalistic ver-
sus artificial stimuli across the entire stimulus set
(Extended Data Fig. 3-1). ND values were approximately
log-normally distributed, so we applied a logarithmic
transform to ND in all statistical analyses (see Materials
and Methods, Statistical analyses).

Increased differentiation for unscrambled stimuli is
specific to excitatory cells in L2/3
We found that unscrambled stimuli elicited more differ-

entiated responses specifically in L2/3 (Fig. 3A). We fitted
an LME model with stimulus category (unscrambled or
scrambled), layer, and their interaction as fixed effects
and found a significant interaction (likelihood ratio test,
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x2(2) = 13.379, p=0.00124). Post hoc tests showed that
the unscrambled versus scrambled difference was specif-
ic to L2/3 [one-sided z-test; L2/3, z=3.866, p=1.66e–4,
Cohen’s d=0.164, 95% CI [0.051, 1)a; L4, z=0.191,
p=0.810, Cohen’s d=0.011, 95% CI [–0.057, 1)b; L5, z=
–1.168, p=0.998, Cohen’s d= –0.067, 95% CI [–0.100,
1)c; p values and CIs adjusted for multiple comparisons].

Increased differentiation for unscrambled stimuli is
specific to areas AL and AM
The increased ND in response to unscrambled stimuli

was area-specific (Fig. 3B). We fitted an LME model with
stimulus category, area, and their interaction as fixed ef-
fects and found a significant interaction (likelihood ratio
test, x2(4) = 15.203, p=0.00430). Post hoc tests showed
that the unscrambled versus scrambled difference was
specific to AL and AM [one-sided z-test; V1, z=0.704,
p=0.748, Cohen’s d=0.054, 95% CI [–0.061, 1)d; LM,
z= –0.234, p=0.989, Cohen’s d= –0.016, 95% CI
[–0.097, 1)e; AL, z=2.873, p=0.0101, Cohen’s d=0.200,
95% CI [0.022, 1)f; PM, z= –1.843, p. 0.999, Cohen’s
d= –0.122, 95% CI [–0.157, 1)g; AM, z=2.446, p=
0.0356, Cohen’s d=0.268, 95% CI [0.128, 1)h; adjusted
for multiple comparisons].
It is conceivable that these results are artifacts of our

implementation of the spectral differentiation measure. To
check the robustness of our findings, we performed a
sensitivity analysis in which we systematically varied (1)
the distance metric used to assess differences between
population states; (2) the window length that defines the
state of the neural population; (3) the frequency bin spac-
ing in the spectra; and (4) the window function and
amount of overlap used in the spectral estimation step
(Extended Data Figs. 3-2, 3-3, 3-4). The results were qual-
itatively the same for nearly all combinations of these pa-
rameters we tested.
Since arousal state modulates neuronal activity in visual

cortex (Niell and Stryker, 2010; Polack et al., 2013;
Reimer et al., 2014; McGinley et al., 2015b; Vinck et al.,
2015; Dadarlat and Stryker, 2017; Salkoff et al., 2020), the
increase in firing rates seen during periods of high arousal
raises the possibility that the differences in ND we ob-
served could be due to changes in arousal alone rather
than stimulus category. To rule this out, we repeated the
sensitivity analysis of our main results while including lo-
comotion and pupil diameter as covariates in the LME
models. Consistent with the simpler models, for nearly all
parameter combinations, L2/3 of AL and AM emerged as
the cell populations in which ND is greater for un-
scrambled versus scrambled stimuli (Extended Data Figs.
3-5, 3-6, 3-7), indicating that the measured arousal varia-
bles are insufficient to fully explain the differences in ND
we observed. We also analyzed whether the mean mag-
nitude of calcium events (a proxy for firing rate) medi-
ated the effect of stimulus category and found evidence
for both mediated and direct effects (mediated effect:
0.1351, 95% CI [0.0784, 0.20]i, p, 2e–16; direct effect:
0.0951, 95% CI [0.0400, 0.15]j, p = 0.002; proportion of
total effect mediated: 0.5898, 95% CI [0.3963, 0.80]k,
p, 2e–16). That is, unscrambled stimuli led to

increased ND relative to scrambled stimuli both di-
rectly, independent of mean event magnitude, and indi-
rectly, via increases in mean event magnitude that in
turn increased ND. Thus, while a portion of the effect of
stimulus category was mediated by changes in popula-
tion firing rate, this mediated effect is likewise insuffi-
cient to fully explain our results.

