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Abstract

Obesity is now a worldwide pandemic. The usual explanation given for the prevalence of 
obesity is that it results from consumption of a calorie dense diet coupled with physical 
inactivity. However, this model inadequately explains rising obesity in adults and in 
children over the past few decades, indicating that other factors must be important 
contributors. An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture 
that interferes with any aspect of hormone action. EDCs have become pervasive in our 
environment, allowing humans to be exposed daily through ingestion, inhalation, and 
direct dermal contact. Exposure to EDCs has been causally linked with obesity in model 
organisms and associated with obesity occurrence in humans. Obesogens promote 
adipogenesis and obesity, in vivo, by a variety of mechanisms. The environmental obesogen 
model holds that exposure to obesogens elicits a predisposition to obesity and that such 
exposures may be an important yet overlooked factor in the obesity pandemic. Effects 
produced by EDCs and obesogen exposure may be passed to subsequent, unexposed 
generations. This “generational toxicology” is not currently factored into risk assessment 
by regulators but may be another important factor in the obesity pandemic as well as 
in the worldwide increases in the incidence of noncommunicable diseases that plague 
populations everywhere. This review addresses the current evidence on how obesogens 
affect body mass, discusses long-known chemicals that have been more recently identified 
as obesogens, and how the accumulated knowledge can help identify EDCs hazards.

Introduction

The incidence of obesity around the world has tripled 
since the 1970s, affecting more than 650 million people 
(1). Within the United States alone, 39.8% of adults 
(93.3 million) aged 20 and over, along with 18.5% (41 
million) of youth aged 2–19 are classified as obese (2, 3, 4). 
Imbalance between caloric intake and energy expenditure 
has always been the major explanation given for weight 
gain and obesity. If the uptake in caloric dense food is 
greater than the energy expenditure, it is expected that 
the accumulation of fat will increase in direct proportion 
to this imbalance. However, different lines of evidence 
challenge the energy balance model as a full explanation 
for weight gain. For example, the nature of calories 

consumed seems to be more important than the total 
number of calories. Recent studies reported that the 
glycemic load of carbohydrate calories consumed (high 
vs low glycemic load) was a more important predictor of 
weight gain than was the total number of calories from 
carbohydrate (5, 6). With respect to caloric intake, NHANES 
data demonstrated that US adults are largely following 
the dietary guidelines distributed by the American Heart 
Association, the US Department of Agriculture and Health 
and Human Services for the last 40 years (7, 8). From 1965 
to 2011, average dietary fat consumption decreased from 
45 to 34% in US adults, with carbohydrate consumption 
increasing from 39 to 51%. Despite these recommended 
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dietary shifts, the average BMI for men and women  
has increased from to 29 kg/m2 over this same time  
period (8, 9). 

Rather than physical activity decreasing, a study 
analyzing data from the US National Health and Nutrition 
Examination Study (NHANES) between 1988 and 2006 
reported that leisure time physical activity has increased 
by 47% in males and 120% in females over this time period 
(10). This study additionally showed that that for an 
equivalent amount of caloric consumption and physical 
activity, adults in 2006 had a BMI 2.3 kg/m2 higher than 
did adults in 1988 (10). However, the impact of changes 
in physical activity pattern trends over the last decades in 
the obesity epidemics is not straightforward. In parallel 
with the increase in leisure physical activity, a decrease 
in occupational physical activity has been reported (11).

Genetics is widely believed to be associated with 
obesity, and around 40–70% of inter-individual BMI 
variability is considered heritable (12, 13). Genome-wide 
association studies have revealed that BMI is affected by 
many loci, each with small effect sizes (14). However, 
the known gene variants can only explain 2.7% of the 
individual variation in BMI (15). Despite the significance 
of genetic factors for weight gain, the two most commonly 
given explanations for the substantial increases in obesity 
incidence observed worldwide – genetics and energy 
balance – cannot fully explain it. 

Several environmental factors are known to impact 
obesity susceptibility (reviewed in 16, 17). These include 
stress (18), disrupted circadian rhythms (19), the 
composition of the gut microbiome (bacterial diversity, 
balance of bacterial types and the particular species 
found) (20, 21), air pollution from proximity to highways 
(22), disrupted circadian rhythms and time and frequency 
of eating (23) to name a few. Notably, the sensitivity to 
such environmental stressors is enhanced during critical 
windows of development, and exposure within these 
periods may lead to increased obesity risk later in life (16).

On a physiopathological basis, obesity is defined as an 
abnormal or excessive accumulation of adipose tissue that 
presents a health risk (24). It has long been acknowledged 
that fat distribution rather than its total amount is more 
closely linked to obesity-related morbidity and mortality. 
White adipose tissue (WAT) surrounding abdominal 
viscera in the mesentery and omentum, known as visceral 
WAT, poses a greater health risk than WAT in S.C. areas, 
known as S.C. WAT (25). Visceral and S.C. WAT differ 
in functional features, such as regulation of triglyceride 
storage and release, and production of adipokines (26). 
Moreover, WAT is a sexually dimorphic endocrine organ. 

Men tend to have more visceral fat whereas women 
have more S.C. fat stores. Visceral fat is associated with 
a higher risk of diabetes largely due to the production of 
proinflammatory cytokines, which contribute to insulin 
resistance. In contrast, S.C. fat protects against impaired 
glucose metabolism and lessens the risk of heart disease, 
hypertension, stroke, and diabetes in women (27). The 
number of adipocytes is determined mostly from prenatal 
life through adolescence (28, 29). However, there is 
increasing evidence that expansion of WAT mass occurring 
during the development of obesity in adulthood results 
both from increased white adipocyte size (hypertrophy) 
and from an increase in adipocyte number (hyperplasia) 
(30). Moreover, the manner through which WAT 
expands in response to positive energy balance is most  
likely dependent upon the depot location (31, 32) and 
gender (33).

