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ABSTRACT: The biological activity predictions of ligands are an important
research direction, which can improve the efficiency and success probability of drug
screening. However, the traditional prediction method has the disadvantages of
complex modeling and low screening efficiency. Machine learning is considered an
important research direction to solve these traditional method problems in the near
future. This paper proposes a machine learning model with high predictive accuracy
and stable prediction ability, namely, the back propagation neural network cross-
support vector regression model (BPCSVR). By comparing multiple molecular
descriptors, MACCS fingerprint and ECFP6 fingerprint were selected as inputs, and
the stable prediction ability of the model was improved by integrating multiple
models and correcting similar samples. We used leave-one-out cross-validation on
3038 samples from six data sets. The coefficient of determination, root mean square
error, and absolute error were used as the evaluation parameters. After comparing
the multiclass models, the results show that the BPCSVR model has stable
prediction ability in different data sets, and the prediction accuracy is higher than other comparison models.

1. INTRODUCTION
Ligand biological activity is an important parameter for
receptors and ligand binding, and it is also the primary factor
in the drug screening process.1 By predicting ligand biological
activity, the number of compounds to be screened can be
reduced so as to improve the efficiency of the drug screening
process, reduce the cost, and increase the positive rate of drug
screening.2 In summary, ligand biological activity prediction is
a popular and valuable research topic in the field of drug
screening.
The most common approach for the prediction of biological

activity based on ligands is the quantitative structure−activity
relationship (QSAR) proposed by Hansch et al.,2,3 which is
based on the principle that ligand activity is correlated with
molecular structure and the activity value can be predicted by
establishing a mathematical model based on the molecular
structure of ligands.4,5 The Hansch equation is the first one
implemented in QSAR. This equation was formed by Hansch
and Fujita, and it uses ED50 as the activity parameter and the
electrical parameter., steric parameters, and hydrophobic
parameters as variables for linear regression analysis.6 Guided
by the Hansch equation, 4-quinolone antibacterial drugs such
as norfloxacin have been successfully designed, and it proves
the validity of the Hansch equation.7 However, the Hansch
equation has many parameters that make the modeling process
difficult. During the same period as when the Hansch equation
was formed, Freeman-Cook et al. proposed the Free−Wilson
method,8 which is a method to quantitatively express the
relationship between the chemical structure and the biological

activity of drugs by mathematical formulas. The Free−Wilson
method can reduce the modeling difficulty, but it is not as
accurate as the Hansch equation and has not been widely used.
It is generally considered that the more data characteristic
parameters, the more accurate the model prediction. But the
more data characteristic parameters, the more difficult it is to
establish and solve the model. Due to the accumulation of a
large number of experimental data, more and more researchers
had been attempting to use machine learning methods to build
models to predict the activity of compounds. The advantage of
the machine learning method is that parameters are automati-
cally learned according to the given data, which can reduce the
difficulty of modeling and improve the efficiency of model
solving. The more information contained in the data features
of the machine learning model, the higher the prediction
accuracy. For the activity prediction problem, we need a
molecular descriptor that we can use for machine learning.
A variety of descriptors have been developed over the past

few decades.9−11 Molecular descriptors can be simply divided
into two categories, namely, two-dimensional descriptors and
high-dimensional descriptors. The two-dimensional molecular
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descriptors can be divided into four categories: (1)
substructural bond-based fingerprints; (2) topology- or path-
based fingerprints; (3) circular fingerprints; (4) pharmaco-
phore fingerprints. 2D molecular fingerprints do not contain
3D structural information, greatly simplifying descriptors. The
3D structure is an important characteristic of molecules.
Especially for molecules with a complex structure, 2D
molecular descriptors often fail in the face of molecules with
a complex 3D structure. Therefore, many researchers have
proposed many new molecular descriptors. For example,
algebraic topology, differential geometry, and graph theory
are used to build a low-dimensional and extensible molecular
descriptor, and the best prediction results are obtained in the
D3R competition by these fingerprints.12 In addition, the linear
descriptors of hundreds of millions of compounds in the three
databases of ChEMBL, PubChem, and ZINC are self-
supervised prelearned and then fine-tuned to generate a
molecular descriptor. This descriptor is novel and shows strong
predictive ability in multiple tasks.13 The generation and
performance comparison of molecular descriptors is an
important scientific research direction, while we will not
delve into fingerprints in this article. By reading the references,
we compare a variety of molecular fingerprints and find that
molecular fingerprints have limited influence on the core point
of this paper, and we realize that 2D fingerprints perform well
enough at describing molecular information, so we use two 2D
molecular fingerprints for experimental verification.14 The two
fingerprints are a substructure key-based fingerprint (MACCS)
and circular fingerprint (ECFP6).
In the process of research, we found that many existing data