Permutation tests for individual experimental sessions
The above analysis shows that the mean ND elicited by

unscrambled stimuli is greater than that elicited by their
phase-scrambled counterparts, and that this effect is
driven by L2/3 cells in areas AL and AM. We also analyzed
ND at the level of individual sessions with nonparametric
permutation tests. For each session, we obtained a null
distribution by randomly permuting the trial labels (un-
scrambled or scrambled) 20,000 times and computing the
difference in mean ND on unscrambled versus scrambled
trials for each permutation. P values were computed as
the fraction of permutations for which the permuted differ-
ence was greater than the observed difference.
The results of the individual session analyses were

consistent with the LME analyses (Table 1). In all sessions
recorded from L2/3 of AL and AM, responses to un-
scrambled stimuli were significantly more differentiated
than to scrambled stimuli (p, 0.05).

Arousal is correlated with effect size
Locomotion and pupil diameter can be considered be-

havioral indications of engagement with the environment
(Bennett et al., 2013; Ganea et al., 2020; Jacobs et al.,
2020). We found that in L2/3 of AL and AM, effect sizes
were positively correlated with locomotion activity
(Pearson’s r=0.896; two-sided t test; t(4) = 4.030, p=
0.0157, 95% CI [0.308, 1.00]l; Fig. 4, top left) and pupil di-
ameter (r=0.716; t(4) = 2.054, p=0.109, 95% CI [–0.227,
1.00]m; Fig. 4, top right), suggesting that the difference in
ND is more clear when the animal is engaged. However,
we note that the relatively restricted range of observed
mean locomotion fraction and pupil diameter values in the
sessions of interest limits the generalizability of these
conclusions.

Multivariate analysis also shows increased
differentiation for unscrambled stimuli
Spectral differentiation is a univariate measure in the

sense that the coordinates of the population state vectors
are orthogonal, so that each squared difference term in
the Euclidean distance reflects differences only within a
given cell’s responses across time. To ensure that our re-
sults were not due to this method of measuring ND, we
also employed a multivariate approach that considers
spatiotemporal differences in activity patterns across the
cell population. For each session, the dimensionality of
the population response vectors was reduced to 8 using
UMAP (McInnes et al., 2020). In the resulting 8-dimen-
sional space, ND was measured as the mean Euclidean
distance to the centroid of the set of responses
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corresponding to that stimulus (see Materials and
Methods, Multivariate differentiation).
The results of the multivariate analysis were consistent

with those found using the spectral differentiation mea-
sure. The mean centroid distance was higher in response
to unscrambled compared to scrambled stimuli (Fig. 5),
and this effect was specific to L2/3 [layer � stimulus cate-
gory interaction: likelihood ratio test, x2(2) = 18.135, p=
1.154e–4; post hoc one-sided z-tests: L2/3, z=5.149,
p=3.92e–7, Cohen’s d=0.194, 95% CI [0.0181, 1)n;
L4, z=1.749, p=0.116, Cohen’s d=0.0994, 95% CI
[–0.00221, 1)o; L5, z= –0.938, p=0.995, Cohen’s d=
–0.0651, 95% CI [–0.0189, 1)p] and areas AL and AM
[area � stimulus category interaction: likelihood ratio test,
x2(4) = 16.232, p=0.00272; post hoc tests: V1, z=0.420,
p=0.872, Cohen’s d=0.0281, 95% CI [–0.0146, 1)q; LM,
z= –0.047, p=0.974, Cohen’s d= –0.00269, 95% CI
[–0.0182,1)r; AL, z=2.941, p=0.00816, Cohen’s d=0.184,
95% CI [0.00508, 1)s; PM, z=0.152, p=0.945, Cohen’s
d=0.0119, 95% CI [–0.0167, 1)t; AM, z=4.436, p=2.29e–
5, Cohen’s d=0.277, 95%CI [0.0163,1)u].
The multivariate differentiation measure is also suitable