Obesity is a risk factor for other diseases including type 
2 diabetes, cardiovascular disease, cancers, hypertension, 
and asthma (reviewed in 17). In addition, obese individuals 
have a higher prevalence of mental illnesses including 
depression, eating disorders, anxiety, and low self-esteem 
(34, 35). The rising incidence of obesity and its associated 
comorbidities have greatly increased national health 
care costs. In 2008, an estimated $147 billion US dollars 
was spent to cover the average medical cost of obesity 
within the US. Since then, national health care costs 
have risen to $208 billion annually (36). More directly, 
medical costs for obese individuals are $1429 higher than  
those of healthy weight, costing around $3508 per  
obese adult (37). 

Beyond the usual explanations for obesity

In addition to energy balance, weight gain can be influenced 
by a variety of complex ‘environmental factors’ (broadly 
defined). These can include socio-economic status, family 
lifestyle, workplace culture, and urban design (the ‘built 
environment’). Coupled with inadequate physical activity 
and nutritional imbalance, these may explain some of 
the obesity pandemic (35). However, it is hard to argue 
that these alone are the main contributors to obesity. The 
prevalence of obesity is increasing in children as well as in 
adults. The percentage of obese children aged 2–5 years has 
doubled from 5 to 13.9% and quadrupled in ages 12–19 
from 5 to 20.6% (3). Currently, there are an estimated 
107.7 million children worldwide under the age of 20 that 
are considered obese, including those under the age of 2 
(1). Unless the average infant consumes more calories and 
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exercises less than previous generations, it may have been 
born with more fat due to an alteration in the prenatal 
or early postnatal environment. In addition, animals that 
reside within human-influenced environments (pets, 
laboratory animals, and feral rats in cities) have also 
exhibited increases in obesity over the past decades. This 
includes animals maintained in research colonies where 
food intake is regulated (38). A reasonable inference is that 
something has changed within the environment in which 
humans and animals reside, independent of overeating 
and sedentary lifestyle of obesity. 

The intrauterine environment and 
predisposition to obesity

Environmental stressors experienced during fetal 
development can have profound effects later in life. For 
example, mothers that were in their first and second 
trimester of pregnancy during the Dutch Hunger Winter 
of 1944–1945 gave birth to children that were predisposed to 
obesity later in life compared with the children of mothers 
who had not experienced famine during pregnancy (39). 
Maternal smoking during pregnancy is a much studied 
and well-established risk factor for obesity in the exposed 
offspring (reviewed in 40).

Fetal experience within the intrauterine environment 
has the potential to increase the risk of disease via alterations 
in metabolic programming, hormonal control, and gene 
regulation (41). Not only poor prenatal nutrition but also 
maternal obesity (presumably reflecting excess prenatal 
nutrition) can lead to life-long health consequences, 
including obesity (42). This phenomenon was first 
referred to as ‘fetal programming’ by David Barker who 
suggested that there were associations between changes 
in the intrauterine environment and adverse health 
outcomes in adults. Ultimately, prenatal programming 
led to the development of Barker’s ‘thrifty phenotype 
hypothesis’ (43), which proposed that malnutrition,  
in utero, programed the fetus to use calories sparingly later 
in life. If the postnatal environment is calorie-rich, this 
mismatch between the thrifty phenotype and abundant 
calories leads to adverse outcomes such as obesity. 

The ‘Developmental Origins of Health and Disease’ 
(DOHaD) model was proposed to account for the 
observation that developmental programming continues 
throughout early life, rather than simply during gestation 
and that this programming is critical for the establishment 
of adult physiology (44, 45, 46). The DOHaD hypothesis 
holds that exposure to poor nutrition, stress, hormonal 

shifts and other disruptions during early life can lead to 
long-term physiological adaptations that can permanently 
influence health and disease susceptibility (42, 44, 45). 
All of these stressors can modify the neuroendocrine 
programming that regulates growth, fuel homeostasis, 
appetite, and adipocyte differentiation, leading to 
increased risk of obesity (47, 48, 49, 50). Also, it has 
become quite clear that chemical exposures are another 
important factor in DOHaD (17). 

Endocrine-disrupting chemicals

The endocrine system ultimately modulates function in 
tissues that regulate weight and metabolism. Endocrine 
hormones such as insulin, thyroid hormone, estrogens, 
and androgens are well known to regulate pathways that 
control the number and size of adipocytes and a variety 
of peptide hormones regulate appetite and satiety. These 
have been reviewed in great detail elsewhere (e.g. 17). 
The Endocrine Society defined an endocrine-disrupting 
chemical (EDC) as an exogenous chemical, or mixture 
that interferes with any aspect of hormone action (51). 
This differs somewhat from the toxicological definition 
of an EDC which adds the additional requirement that 
exposure must cause adverse effects in an intact organism. 
To an endocrinologist, disruption of endocrine function 
is adverse; per se. The key characteristics of EDCs have 
been defined in order to facilitate hazard identification 
(52). EDCs have become pervasive contaminants in 
our environment and human exposure can result from 
agrochemicals, food, pharmaceutical drugs, personal 
care products, medical equipment and even children’s 
toys (53, 54, 55). The presence of EDCs in commonly 
used products ensures that humans will be exposed on 
a daily basis via ingestion, inhalation, or direct dermal 
contact (54, 56). Epidemiological studies have established 
links between exposure to EDCs and detrimental effects 
on the endocrine system, leading to neural, metabolic, 
and fertility defects (54). EDCs can act through a diverse 
array of hormonal signaling mechanisms to influence 
physiology (55, 57). 