sets have small sample amount, which leads to poor prediction

results of the trained model. The small amount of data samples
leads to a great difference in the prediction ability, that is, the
less similar the sample, the less accurate the prediction. Also,
different data sets have different experiment conditions, which
lead to the same model having different predictive abilities for
different data sets, that is, the model performs well on some
data sets, while the prediction ability of some data sets may be
extremely poor. The drug screening process will first predict a
large number of unknown samples, which requires the model
to be stable in predicting the activity of compounds under
individual and different classes of compounds.
This paper proposes a heterogeneous integration model, the

back propagation neural network cross-support vector
regression (BPCSVR) model. This model has two compo-
nents, which are the back propagation neural network cross
(BPC) and support vector regression (SVR). Ensemble
learning15 is to build and combine multiple learners to
accomplish learning tasks, which usually achieve significantly
better generalization performance than a single learner, and it
can improve the prediction ability and stability of the model.
The bagging method of ensemble learning is to divide data sets
and combine them into multiple training sets to improve the
learning effect,16 and the BPC model is based on this idea. In
the training process, we screen a group of 5 to 10 samples from
the training data as the validation set, and the selected samples
are those with relatively high similarity between the training set
and the test sample, but we should avoid selecting the five
samples with the highest similarity.17 Different validation sets
correspond to different training sets, and different models can
be obtained by using BP models with the same parameters.
Each BP network calculates the determination coefficient and

Figure 1. Representative compounds from six data sets: (A) enalaprat (ACE); (B) E2020 (AchE); (C) Ro14-5974 (BZR); (D) celecoxib (COX2);
(E) methotrexate (DHFR); (F) SKPHGDXBXVGVNT-PGJZWCTDSA-N (ERα).
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average error of the validation set, selects a model with higher
determination coefficient to predict the test sample, and adds
the average error to the final prediction value.18,19

The reason for the integration of the BPC model and SVR
model is that the machine learning model has different effects
on different data sets, that is, the model has unstable prediction
effects on multiple different data sets. The integration of two
different models can improve the overall stability of the model.
To demonstrate the advantages of the BPCSVR model, the
evaluation parameters RMSE, R2, and AE and the performance
are compared with those of SVR, DT, KNN, CoMFA, and
RFSVR models.20 To avoid the contingency of experimental
results, the machine learning models presented in this paper all
use leave-one-out cross-validation.
The contributions of this paper are as follows: (1) illustrate

the feasibility of machine learning to build a QSAR model; (2)
propose a machine learning model applicable to small sample
data sets; (3) improve the accuracy and stability of ligand
biological activity prediction based on molecular fingerprinting.

2. DATA SETS AND MODELS
2.1. Data Sets. Six data sets are studied in this paper: (1)

angiotensin-converting enzyme (ACE) inhibitors, which are
zinc-containing metallopeptidases;21 (2) acetylcholinesterase
(AchE) inhibitors, which can bring about memory improve-
ment in SDAT;16,22 (3) benzodiazepine receptors (BZRs),
which are commonly used in the therapeutic treatment of
anxiety, insomnia, seizure disorders, and certain kinds of
spasticity;23,24 (4) cyclooxygenase-2 (COX2), which is a highly
selective and potent inhibitor;25,26 (5) dihydrofolate reductase
(DHFR) inhibitors, which can produce unacceptable toxicity
to host proliferative tissues;27−29 (6) estrogen receptor alpha
(ERα) inhibitors, which are considered possible candidates for
the treatment of breast cancer.30 Representative structures of
the compounds are shown in Figure 1.31