for use on discrete data. To support our main findings, we
analyzed discrete calcium events detected from the DF/F0
traces with an L0-regularized algorithm (see Materials and
Methods, Event detection). The results of multivariate differ-
entiation analysis of these data were consistent with our re-
sults using DF/F0 traces (Extended Data Fig. 5-1), with the
additional finding of significantly greater differentiation for un-
scrambled versus scrambled stimuli in L2/3 of V1 as well as
AL and AM [layer � stimulus category interaction: likelihood

ratio test, x2(2)=15.029, p=0.000545; post hoc one-sided z-
tests: L2/3, z=5.337, p=1.42e–7, Cohen’s d=0.178, 95%
CI [0.0158, 1)v; L4, z=1.698, p=0.128, Cohen’s d=
0.0611, 95% CI [–0.00208, 1)w; L5, z= –0.124, p=0.909,
Cohen’s d= –0.00377, 95% CI [–0.0114,1)x; area � stimu-
lus category interaction: likelihood ratio test, x2(4) =20.854,
p=0.000339; post hoc tests: V1, z=3.132, p= 0.00434,
Cohen’s d=0.167, 95% CI [0.00516, 1)y; LM, z= –0.798,
p.0.999, Cohen’s d= –0.0451, 95% CI [–0.0198, 1)z; AL,
z=2.757, p=0.0145, Cohen’s d=0.100, 95% CI [0.00295,
1)aa; PM, z= –0.366, p=0.994, Cohen’s d = –0.0160,
95% CI [–0.0170, 1)bb; AM, z = 4.372, p = 3.07e–5,
Cohen’s d = 0.158, 95% CI [0.0130,1)cc].

Decoding analysis does not reveal layer or area
specificity
We next asked whether the layer and area specificity

of our ND results would be reflected in our ability to de-
code the stimulus category (unscrambled or scrambled)
from population responses. We performed fivefold
cross-validated linear discriminant analysis to decode
stimulus category for each session and scored the clas-
sifier using balanced accuracy (see Materials and
Methods, Decoding analyses). Decoding performance
was high for most areas and layers (Fig. 6), in contrast
to the unscrambled-scrambled difference in ND.
Performance was also high across layers and areas
when we decoded stimulus identity, rather than cate-
gory, using responses to all 12 stimuli (Extended Data
Fig. 6-1).

Figure 4. Effect sizes in L2/3 of AL and AM are larger in sessions with more locomotion and larger pupil diameter. Cohen’s d is plot-
ted against the fraction of locomotion activity (left column) and mean normalized pupil diameter (right column) during the session,
with linear fit in gray. Top row: only sessions recorded from L2/3 and areas AL or AM. Bottom row: all sessions (note different
scales). Top left: Pearson’s r=0.896 (two-sided t test; t(4) = 4.030, p=0.0157, 95% CI [0.308, 1.00]l). Top right: r=0.716 (t(4) = 2.054,
p=0.109, 95% CI [–0.227, 1.00]m). Running velocity .2.5 cm/s was considered locomotion activity (see Materials and Methods,
Locomotion). Normalized pupil diameter was obtained by dividing by the maximum diameter that occurred during the session (see
Materials and Methods, Pupillometry).
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Differences in ND among individual stimuli
We also investigated whether ND differed among stimu-

li within the same category. This analysis was restricted to
the set of unscrambled stimuli without jump cuts, i.e., the
five naturalistic continuous 30-s clips, to avoid potential
confounds in comparing stimuli with and without abrupt
transitions between different scenes. Here, we used data
from all layers and areas, since although responses from
L2/3 of AL and AM drove the unscrambled/scrambled dif-
ferences, within-category differences might not be re-
stricted to that subset. We fitted an LME model with
stimulus as a fixed effect and found it was significant (like-
lihood ratio test, x2(4) = 32.115, p=1.812e–6). Post hoc
pairwise two-sided z-tests (adjusted for multiple compari-
sons), shown in Figure 7, revealed that the predator stim-
ulus (a snake) evoked significantly higher differentiation
than clips of conspecifics (z=3.229, p=0.0110, Cohen’s
d=0.156, 95% CI [0.015, 0.180]dd), prey (crickets; z=
3.928, p=8.149e–4, Cohen’s d=0.181, 95% CI [0.036,
0.201]ee), and a man writing (z=5.249, p=1.522e–6, Cohen’s
d=0.232, 95% CI [0.076, 0.241]ff). The “mousecam” clip of
movement through a wooded environment also evoked sig-
nificantly higher differentiation than the clip of a man writing

(z=3.396, p=0.00615, Cohen’s d=0.154, 95% CI [0.020,
0.185]gg). Mediation analysis showed a mixture of direct and
arousal-mediated effects, indicating that changes in arousal
cannot fully account for these differences (Extended Data
Fig. 7-1). Here, we present the main effect of stimulus; for an
exploration of interactionswith layer and area, and a compari-
son to decoding, see Extended Data Figure 7-2.