Nuclear hormone receptors were the original ‘targets’ 
defined for endocrine disruptors. These receptors 
comprise a superfamily of ligand-regulated transcription 
factors sharing a modular domain structure consisting 
of a variable N-terminal A/B domain, a conserved DNA-
binding domain, a hinge region, and a C-terminal 
ligand-binding domain harboring a hydrophobic ligand-
binding pocket that can accommodate a variety of 
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small lipophilic endogenous and exogenous molecules 
(58). There are 48 genes that encode nuclear hormone 
receptors in the human genome, and the ligands 
regulating the transcription activity of many receptors 
have been identified (59). Therefore, it should be self-
evident that many of these ligand-modulated hormonal 
signaling pathways will also be susceptible to interference  
from EDCs. 

Among these are key players in development and 
physiology such as the glucocorticoid receptor (GR), 
progesterone receptor (PR), retinoic acid receptors 
(RARα,β,γ), the 9-cis retinoic acid receptor (RXRα,β,γ), the 
peroxisome proliferator activated receptors (PPARα,β/δ, 
γ) and the liver ‘X’ receptor (LXRα,β). In principle there 
is no reason to exclude the possibility that most, if not 
all members of the nuclear receptor superfamily can 
be EDC targets, in addition to other ligand-mediated 
transcription factors such as the aryl hydrocarbon 
receptor (60). It is also possible that EDCs could disrupt 
any of the thousands of cellular signaling pathways 
that are modulated by peptides or small molecules. 
The emerging concept of ‘signal toxicity’ opens the 
possibility that there may be hundreds to thousands 
of pathways targeted by EDCs (61). In agreement with 
this concept, the so-called EATs paradigm that defined 
EDCs as chemicals that disrupted estrogen, androgen or 
thyroid hormone signaling (62) is currently considered 
inadequate. Therefore, it is being increasingly discussed 
that screening approaches for EDCs should include a 
wider range of cellular signaling pathways. This has been 
extensively reviewed elsewhere (52) and is beyond the 
scope of this review. 

Endocrine-disrupting chemicals as obesogens

The term ‘obesogen’ was coined to describe chemicals 
(including EDCs) that can promote obesity in humans and 
animals. Multiple studies have causally linked exposure 
to EDCs and obesity development in model organisms, 
either independently or by increasing susceptibility to 
other factors such as high-fat diet. In humans, data from 
observational studies indicate that many EDCs known 
for their obesogenic effect in animals are associated 
with increased obesity prevalence (63). However, the 
association between specific EDCs and body weight in 
humans should be interpreted with caution since there 
is simultaneous exposure to a broad range of EDCs, in 
addition to other environmental factors that increase 
obesity risk.

Obesogens can act directly on adipocytes to increase 
their number, promote fat storage in existing adipocytes, 
or produce dysfunctional adipocytes. Obesogens can also 
indirectly increase adiposity by multiple mechanisms, 
such as disruption of metabolism and appetite control 
(reviewed in 16, 17, 64), alteration of metabolic setpoints, 
induction of unfavorable changes in microbiome 
composition, and increasing the fraction of caloric intake 
that is stored as fat (reviewed in 16).

Sensitivity to the obesogenic effects of EDCs is 
particularly high when exposure occurs within critical 
developmental windows. This is because the fetus and 
infant have unique features that lead to higher tissue 
exposure than adults, such as lower expression of 
cytochrome P450 enzymes that metabolize xenobiotics 
(65). Moreover, early life is a developmentally plastic 
stage in which a wide range of processes are programmed 
by hormone signaling pathways (63) and can respond 
and adapt to physiological challenges. This ability also 
enhances the susceptibility to environmental stressors 
such as EDCs, which may lead to long-term alterations 
in various systems, ultimately resulting in increased 
obesity risk later in life. Indeed, early-life exposure to 
obesogens may reprogram physiological processes that 
are critical determinants of body mass, including energy 
metabolism, appetite control, and adipogenesis, leading 
to a thrifty phenotype and increasing the susceptibility 
to weight gain.

The obesogenic effect of early-life exposure to EDCs is 
supported by many animal and epidemiological studies. 
Rodent studies reported that perinatal or early postnatal 
exposure to BPA (66), pesticides (67), nonylphenol (68), and 
PFOA (69) lead to increased weight gain during adulthood, 
in dose- and gender-dependent manner. Human studies 
have also indicated the association between perinatal 
exposure to EDCs and increased risk of obesity later in life 
(63). It is important to point out that animal model studies 
indicate that some EDCs also have obesogenic effects 
when exposure occurs after critical development periods 
(67). Therefore, in a scenario of continued exposure, it 
is most likely that the effects of early life and adulthood 
exposure ultimately determine the actions of obesogens on 
phenotype. However, little is known about the interaction 
of exposure in different time periods.