Data sets ACE, AchE, BZR, COX2, and DHFR have been
frequently studied in references, which show the importance of
these data sets. It is necessary to look at these data sets again,
and past research helps us compare models. Second, the
number of samples in these data sets is small and the
distribution of ligand activity is unbalanced. These character-
istics are convenient for us to study whether the model has
stable prediction ability in small samples and unbalanced
distribution data sets.
At the same time, to show whether the model can still

maintain the predictive ability in the large data set, we add the
ERα data set containing 1973 samples.
A total of 3038 samples were included in the six data sets,

and the corresponding number and range of activity values are
shown in Table 1.
The frequency distribution histograms and the kernel

density function plots of the six data sets are shown in Figure

2. The abscissa of each subgraph is the activity value of the
molecule, and the ordinate is the percentage of the number of
molecules within the corresponding activity value range to the
total number of molecules; the red line is the kernel density
function curve of the data distribution. Analyzing Figure 2, the
distribution of six data sets has their own characteristics, and
the distribution characteristics are important factors affecting
the training results. The samples of ACE are few, but the
distribution is balanced, which is good for model prediction.
AchE conforms to the characteristics of normal distribution,
and the activity value is concentrated between 6 and 8, which
is not good for model prediction. The distribution of BZR data
leans to the right, which will make the model training
prediction result also lean to a higher active value. The COX2
data set has a large number of samples with an activity value of
4, and the overall distribution is uneven, which will interfere
with the model training; the distribution of DHFR is uneven.
The activity values of data samples are concentrated in 6−8,
and there are few samples at both ends. The prediction effect
of this part may be poor; the distribution of ERα is also
uneven, but due to the large number of samples, the overall
prediction effect will not be too bad.
2.2. Fingerprint. MACCS (Molecular Access System)

predefines 166 specified structures (such as specific sub-
structures or fragments) of the molecule, and if the molecule
has a predefined feature, the corresponding feature bit is 1;
otherwise, it is 0.32 The advantage of the MACCS fingerprint is
the compact structure and rich information, but the
disadvantage is that it cannot define a single molecule, that
is, the MACCS fingerprint of different compounds may be the
same, which is not conducive to distinguishing compounds.
The molecular structure of a compound contains information
that determines its physical, chemical, and biological proper-
ties, so it is feasible to study the activity of a compound by
molecular fingerprinting.14 Unlike MACCS, which distin-
guishes compounds from their substructures, ECFPs (Ex-
tended-Connectivity Fingerprints) distinguish compounds
based on the connectivity between atoms within them. They
are a novel class of topological fingerprints for molecular
characterization, and they are circular fingerprints with a
number of useful qualities.9 This is because this fingerprint
requires setting a radius of n (the number of iterations) and
then calculating each atomic environment identifier (identi-
fier), which is similar to the connectivity in Morgan’s
fingerprint, except that the identifier here is ultimately
determined by the environment of radius n. n = 1 is ECFP2,
n = 2 is ECFP4, and so on. When n equals 0, we are just
looking at the atoms themselves. The ECFP6 (1024-bit)
fingerprint with the radius n = 3 is used in this article.
2.3. BPCSVR Model. The BPCSVR model is a

heterogeneous, integrated learning method, and the compo-
nent learner combines the BPC and SVR models, as shown in
Figure 3. The BPC model of the component learner is a
homogeneous ensemble learning model, which contains only
individual learners of the same type, and its base learner is four
BP models with the same training parameters and different
training samples.33

The BP model mentioned above is built by the PyTorch
framework, and the training logic is shown in Figure 4. The
training process is to obtain the molecular fingerprints of
compounds using software, then train the molecular fingerprint
as the input of the BP neural network, and finally predict the
molecular activity value.