SD does not explain ND
It is possible that ND does not reflect functionally rele-

vant visual processing but is instead merely inherited from
the differentiation of the stimulus itself. To rule out this
possibility, we computed the SD by treating each pixel of
the stimulus as a “cell” and applying the spectral differen-
tiation measure to the traces of pixel intensities over time
after blurring the stimulus to account for the coarseness of
mouse vision (see Materials and Methods, Spectral differen-
tiation). Within L2/3 of AL and AM, the mean ND elicited by
each stimulus was positively correlated with SD (Pearson’s
r=0.746, one-sided t test; t(10) =3.542, p=0.00267, 95% CI
[0.393, 1.00]hh; Fig. 8). However, the noise stimulus is a
highly influential observation (Cook’s D=2.318, an order of

Figure 5. Multivariate differentiation analysis. The mean difference in the mean centroid distance of responses to unscrambled ver-
sus scrambled stimuli is plotted for each session by layer (A), area (B), and layer-area pair (C). ND elicited by unscrambled versus
scrambled stimuli is higher in L2/3 and areas AL and AM, consistent with the spectral differentiation analysis. We found similar re-
sults when we analyzed discrete L0 calcium events detected from the DF/F0 traces (see Materials and Methods, Event detection;
Extended Data Fig. 5-1). A, B, Asterisks indicate significant post hoc one-sided z-tests in the layer (A) and area (B) interaction LME
models (**p, 0.01; ***p, 0.001). Boxes indicate quartiles; whiskers indicate the minimum and maximum of data lying within 1.5
times the interquartile range of the 25% or 75% quartiles; diamonds indicate observations outside this range. C, Mean values are in-
dicated by bars.
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magnitude larger than the next most influential observation).
If we exclude this stimulus, we find a weaker correlation
(r =0.258; one-sided t test; t(9) =0.801, p=0.222, 95% CI
[–0.307, 1.00]ii). Furthermore, there was no evidence of a re-
lationship with ND when considering only the scrambled
stimuli and their unscrambled counterparts (r = –0.378; two-
sided t test; t(3) = –0.708, p=0.530, 95%CI [–0.945, 0.756]jj).
Thus, we conclude that ND is not inherited from SD. We
also did not find a relationship with stimulus luminance, con-
trast, or spectral energy (Extended Data Fig. 8-1).

Discussion
Our results show that excitatory L2/3 neurons in visual

areas AL and AM have more differentiated responses to
stimuli with naturalistic structure than to phase-scrambled
stimuli with closely matched low-order statistics, indicat-
ing that these populations are uniquely sensitive to high-
level natural features in this stimulus set. We found this
difference at the level of single experimental sessions,
and it was robust to complementary methods of meas-
uring ND. Effect sizes were larger with increasing pupil di-
ameter and locomotion, suggesting sensitivity to the
animal’s arousal level. Decoding analysis showed a
marked lack of area and layer specificity: stimulus cate-
gory could be accurately decoded from the activity of
most cell populations we surveyed. In addition to the dif-
ferences between unscrambled and scrambled stimuli,
we found differences in ND among unscrambled stimuli.