Early life obesogen exposure can increase white adipose 
tissue mass by increasing the steady state level of adipocytes, 
or adipocyte precursors and promotes differentiation of 
adipocytes from multipotent mesenchymal stromal stem 
cells (a.k.a., mesenchymal stem cells, MSCs) or existing 
preadipocytes. Activation of specific nuclear hormone  
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receptors by EDCs has been extensively studied as a 
mechanism underlying obesogen action, since it has the 
potential to alter fat cell commitment, differentiation 
and function. The nuclear receptor, PPARγ is the co-called 
‘master regulator’ of adipogenesis (70) and, therefore, 
is a logical candidate to mechanistically explain the 
obesogen action of chemicals. Like other PPARs, PPARγ 
requires heterodimerization with RXR to bind DNA and 
regulate its target genes. Activation of this heterodimer 
by endogenous ligands, pharmaceutical drugs or EDCs 
promotes expression of adipogenic genes that lead to 
fat cell differentiation. PPARγ engages in a mutually 
interactive feedback loop with the transcription factors, 
CCAAT-enhancer binding proteins (C/EBP)α, β, and 
γ, that stabilizes and promotes the adipogenic fate 
(reviewed in 71). Considering this, many screening efforts 
to identify potential obesogens targeted PPARγ (72, 73, 
74). A variety of actual and potential chemical obesogens 
have been identified using such screening approaches 
as adipogenesis inducers in human cell-culture models 
by activating PPARγ, including lactofen, diclofop-
methyl, and MEHP (75). However, it is acknowledged 
that EDCs may induce adipocyte differentiation by 
PPARγ-independent mechanisms. This is the case for 
bisphenol A, nicotine, organophosphate pesticides, 
and polychlorinated biphenyls (PCBs), all of which 
promoted adipogenesis through mechanisms that may 
not involve direct activation of PPARγ (71, 76). PCB-77  
acts through the aryl hydrocarbon receptor to promote 
adipocyte differentiation in 3T3-L1 preadipocytes (60).

Importantly, some effects of obesogens seem to be 
independent from direct modulation of nuclear hormone 
receptors. These include the transmission of the obese 
phenotype to subsequent generations not directly 
exposed to the chemical, following early life exposure, 
or the so-called transgenerational effect of obesogens. 
This has been reported for some chemicals, and there 
has been a great effort to understand the mechanisms  
underlying these transgenerational effects; possible 
candidates are epigenetic modifications and changes in 
chromatin organization.

Tributyltin the model obesogen 

Tributyltin (TBT) was among the first obesogens to 
be identified and is currently the most thoroughly 
studied. TBT binds to and activates PPARγ and RXR (77, 
78, 79) to promote adipocyte commitment (80) and  
differentiation (81, 82). In vitro studies confirmed that 

TBT exposure drove the differentiation of murine 3T3-L1 
adipocytes into adipocytes via the activation of PPARγ and 
RXR (77, 78, 81, 82). In addition, 3T3-L1 preadipocytes 
exposed to TBT produced dysfunctional adipocytes with 
altered gene expression and lipid metabolism (83). Mouse 
MSCs differentiated in the presence of TBT or an RXR-
selective chemical also produced dysfunctional adipocytes 
with impaired insulin sensitivity, an unfavorable 
adipokine profile, pro-inflammatory and pro-fibrotic gene 
expression and impaired thermogenic activity (80). 

In vivo studies found that TBT exposure increased fat 
accumulation and hepatic steatosis in rodents (77, 84, 85, 
86), fish (87, 88, 89, 90, 91, 92) and even in snails (93) and 
Daphnia (94). F0 mice exposed to TBT during pregnancy 
produced F1 offspring with increased adipose depot size in 
mice (77) and resulted in a bias of MSCs toward the adipose 
lineage at the expense of bone (81, 95). Remarkably the 
effects of prenatal TBT exposure could be transmitted to 
subsequent generations. Exposure of pregnant F0 dams to 
environmentally relevant (nanomolar) levels of TBT in the 
drinking water led to increases in adipose depot weight, 
adipocyte size, adipocyte number and the propensity of 
MSCs to differentiate along the adipogenic rather than 
the osteogenic pathways in F1, F2 and F3 offspring (96). 
Transgenerational increases in obesity were also reported 
with different chemicals in other laboratories (97, 98, 
99, 100, 101). The data indicated that these effects were 
likely mediated by an epigenetic process. A subsequent 
experiment using TBT exposure found that the effects of 
prenatal TBT exposure on fat depot size persisted until 
at least the F4 generation (102). F4 male descendants of 
pregnant F0 mice exposed to TBT had increased fat mass 
in adulthood and gained more fat mass than their control 
counter parts when dietary fat was increased modestly 
(from 13.2 to 21.2% kcal from fat) (102). Moreover,  
these animals resisted fat loss during fasting and  
retained the increased fat when returned to the normal 
low-fat diet (102).

Multi-‘omic analysis of the transcriptome and DNA 
methylomes from the F4 male mice revealed that there 
were thousands of differentially methylated regions 
(DMRs) but that none of these were closely associated 
with the promoters of genes whose expression was altered. 
Instead, large regions of DNA where methylation was all 
in the same direction were identified. These iso-directional 
differentially methylated blocks were denoted as isoDMBs 
(102). It was hypothesized that the transgenerational 
phenotype was carried across generations through the 
germline by altered higher order chromatin structure (102, 
103). ATAC-seq analysis of F3 and F4 sperm demonstrated 
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that the DNA regions containing hypomethylated 
isoDMBs in F4 male WAT were less accessible in sperm 
chromatin and preferentially associated with DNA having 
elevated GC content (102). These regions that were 
enriched in hypomethylated isoDMBs and higher GC 
content contained many metabolically relevant genes, 
as did the inaccessible regions in sperm DNA (102). 
Expression of leptin mRNA in WAT was elevated, as were 
circulating levels of leptin protein in male mice and it 
was inferred that the animals displayed a leptin-resistant, 
thrifty phenotype promoted by altered higher order 
chromatin structure (102). Subsequent studies supported 
and extended this model, demonstrating that this 
disrupted chromatin organization is either transmitted 
directly to subsequent generations, or (more likely) self-
reconstructs each generation (103). 