Table 1. Data Sets and Training Division

name sample size pIC50 value

ACE 114 2.14−9.94
AchE 93 4.27−9.52
BZR 145 5.3−8.85
COX2 318 4.0−9.0
DHFR 395 2.43−9.8
ERα 1973 2.45−10
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The training method of the BPC model is shown in Figure 5.
Three groups of data were selected from the training data set
as the validation set, and each group contained five samples.
According to the molecular similarity between the training data
and the test samples from high to low, the three validation sets
were evenly distributed among the samples ranked from 5 to
15. Three models A, B, and C can be trained by the three
partitioning methods, and which model is more reliable can be
judged by calculating the coefficient of determination of the
validation set corresponding to the three models. That is, the
model with a high coefficient of determination is selected to

predict the test samples, and then the prediction results are
corrected by adding the average error of the validation set.
Another component learner of the BPCSVR model is the

SVR model, which directly trains all training samples without
setting a verification set or subtraining set during training. The
SVR model is a common model with stable prediction ability,
which is built by the SVR interface in the scikit-learn module.
2.4. Model Evaluation. In this paper, the goal was develop

a model with high prediction accuracy and relatively stable
prediction results. Four parameters have been used to evaluate
the performance of the model: coefficient of determination
(R2), root mean square error (RMSE), absolute error (AE),
and model optimization rate (MOR).
The coefficient of determination is a commonly used

statistic that refers to the proportion of the variation in the
dependent variable that is predictable from the independent
variable, usually denoted as R2, and it is calculated according to
formula 1. It is usually used to evaluate the trustworthiness of
the predicted value of the model. The closer the value is to 1,
the higher the trustworthiness of the predicted value is.
RMSE is the square root of the deviation between the

predicted value and the actual value divided by the number of
samples N, as shown in formula 2. This parameter measures
the deviation, or degree of dispersion, between the predicted
value and the actual value, where smaller values imply better
models.
Absolute error (AE) refers to the absolute value of the

deviation between the real value and the predicted value of
each sample, which can truly reflect the deviation of the
predicted value from the true value, as shown in formula 3.

Figure 2. Frequency distribution histograms and kernel density maps corresponding to the six data sets. For each subgraph, the abscissa is the
activity value of the molecule, and the ordinate is the percentage of the total.

Figure 3. Integration process of the BPCSVR model.

Figure 4. Schematic diagram of BP network training.
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In the above formula, yexp refers to the actual value, ypred
refers to the predicted value, and ymean refers to the average
value of the actual value.

3. RESULTS AND DISCUSSION
The BPCSVR model was built on a Windows 7 64-bit
hardware environment and implemented by Python program-
ming. The research topic of this paper is how to establish a
QSAR model based on molecular fingerprinting and machine
learning methods. The goal is to improve the overall prediction
accuracy for small sample data sets, and to be able to stably
predict values across different data sets.
3.1. Results of the Proposed Model. The BPCSVR

model adopts three strategies: (1) isomorphic integration, (2)
error correction using a verification set, and (3) heterogeneous
integration to improve the stability prediction ability of the
model. In the process of model design, the MACCS fingerprint
and ECFP fingerprint were compared, and six groups of data
were tested. The effectiveness of the model was illustrated by
the vertical comparison before and after model integration and
the horizontal comparison between different models.
Figure 6 shows the results given in ref 13. To make the

fluctuation between the data more obvious, all the data were
normalized, R2 was mapped to a range of 0.7 to 1, and the label
above the circle is the real R2 value. As can be seen from the
figure, this experiment uses multiple fingerprints to train and
test on four basic data sets, and the R2 values obtained are all
above 0.7. Different molecular fingerprints behave differently
on the same data set, and the same fingerprint also behaves
differently across different data sets, in comparison, because
the data set changes. Since the influence of fingerprints on the
results is less than that of the change of the data set, we choose
the MACCS fingerprint and ECFP6 fingerprint for exper-
imental comparison.
Figure 7 shows the evaluation parameters calculated by the

BPC model and RF model (random forest) after training with

two kinds of fingerprints. According to the figure, when the RF
model and BPC model use the ECFP6 fingerprint to train and
predict, R2 is larger and RMSE is smaller. This indicates that
the model trained with the ECFP6 fingerprint has a higher
degree of trust, and the error between the predicted value and
the actual value is smaller. Based on the above judgment, to
obtain the best model, ECFP6 fingerprinting is used uniformly
in the subsequent model training.
Six groups of data are predicted by using the leave-one-out

cross-validation method, the AE values of the predicted values
and actual values of the BP model and BPC model are
calculated, and the box plot of AE is drawn as shown in Figure
8. It can be seen from the graph analysis that there are fewer
outliers in the box graph of the BPC model, and the outliers
are closer to 0. For the horizontal comparison of each data set,
compared with the BP model, the third quartile of the BPC
model in ACE, COX2, DHFR, and ERα data sets is smaller,
and the first quartile in ACE, AchE, BZR, DHFR, and ERα
data sets is smaller. This shows that in most data sets, the
prediction error of the BPC model is smaller than that of the
BP model.
From the above analysis, we can see that the BPC model can

reduce the prediction error, that is, the adopted integration

Figure 5. Schematic of the BPC model. Red is the test sample, one at a time; yellow, blue, and green represent three validation sets, each with five
samples.