Finally, we argued that ND is not merely inherited from the
differentiation of the stimulus.
The precise functional specialization of visual areas in

the mouse remains unclear (Glickfeld and Olsen, 2017).
Recent large-scale anatomical (Harris et al., 2019) and
functional (Siegle et al., 2021b) studies have uncovered a
“shallow hierarchy” in which V1 lies at the base, followed
by LM, RL, AL, and PM, with AM at the top. In this light,
our finding that ND in L2/3 of AL and AM is sensitive to
high-level naturalistic structure could be interpreted as
a reflection of hierarchical processing, which may be
constructing a richer dynamical repertoire for percep-
tion of naturalistic stimuli at higher hierarchical levels.
Interestingly, we did not find this effect in PM, despite
its intermediate position between AL and AM in the hi-
erarchy, suggesting that such hypothetical processing
toward richer repertoires is not fully determined by the
one-dimensional hierarchy, but may involve specific
pathways through subsets of visual areas. These ob-
servations indicate that differentiation analysis may
help refine our understanding of functional specializa-
tion of brain areas and uncover differences between
them that can be used to direct further investigations.
A recent study found that feedback projections from

higher visual areas to L2/3 excitatory neurons in V1 create
a second RF surrounding the feedforward RF and that
these RFs are mutually antagonistic, pointing to a role for
these neurons in predictive processing (Keller et al.,
2020). If this pattern is present at higher levels of the vis-
ual hierarchy, then the layer specificity we find could be
explained by a scenario in which feedback to AL and AM
from areas higher in the putative dorsal stream (Marshel
et al., 2011; Wang et al., 2012) are integrated with feedfor-
ward inputs in L2/3 to compute prediction errors about
high-level visual features. In this scenario, the naturalistic
stimuli, which contain high-level features that are presum-
ably less predictable, would elicit more prediction errors
and thus more differentiated activity.
Stimulus-evoked activity in cortex is modulated by

arousal level and behavioral state (McGinley et al., 2015b;
Salkoff et al., 2020). Locomotion is associated with
heightened arousal, increased membrane depolarization,
firing rates, and signal-to-noise ratio, and enhanced stim-
ulus encoding (Niell and Stryker, 2010; Bennett et al.,
2013; Polack et al., 2013; Vinck et al., 2015; Dadarlat and
Stryker, 2017). Pupil diameter can serve as an index of
arousal (McGinley et al., 2015a,b; Larsen and Waters,
2018). Larger pupil size is associated with increases in the
gain, amplitude, signal-to-noise ratio, and reliability of re-
sponses in V1 (Reimer et al., 2014). Thus, our finding that
increased pupil diameter and locomotion are associated
with larger effect sizes could be explained by an increase
in response gain or amplitude in V1 that is inherited by
downstream AL and AM: since the ND in these areas is
selective for naturalistic structure, increased bottom-up
drive could accentuate unscrambled-scrambled differen-
ces in ND.
Alternatively, response gain or amplitude in higher vis-

ual areas could be modulated directly by subcortical
arousal systems. The noradrenergic and cholinergic

Figure 6. Stimulus category (unscrambled or scrambled) can be
accurately decoded from most layers and areas. Each point
represents the mean fivefold cross-validated balanced accuracy
score of linear discriminant analysis performed on a single ses-
sion (see Materials and Methods, Decoding analyses). Chance
performance is 0.5. We found similar results when decoding
stimulus identity across all 12 stimuli (Extended Data Fig. 6-1).
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systems are likely candidates, although it is not clear why
noradrenergic modulation would cause an effect specific
to L2/3; as for cholinergic modulation, Pafundo et al.
(2016) showed that V1 and LM are differentially modu-
lated by basal forebrain stimulation such that the re-
sponse gain and reliability of excitatory L2/3 neurons was

enhanced in V1 but not in LM, despite an even distribution
of basal forebrain axons across all layers in both areas.
However, neuromodulatory regulation of activity in other
visual areas, in particular AL and AM, has not yet been
characterized in great detail. Another possibility is a top-
down effect, where increases in arousal and locomotion

Figure 7. Pairwise differences in ND among unscrambled, continuous stimuli. Post hoc pairwise comparisons using data from all
neuronal populations are plotted against their p values (adjusted for multiple comparisons). Boxes show mean ND for each stimulus.
ND of the “snake (predator)” stimulus is significantly greater than that of “crickets” and “man writing” at a threshold of a = 0.01, and
greater than “conspecifics” at a = 0.05. ND of the “mousecam” stimulus is greater than that of “man writing” at a = 0.01. Mediation
analysis showed a mixture of direct and arousal-mediated effects, indicating that changes in arousal cannot fully account for these
differences (Extended Data Fig. 7-1). Pairwise differences in ND and decoding performance stratified by layer and area are shown in
Extended Data Figure 7-2.