An important aspect to be considered in light of the 
transgenerational effects of TBT and other obesogens is 
that since current toxicology risk assessment paradigms 
involve direct exposure to chemicals, they may fail to 
identify the hazards associated with chemical exposure 
comprehensively. Indeed, directly exposed generations 
may exhibit few or no significant phenotypes, and it 
has been argued that risks would be best assessed by 
complementing classic toxicology analysis with the 
assessment of the impacts on future generations, referred 
to as ‘generational toxicology’ (104).

Obesogens, old and new

A variety of chemicals have been demonstrated to be 
obesogenic in animal studies. These include such widely 
used chemicals as phthalates, bisphenols, parabens, flame 
retardants, and pesticides. This topic has been reviewed 
extensively elsewhere (e.g. 16, 105, 106). Below we discuss 
some long-known chemicals that were newly discovered 
as obesogens and potential obesogens of current interest. A 
list of verified and potential obesogens and their putative 
mechanisms of action are presented in Tables 1 and 2. 

Acrylamide

Acrylamide is found in foods and can be formed as an 
unintentional byproduct of frying, baking, or roasting; 
this is likely to be the most common source of human 
exposure (107). Acrylamide exposure was found to induce 
the accumulation of WAT in male mice but only after 
they were fed a high-fat diet (108). Mechanistic analysis 
revealed that acrylamide acted through the MAPK and 

AMPK-ACC pathways to promote adipogenesis (108). 
Crucially, similar effects have been found in human 
epidemiology studies. Findings from two longitudinal 
birth cohort studies from France (109) and Norway (110) 
proposed hemoglobin adducts of acrylamide (HbAA) 
and glycidamide (HbGA) as biomarkers of acrylamide 
exposure in humans. These studies found that children 
prenatally exposed to higher levels of acrylamide were 
more likely to be born small for gestational age and obese 
at 3 years of age. Cross-sectional analysis of NHANES data 
(2003–2006) demonstrated a negative association between 
HbAA and obesity but a positive association between 
HbGA levels and obesity (111). A different cross-sectional 
analysis of NHANES data (2003–2004) found a negative 
association to obesity for HbAA and no association with 
HbGA (112). While it is interesting and provocative 
that acrylamide has been associated with obesity, there 
are clearly confounding factors in these data sets that 
must be resolved to establish whether or not acrylamide 
exposure is linked with obesity. Considering the extensive 
exposure of the population to acrylamide from baked and 
fried foods, further exploration of these issues will be very 
important for public health.

Food additives

As noted above, increasing evidence has emerged linking 
components of the ‘Western dietary pattern’ to obesity, 
even finding that the total number of carbohydrate 
calories is less important than whether the calories come 
from whole or processed foods (5, 6). In this light, it is 
interesting that recent data showed that some commonly 
used food additives have obesogenic potential. Two 
common dietary emulsifiers, carboxylmethylcellulose 
and P-80 induced intestinal inflammation and disrupted 
the gut microbiome producing increased body weight, 
WAT depot weight and metabolic syndrome when 
administered either to young (4-week-old) mice for  
12 weeks, or to old (16-week-old) mice for 8 weeks (113). 
Dioctyl sodium sulfosuccinate (DOSS) is also used as a 
dietary emulsifier, and as a major component of an over 
the counter stool softener (Colace/Docusate). DOSS was 
shown to bind PPARγ ligand-binding domain with an 
affinity comparable to that of pioglitazone and arachidonic 
acid, act as a PPARγ agonist in reporter assays and induce 
adipogenesis in 3T3-L1 preadipocytes (114). Moreover, 
male offspring of mice exposed to a clinically relevant 
dose of DOSS during pregnancy exhibited increased 
body mass, increased adiposity, glucose intolerance 
and hyperinsulinemia when fed standard diet (115).  
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Table 2 Potential obesogens with possible mechanisms of action and effects.

Potential obesogen EDC type Potential mechanisms Effects Reference

Alpha 
naphthoflavone 

Pollutant AhR antagonist, increased expression 
of hormone-sensitive lipase and the 
estrogen receptor

Promotes lipid 
accumulation in 
adipocytes

(186)

BADGE Pesticide PPARγ activator Induces differentiation of 
3T3-L1 preadipocytes 
and MSCs into adipocytes 

(187)

BBP Pesticide PPARγ activator Increased lipid 
accumulation in vitro

(182, 188)

Bisphenol F (BPF) Plasticizer
(BPA analog)

PPARγ activator Induces differentiation of 
preadipocytes into 
adipocytes

(149, 154, 155)

Bisphenol S (BPS) Plasticizer
(BPA analog)

PPARγ activator, upregulates adipogenic 
mRNA expression levels (i.e. 
Lipoprotein Lipase, CAAT/enhancer-
binding proteins β (C/EBPβ)

Induces differentiation of 
preadipocytes into 
adipocytes

(149, 154, 155)

Diazinon Pesticide PPARγ activator, activates CCAAT-
enhancer binding protein CAAT/
enhancer- binding proteins α (C/EBP α)

Induces differentiation of 
3T3-L1 preadipocytes 
into adipocytes

(189)

Diclofop‐methyl Pesticide PPARγ activator Induces adipogenesis in 
human adipose-derived 
stromal cells 

(75)

Fentin hydroxide Pesticide PPARγ activator Increases adipogenesis 
and lipid accumulation 
in vitro 

(75, 78)

Forchlorfenuron Pesticide Promotes expression of adipogenic 
genes

Induces differentiation of 
3T3-L1 preadipocytes 
into adipocytes

(76)

Fludioxonil Pesticide PPARγ and RXRα activator, promotes 
expression of adipogenic genes

Induces adipogenesis in 
uncommitted mBMSCs, 
promotes differentiation 
of 3T3-L1 preadipocytes 
and MSCs into adipocytes 