Figure 6. Bubble diagrams of R2 for different molecular fingerprint
training. R2 is normalized, and the color and graphic size are used to
distinguish R2.
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strategy and error correction strategy can effectively reduce the
prediction error.
Figure 9 shows the average values of the R2 and RMSE

obtained by the BPCSVR model and BPC model using the

leave-one-out cross-validation of six data sets. It can be seen
from the figure that through heterogeneous integration, the R2
of the model becomes larger and RMSE decreases, which
indicate that integrating two different models can improve the
reliability and prediction accuracy of the model.
Table 2 shows the R2 and RMSE of the prediction results of

the BPCSVR model for the six test sets. The average of R2 is
0.626, which indicates that the predicted value of the model
has a strong correlation with the actual value; RMSE is 0.85,
while the distribution range value of the sample activity is 2−
10, and the deviation is only 8.5−42.5%, which means that the
error is relatively small.
Through homogeneous integration and heterogeneous

integration, the BPCSVR model has stronger adaptability to
abnormal samples and data sets with unbalanced distribution,
higher prediction accuracy, and more stable prediction effect.
3.2. Comparison of the BPCSVR Model with the Non-

Integrated Model. To demonstrate the effectiveness of the
BPCSVR model, several common machine learning models,
including the SVR model, decision tree (DT) model, K-nearest
neighbor (KNN) model, and CoMFA model, will be compared
next. The SVR model is a kind of model that is robust to
outliers and can be compared with the model proposed in this
paper. Both the DT model and KNN model are traditional
models, which have been applied in many fields. The CoMFA
model is the most mature and widely used method in
traditional QSAR models, so the effectiveness of the machine
learning model can be studied by comparing with this model.
Table 3 shows the evaluation parameters R2 and RMSE

calculated by leave-one-out verification of each model. It can
be seen from the table that machine learning models differ
greatly in different data sets, that is, some models perform well
in a data set, but the performance of another data set may be
very poor. The DT model is the most significant. When the
DT model is applied to the ACE data set, the decision
coefficient is 0.556, while when the DT model is applied to the
BZR data set, the decision coefficient is 0.112. Although the
SVR model and KNN model have good performance in ACE,
DHFR, and ERα data sets, they have poor performance in
AchE and COX2 data sets. The only model that can maintain
high prediction ability in six data sets is the BPCSVR model.
Figure 10 shows the RMSE line chart of six data sets

predicted by each model. It can be seen from the figure that
the RMSE of the BPCSVR model in each data set remains the
minimum. Compared with the model with the largest error, the

Figure 7. R2/RMSE of two types of fingerprints in the BPC model and RF model. The evaluation parameter for the left subfigure is R2, and that for
the right subfigure is RMSE; the BPC model is represented by dotted lines, while the RF model is represented by straight lines.

Figure 8. Box plots of the AE between predicted and actual values of
the BPC model and BP model. The white line is the mean, and the
black cross is an outlier.

Figure 9. Mean values of R2 and RMSE of the BPC model and
BPCSVR model in six sets of data.
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BPCSVR model has the least and most reduction in ACE and
ERα data sets (0.19 and 0.405, respectively). The smaller
RMSE is, the smaller the deviation between the predicted value
and the actual value of the model is, that is, the accuracy of the
BPCSVR model is higher than that of other models.