Figure 8. SD does not explain ND. Mean ND elicited by each stimulus in L2/3 of AL and AM, plotted against SD. SD was computed
by treating each pixel of the movie as a “cell” and applying the spectral differentiation measure to traces of pixel intensities over
time after blurring the movie with a Gaussian filter to account for the coarseness of mouse vision. Across all stimuli, mean ND is
positively correlated with SD (Pearson’s r=0.746; one-sided t test; t(10) = 3.542, p=0.00267, 95% CI [0.393, 1.00]hh). However, here
the noise stimulus is a highly influential observation (Cook’s D=2.318, an order of magnitude larger than the next most influential
observation). With the noise stimulus excluded, the correlation is weaker (r = 0.258; one-sided t test; t(9) = 0.801, p=0.222, 95% CI
[–0.307, 1.00]ii). Moreover, there was no evidence of a relationship with ND when considering only the scrambled stimuli and their
unscrambled counterparts (r = –0.378; two-sided t test; t(3) = –0.708, p = 0.523, 95% CI [–0.945, 0.756]jj). ND was also not explained
by variation in stimulus luminance, contrast, or spectral energy (Extended Data Fig. 8-1).
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reflect increased attentional engagement that favors
processing of high-level stimulus features, selectively in-
creasing ND for the unscrambled stimuli. In the passive
viewing paradigm employed here, in which the animal is
not motivated to attend to the stimuli, the top-down mod-
ulation of sensory processing may vary considerably
across the experimental session as arousal and attention
fluctuate.
Although differentiation analysis revealed area-specific

and layer-specific differences in responses to un-
scrambled and phase-scrambled stimuli, our ability to de-
code stimulus category from neural responses was
remarkably similar across areas and layers. These find-
ings are consistent with a growing literature that reveals a
dissociation between encoding and function (Erlich et al.,
2015; Katz et al., 2016; Tsunada et al., 2016; Liu and
Pack, 2017; Jin and Glickfeld, 2020; Zatka-Haas et al.,
2021). The contrast between our ND and decoding results
highlights an important distinction: decoding reveals in-
formation content, but this information is necessarily
measured from the extrinsic perspective (Tononi, 2004;
Oizumi et al., 2014; Tononi et al., 2016; Buzsáki, 2019).
The presence of information about a stimulus in a neural

circuit does not imply that the information is functionally
relevant (Brette, 2019). As an extreme example, stimulus
category would presumably be perfectly decodable from
photons impinging on the retina, but this would reveal
nothing of interest about perception. By contrast, ND is
an intrinsic measure defined without reference to a stimu-
lus (Boly et al., 2015; Mensen et al., 2017, 2018). In the
brain, a complex evolved system in which activity is ener-
getically costly, ND may be a signature of functionally rel-
evant dynamics. The dissociation we find between ND
and decoding indicates that differentiation analysis can
point to populations of interest that are not revealed by
detecting stimulus information.
Finally, we also found that the predator stimulus and

the “mousecam” stimulus elicited significantly higher ND
than other unscrambled continuous stimuli. The predator
stimulus finding is intriguing because that stimulus has
lower luminance, contrast, and spectral energy than the
clip of conspecifics in a home cage (Extended Data Fig.
8-1); given the importance of detecting natural predators,
the high ND evoked by this stimulus may reflect its sali-
ence to the visual system, driven by high-level features
such as the presence of the predator rather than low-
order stimulus statistics. This also demonstrates that
differentiation analysis can probe differences in visual re-
sponses at the level of individual stimuli.
It is important to note the limitations of these data. First,