(75, 76)

Flusilazole Pesticide Promotes expression of adipogenic 
genes

Induces differentiation of 
3T3-L1 preadipocytes 
into adipocytes

(76)

Halosulfuron‐methyl Pesticide PPARγ activator Induces adipogenesis in 
human adipose-derived 
stromal cells 

(75)

Lactofen Pesticide PPARγ activator Induces adipogenesis in 
human adipose-derived 
stromal cells 

(75)

Quinoxyfen Pesticide PPARγ activator Induces adipogenesis in 
uncommitted mBMSCs, 
promotes differentiation 
of 3T3-L1 preadipocytes 
into adipocytes 

(76)

Quizalofop-p-ethyl Pesticide 
(herbicide)

Currently unknown Induces differentiation of 
3T3-L1 preadipocytes 
into adipocytes 

(148)

Spirodiclofen Pesticide PPARγ activator, promotes expression 
of adipogenic genes in vitro

Induces differentiation of 
3T3-L1 preadipocytes 
and mBMSCs into 
adipocytes

(76)

Tebupirimfos Pesticide Promotes expression of adipogenic 
genes

Induces differentiation of 
3T3-L1 preadipocytes into 
adipocytes 

(76)

Zoxamide Pesticide PPARγ activator Induces differentiation of 
3T3-L1 preadipocytes and 
mBMSCs into adipocytes

(76)

mBMSCs, mouse bone marrow-derived stem cells; PPAR, peroxisome-proliferator activated receptor.
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DOSS was used together with another surfactant,  
Span-80, in the COREXIT dispersants that were used in 
the clean-up of the Deepwater Horizon oil spill in 2010 
(116). Span-80 activated RXRα and induced 3T3-L1 
preadipocytes to differentiate into adipocytes (117). When 
3T3-L1 cells were treated with a combination of Span-80 
and DOSS, adipogenic induction was greater than with 
either chemical individually (117). 

In addition to surfactants and emulsifiers, the widely 
used food preservative 3-tert-butyl-4-hydroxyanisole 
(3-BHA) induced adipocyte differentiation in 3T3-L1 
preadipocytes (118); moreover, 3-BHA exposure increased 
adiposity and lipid plasma levels in exposed mice (119). 
The flavor enhancer monosodium glutamate (MSG) is 
well-known for its action to induce obesity and metabolic 
abnormalities in mice by its toxic effects on the arcuate 
nucleus, a critical hypothalamic nucleus involved in 
body mass and energy metabolism regulation (120, 121, 
122, 123). Notably, the central effects of MSG to promote 
obesity depend upon its entrance in the brain, which, 
in turn, is observed when it is administered centrally 
to adult mice or peripherally to neonate mice since the 
latter exhibit an immature blood-brain barrier allowing 
the passage of MSG (123, 124). More recently, it was 
shown that MSG might act by additional mechanisms 
that may mediate its obesogen effect. Such actions 
include impairment of glucagon-like peptide-1 (GLP-1) 
secretion, an important hormone regulating appetite, 
by the enteroendocrine cell line STC-1, (125) and/or 
androgen receptor action antagonism (126). Considering 
these results together, it is perhaps not at all surprising 
that highly processed foods lead to more weight gain 
than the same number of calories from fresh foods (5, 6). 
This will be an important area for future laboratory and 
epidemiological studies. 

Nonylphenol

Nonylphenol is the main microbial degradation product 
of alkylphenol ethoxylate, a nonionic surfactant used to 
manufacture a wide range of products, such as plastics, 
pesticides, and cosmetics (127). In vitro, nonylphenol 
induces the differentiation of 3T3-L1 preadipocytes into 
adipocytes (69, 128). Prenatal exposure to nonylphenol 
induced increased body weight, fat mass, and fasting 
serum glucose and total cholesterol levels (68). The 
obese phenotype was more pronounced in the female 
offspring than in males and occurred at lower exposure 
concentrations (68). A similar finding was reported in the 
male offspring of rats exposed to nonylphenol during 

pregnancy (129). Despite its well-known estrogenic 
activity (130), estrogenic receptor signaling has not been 
directly linked to its obesogenic action. Nonylphenol was 
shown to induce hyperadrenalism and increase type 1 
11β-hydroxysteroid dehydrogenase in adipose tissue in 
vivo, which could be linked to the obese phenotype (129). 
However, the molecular mechanisms underlying the 
obesogenic effect of nonylphenol remain elusive. 

Although nonylphenol is considered a persistent 
and ubiquitous environment contaminant (131, 132) 
with obesogenic properties, very few human studies have 
addressed its association with body mass. A cross-sectional 
study from Taiwan involving 270 adolescents found no 
association between urinary nonylphenol levels and 
anthropometric measures of overall or abdominal obesity 
(133). Therefore, further studies will be necessary to 
establish whether this chemical is associated with obesity 
in humans and the mechanisms underlying its effects.

Parabens

Parabens are used as preservatives in pharmaceuticals, 
food, and cosmetic products due to their antimicrobial 
and antifungal properties. Cosmetic and personal care 
products seem to be a significant source of human 
exposure since parabens are found in most rinse-off or 
leave-on products (134). Parabens were shown to promote 
adipogenesis in 3T3-L1 preadipocytes (72, 135) and 
mesenchymal C3H10T1/2 cells (136) by activating PPARγ 
(72, 136). Accordingly, parabens reduced osteogenic and 
chondrogenic differentiation of C3H10T1/2 cells (136).