To sum up, the BPCSVR model has higher reliability and
accuracy than other non-integrated machine learning models.
3.3. Comparison between the BPCSVR Model and the

Integrated RFSVR Model. The integrated model is generally
considered superior to the non-integrated model, so to
compare the integrated models, the RFSVR model is
additionally designed with reference to the BPCSVR model.
The RFSVR model is integrated by the RF model and SVR
model, that is, the average of RF prediction results and SVR
model prediction results is the prediction value of RFSVR.
Figure 11 shows the R2 and RMSE of the BPCSVR model

and RFSVR model for six groups of data sets, and the left is the
line chart and the right is the bar chart. From the figure, it is
obvious that the R2 of the BPCSVR model is larger, RMSE is
smaller, and the RMSE of the RFSVR model fluctuates greatly
among data sets. Therefore, simple stacking of models may not
be able to steadily improve the prediction ability of models.
Different from the RFSVR model, which simply divides the

results of two models equally, the BPCSVR model integration
strategy is special in that it uses similar samples to evaluate the
usefulness of the current model and uses the error of the
model’s prediction for similar samples to correct the deviation
of test samples.
Figure 12 shows the AE distribution function of BPCSVR

model and RFSVR model predictions for six groups of data.
The horizontal axis is the AE value, and the vertical axis is the
number of samples. From the analysis of the figure, more
BPCSVR model prediction samples fall into the small error
area. When the AE value is less than 1, the numbers of samples
of the BPCSVR model in each data set are 70, 77, 125, 236,
345, and 1819, while the corresponding numbers of the
RFSVR model are 53, 67, 122, 216, 325, and 1690,
respectively. The BPCSVR model always has more samples
with smaller errors between predicted values and actual values,
which also show that the BPCSVR model has higher prediction
accuracy.
Compared with the RFSVR model, the BPCSVR model has

higher R2, smaller RMSE, and smaller error of more sample

Table 2. R2 and RMSE Values for the Test Sets of Different Compounds

ACE AchE BZR COX2 DHFR ERα mean

R2 0.632 0.608 0.48 0.502 0.7 0.836 0.626
RMSE 1.377 0.771 0.649 1.005 0.727 0.575 0.850

Table 3. R2 and RMSE of Each Model

data set evaluation SVR DT KNN CoMFA BPCSVR

ACE R2 0.557 0.556 0.523 0.49 0.632
RMSE 1.51 1.5 1.567 1.377

AchE R2 0.335 0.31 0.435 0.47 0.608
RMSE 1.004 1.022 0.925 0.771

BZR R2 0.288 0.112 0.267 0.00 0.48
RMSE 0.759 0.847 0.77 0.649

COX2 R2 0.346 0.154 0.268 0.29 0.502
RMSE 1.153 1.311 1.219 1.005

DHFR R2 0.612 0.476 0.655 0.59 0.7
RMSE 0.827 0.960 0.779 0.727

ERα R2 0.695 0.526 0.633 0.836
RMSE 0.785 0.98 0.862 0.575

Figure 10. Line chart of RMSE comparison between the BPCSVR
model and the non-integrated model.

Figure 11. Figure of R2 and RMSE of the BPCSVR model and RFSVR model on each data set.
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prediction values, which show that the BPCSVR model is more
reliable and accurate than the RFSVR model.

4. CONCLUSIONS
In this paper, the BPCSVR model is proposed to train and
predict the activity of six groups of ligand compounds. The
experimental results show that the QSAR model based on the
machine learning method is completely feasible, its prediction
ability is better than the traditional COMFA model, and the
model establishment is simpler. The BPCSVR model makes
full use of the sample data of the small sample data set through
data partitioning and integration and uses the RMSE of the
validation set to correct the prediction results so as to improve
the prediction accuracy of the small sample data. Through the
evaluation of R2, RMSE, AE, optimization rate, and other
parameters, it can be seen that the BPCSVR model has the
strongest ability and is superior to other comparison models in
terms of prediction accuracy, overall prediction stability, and
single prediction stability.
However, the model proposed in this paper still has some

shortcomings. First of all, the prediction ability of the model

still lags far behind that of the cutting-edge research. To
improve the predictive ability of the model, molecular
fingerprints can be improved in the next research, and the
predictive ability can be improved through the improvement of
molecular fingerprints. Second, compared with cutting-edge
research, the experimental data sets in this paper are small,
which indicates that the extensibility of the model is not fully
explained. In the next study, we will add experimental data sets
to illustrate the extensibility of the model.
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