calcium imaging provides an imperfect proxy for neuronal
activity. The fluorescence signal from calcium indicators
is more sensitive to bursts of spikes than sparse, low-fre-
quency spiking (Chen et al., 2013; Pachitariu et al., 2018;
Ledochowitsch et al., 2019; Wei et al., 2020; Huang et al.,
2021; Siegle et al., 2021a). Such sparse activity may con-
tribute to ND but would not be present in this dataset.
However, given the typically sparse spiking activity of
L2/3 excitatory neurons compared with deeper layers
(Barth and Poulet, 2012), it is possible that this limitation
only obscures even stronger L2/3 specificity. Second, for
this exploratory study we used a range of naturalistic
stimuli and a limited number of phase-scrambled control
stimuli to include diverse high-level features. Future stud-
ies could test our findings using a larger set of artificial
stimuli controlling for other low-level characteristics, e.g.,
optical flow, in addition to the power spectrum. Third, the
restricted range of the average arousal measures we ob-
served in our experiments in L2/3 of AL and AM limits the
generalizability of the association we observed between
effect size and arousal state. Fourth, while we observed
medium to very large effect sizes within individual experi-
mental sessions in L2/3 of AL and AM (Cohen’s d=0.57–
1.25), the overall effect was relatively subtle (Cohen’s
d=0.34) because of variability in ND values across ses-
sions. There was also considerable variability in arousal
state and locomotor activity across trials. To the extent
that these factors modulate effect size, future work might
uncover larger effects by employing an active paradigm
where the animal is motivated to attend to the stimuli.
In summary, we measured stimulus-evoked differentia-

tion of neural activity with cellular resolution and found
increased ND in response to unscrambled versus

Table 2: Statistics

Data structure Type of test 95% CI
a Normal z (one-sided) [0.051, 1)
b Normal z (one-sided) [–0.057, 1)
c Normal z (one-sided) [–0.100, 1)
d Normal z (one-sided) [–0.061, 1)
e Normal z (one-sided) [–0.097, 1)
f Normal z (one-sided) [0.022, 1)
g Normal z (one-sided) [–0.157, 1)
h Normal z (one-sided) [0.128, 1)
i Normal Imai et al. (2010) [0.0784, 0.20]
j Normal Imai et al. (2010) [0.0400, 0.15]
k Normal Imai et al. (2010) [0.3963, 0.80]
l Normal t (two-sided) [0.308, 1.00]
m Normal t (two-sided) [–0.227, 1.00]
n Normal z (one-sided) [0.0180, 1)
o Normal z (one-sided) [–0.00221, 1)
p Normal z (one-sided) [–0.0189, 1)
q Normal z (one-sided) [–0.0146, 1)
r Normal z (one-sided) [–0.0182, 1)
s Normal z (one-sided) [0.00507, 1)
t Normal z (one-sided) [–0.0167, 1)
u Normal z (one-sided) [0.0163, 1)
v Normal z (one-sided) [0.0158, 1)
w Normal z (one-sided) [–0.00208, 1)
x Normal z (one-sided) [–0.0114, 1)
y Normal z (one-sided) [0.00516, 1)
z Normal z (one-sided) [–0.0198, 1)
aa Normal z (one-sided) [0.00295, 1)
bb Normal z (one-sided) [–0.0170, 1)
cc Normal z (one-sided) [0.0130, 1)
dd Normal t (two-sided) [0.015, 0.180]
ee Normal t (two-sided) [0.036, 0.201]
ff Normal t (two-sided) [0.076, 0.241]
gg Normal t (two-sided) [0.020, 0.185]
hh Normal t (one-sided) [0.393, 1.00]
ii Normal t (one-sided) [–0.307, 1.00]
jj Normal t (two-sided) [–0.945, 0.756]
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scrambled stimuli. This effect was specific to L2/3 ex-
citatory cells in AL and AM and was enhanced at higher
arousal levels. To our knowledge, this study is the first
to systematically measure stimulus-evoked differen-
tiation with cellular resolution across multiple cortical
areas and layers. These results advance our under-
standing of the functional differences among visual
areas, and future work should integrate our findings
into the emerging picture of a shallow hierarchy in the
mouse visual system, for example by investigating po-
tential differences in neuromodulation among areas or
the contrast between AL/AM and PM. Differentiation
analysis is motivated by IIT, and provides an intrinsic,
“inside-out” analytical approach that complements ex-
trinsic, “outside-in” measures such as decoding per-
formance, which in this dataset did not distinguish
specific cell populations. This method can be used to
compare individual stimuli and may provide a readout
of the degree to which a given stimulus induces a
rich and varied perceptual experience. Future studies
should investigate stimulus-evoked differentiation with
cellular resolution in humans and nonhuman primates,
where subjective reports are available, and thereby de-
termine the contributions of distinct cell populations to
ND while correlating ND with phenomenology.
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