Previous cross-sectional and longitudinal human 
studies addressed exposure to parabens during adulthood 
(137) or after the early postnatal period (137, 138, 139, 140) 
and found an inconsistent association with overweight 
and obesity. More recently, a longitudinal study involving 
496 mother–children pairs of the German LINA cohort 
(Lifestyle and Environmental Factors and their Influence 
on Newborns Allergy Risk) reported that maternal exposure 
to butyl paraben at the third trimester of pregnancy was 
associated with child overweight during the first 8 years of 
life, with a stronger trend among girls (141). The authors 
reproduced the human findings in mice exposed to butyl 
paraben during fetal life and reported that exposure of 
female human adipose-derived mesenchymal stem cells 
to butyl paraben did not induce adipogenesis (141). 
Mechanistic analysis using the in vivo model revealed 
that early-life exposure to butyl paraben induced higher 
food intake in the female offspring (141). This finding was 
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accompanied by reduced hypothalamic mRNA expression 
of the gene encoding proopiomelanocortin (POMC) due 
to hypermethylation of POMC enhancer nPE1, which 
positively regulates POMC transcription (141). Given 
the broad human exposure to parabens, further efforts 
to expand this investigation to other parabens and 
populations are warranted.

Pesticides 

In addition to food additives, agrochemicals that 
contaminate food have been linked to obesity in animals 
and in humans. This topic has been intensively reviewed 
elsewhere (67) and will be summarized here. One very 
important example is the well-known organochlorine 
pesticide dichlorodiphenyltrichloroethane (DDT). DDT 
was shown to be obesogenic in rodent models, and its 
effects were dependent upon the timing of exposure and 
gender. Perinatal exposure of mice to DDT reduced energy 
expenditure and transiently increased body fat content in 
female offspring (142). Moreover, ancestral exposure to 
DDT lead to obesity and metabolic abnormalities in male 
and female rats from the F3 generation, characterizing a 
transgenerational obese phenotype (98). Human studies 
have also reported that perinatal exposure to DDT is 
associated with increased obesity risk during childhood 
(143) and adult life (144). The major breakdown product 
of DDT, p,p-dichlorodiphenyldichloroethylene DDE 
was associated with weight gain in multiple human 
studies (145). The use of DDT was banned under the 
Stockholm Convention but it persists in the environment 
and continues to be used for malaria control in Africa. 
Methoxychlor was intended to replace DDT, but was shown 
to induce obesity in rats (100). Several other pesticides 
have been identified as being actually, or potentially 
obesogenic. The neonicotinoid insecticide, imidacloprid 
induced 3T3-L1 preadipocytes to differentiate into 
adipocytes (146) and promoted obesity in mice exposed 
to a high-fat diet (147). The widely used and controversial 
herbicide, glyphosate, induced obesity in F2 and F3 
offspring of F0 female rats exposed during gestation (101). 
Many other agrochemicals induced adipogenesis in 3T3-L1  
preadipocytes and in mouse and human MSCs (75, 76, 
148). While the potential of these chemicals to promote 
obesity, in vivo, remains unexplored at present, the next 
chemical found to induce adipogenesis in cell models 
but that fails to promote obesity, in vivo, will be the 
first. The intensive use of agrochemicals worldwide and 
the ubiquitous human exposure via food consumption 
indicates that it will be important to undertake appropriate 

studies in human cohorts and in animal models to 
understand the magnitude of the potential risk posed by 
these chemicals.

Other bisphenols

As a result of public demand for BPA-free plastics, industry 
has responded by producing a variety of BPA relatives 
for use in plastics and in thermal papers. These include 
over 20 chemicals, such as bisphenol S (BPS), bisphenol F 
(BPF), bisphenol B, bisphenol E, bisphenol AF, bisphenol 
Z among others. These are coming into widespread use 
as industry strives to produce products with similar 
physicochemical properties to BPA-based plastics while 
not totally disrupting current manufacturing processes 
(149). Much less is known about the potential EDC effects 
of these BPA analogs, although some of them have been 
described as obesogens in vitro and in animal models, and 
associated with increased body mass in humans (150). 
Some evidence shows that BPS and BPF have similar 
endocrine-disrupting properties to BPA (151, 152, 153). 
Halogenated BPA analogs as well as BPS were more potent 
activators of PPARγ (154) and were stronger promoters 
of adipogenesis in 3T3-L1 preadipocytes than BPA (155). 
Perinatal exposure to BPS also elicited obesity in mice 
(156). A longitudinal birth cohort study revealed that 
BPS and BPF were significantly associated with obesity 
in children (ages 6–19), whereas BPA and total bisphenol 
levels were not significantly associated (157). In contrast, 
levels of BPA have been significantly associated with 
obesity incidence, whereas levels for BPS and BPF were 
not linked with obesity in a cross-sectional study of adults 
after adjusting for lifestyle and socioeconomic factors 
(149). Clearly more studies are needed, but the data 
indicated that BPS and BPF may be ‘regrettable substitutes’ 
for BPA in that they may not actually reduce the hazards 
of bisphenol exposure to humans.

More organotins

While it is clear that TBT exposure can lead to obesogenic 
effects, it remains unclear to what extent the human 
population is exposed. However, there is no question that 
humans are widely exposed to organotins, in general. 
Dibutyltin (DBT) is more prevalent in the environment 
than TBT due to its presence in polyvinyl chloride (PVC) 
plastics at substantial concentrations (up to 3% w/w) 
(158). DBT leaches into drinking water from PVC pipes 
and, therefore, may produce a hazard to humans (159). 
DBT is the major breakdown product of TBT in vivo.  
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DBT activated the same receptors as does TBT and induced 
3T3-L1 preadipocytes (160) and human and mouse MSCs 
to differentiate into adipocytes (161). Perinatal exposure 
to DBT, albeit at a higher dose than TBT, led to increased 
WAT weight in mice comparable to that of the model 
obesogen TBT (161). Unexpectedly, while TBT does not 
elicit changes in glucose homeostasis, the offspring of 
DBT-exposed dams were insulin resistant (161). Thus, 
while DBT can activate similar nuclear receptors as does 
TBT, it clearly engages additional or alternative cellular 
mechanisms to elicit insulin resistance.

Future directions

While the obesogen hypothesis was initially controversial 
when first proposed in 2006 (162), studies around the 
world have supported the model and it is becoming evident 
that obesity is considerably more complex than a simple 
function of energy balance. Much has been learned about 
the number and types of obesogens but we need to know 
much more to assess their overall significance in obesity 
susceptibility. For example, relatively little is known 
about how obesogen exposure interacts with macro and 
micro-nutrients in the diet to promote obesity. Obesogens 
can affect composition of the microbiome (163, 164) and 
transfer of an obese microbiome itself can cause obesity 
(21). Very little is known about how obesogen-elicited 
changes in the microbiome can contribute to obesity. A 
combination of mechanistic studies in cell and animal 
models together with longitudinal epidemiological and 
biomonitoring studies in humans will be required for a 
full assessment of the risks and costs of EDC and obesogen 
exposures to public health. While current estimates 
only consider a few chemicals for which adequate data  
sets are available, the costs are predicted to be substantial 
(165, 166).

Nearly all studied obesogens exert sexually dimorphic 
effects. For example, prenatal exposure of pregnant F0 
dams to TBT produced increased fat mass in both sexes of 
the F1 generation, but obesity was only found in males of 
F2–F4 generations (96, 102, 161). The synthetic estrogen, 
diethylstilbestrol, the first chemical to be reported as an 
obesogen, in vivo, elicited obesity after perinatal exposure 
adult female but not male mice (167). Many examples of 
obesogen exposure producing sexually dimorphic effects 
in animal models exist (reviewed in 17). Relatively little 
is known about the etiology of these sexual dimorphisms 
beyond some indications that effects of environmental 
estrogens may be expected to be more pronounced 

in females. Notably, while the incidence of obesity is 
increasing in both sexes in human populations, obesity 
is significantly more prevalent in females, particularly in 
the USA (168). Appropriate strategies for intervention and 
prevention will require a deeper understanding of what 
cellular pathways mediate obesogen action.

A persistent difficulty in the EDC field is to understand 
the effects of mixtures. For example, Will exposure to 
combinations of obesogens result in additive or synergistic 
effects? ,Or Will they instead interfere with each other’s 
actions? Since many obesogens appear to induce a variety 
of effects other than obesity, they may be acting through 
multiple mechanisms. For example, TBT binds to and 
activates PPARγ and RXR, but it also induces epigenetic 
modifications and changes to chromatin architecture 
(102, 103). Some evidence suggests that these changes 
in chromatin architecture can be transmitted across 
generations, but the mechanisms remain obscure. A 
handful of chemicals are known to elicit transgenerational 
effects on obesity, but we know relatively little about 
how these effects may be transmitted across generations 
(reviewed in 104, 106). Nuclear receptor activation can lead 
to epigenetic alterations (169, 170), but there is currently 
no evidence that nuclear receptor activation is a key 
component of the mechanism through which obesogens 
act across generations. It is possible that exposure to 
a combination of obesogens, each of which may act 
through a different pathway, will be required to explain 
the obesity pandemic. In support of this possibility, it is 
well-known that chemical mixtures can induce higher 
receptor activation or stronger phenotypes (171, 172, 173, 
174). Moreover, the potential of many other obesogens to 
induce transgenerational obesity remains to be explored.

While much has been revealed about the number and 
nature of obesogens and some inroads have been made on 
mechanisms of action, we still know little about the entire 
spectrum of possible obesogens, how they act and who is 
exposed to what degree. Understanding how obesogens 
act will facilitate the identification of other obesogens that 
may have similar mechanisms of action. It will be crucial to 
develop and deploy screening assays that are sensitive and 
reliable enough to identify potential EDCs and obesogens 
before widespread exposure and adverse outcomes occur, 
as has been previously discussed (64). The US EPA has 
developed ToxCast and the National Toxicology Program 
(in collaboration with EPA) has developed Tox21. These 
are widely and frequently touted as the future of such 
screening studies but evidence is growing that the assays 
may not be sensitive or reliable enough to make effective 
predictions (76). The European Union has adopted a 
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different approach. Under its Horizon 2020 grant program, 
the EU has funded eight international consortia that aim 
to establish standardized, internationally harmonized 
screening methods for EDCs. Three of these consortia are 
focused on developing methods to identify metabolism 
disrupting chemicals, including obesogens. Since the 
assays to identify EDCs will be developed by experts in the 
field, rather than using repurposed screening assays from 
the pharmaceutical industry, it is likely that these efforts 
will bear fruit. Identifying the full spectrum of obesogens 
and understanding their mechanisms of action will reveal 
how we can best prevent exposure or reduce the effects of 
exposure.

Currently, little is known about the magnitude of 
the obesogen effect in humans, and to what extent it 
contributes to the obesity pandemics. This would require 
understanding the effects of obesogens on a ‘real life 
scenario’, including exposure to a mixture of chemicals and 
their interaction with other factors affecting obesity risk, 
such as genetics, diet, stress, disrupted circadian rhythms 
combined with a longitudinal study design. Although 
there is much more to be discovered about obesogens, the 
advances on the field over the last 15 years have provided 
enough evidence to support the implementation of the 
‘precautionary principle’ both on a public health and 
personnel perspective, to protect ourselves and future 
generations from their harmful impacts.
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