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S u m m l r y  

We have examined the contributions of Interleukin 4 (Ib4), IL-5, and other stimuli to the expression 
of Immunoglobulin G1 (IgG1) and IgE in murine B lymphoblasts activated with anti-Ig. The 
combination of IL-4 and -5 induced B lymphobhsts to proliferate and to secrete IgM and IgG1. 
However, an additional stimulus was required along with II:4 and -5 for induction of IgE secretion. 
This stimulus was provided by lipopolysaccharides (LPS) or cytokines produced by TC-1 or EL4 
cells. In the absence of II.-5, exceptionally high concentrations of II.-4 (>1,000 U/ml) were required 
to elicit IgG1 and IgE secretion from B lymphoblasts cultured with either LPS or TC-l-conditioned 
media (CM). To investigate regulation of expression of 3'1 and ~ genes by I1,4, -5, and LPS, 
the requirements for induction of 3'1 and e germline and productive transcripts were examined. 
Germline 3'1, but not e, transcripts were detected in RNA from B lymphoblasts treated with 
I1,4 and -5 for 48 h. In contrast, both germline 3'1 and e transcripts could be detected in B 
lymphoblasts cultured with I1,4 and LPS, and steady state levels of germline 3'1 transcripts were 
four- to sevenfold higher in blasts cultured with LPS and Ib4, compared with blasts cultured 
with I1,4 and -5. LPS enhanced steady state levels of germline transcripts induced by I1,4, but 
LPS did not promote substantial accumulation of productive 3'1 and e transcripts. In contrast, 
I1,5 did not affect steady state levels of germline transcripts stimulated by I1,4, but did markedly 
increase levels of productive 3'1 and e transcripts. Thus, lymphokines regulate two distinct events 
in isotype switching: induction of germline transcripts (I1,4), and production of VDJ-C3'I and 
VDJ-Ce mRNA (I1,5), which leads to secretion of IgG1 and IgE. 

I t is now well established that I1,4 regulates Ig isotype 
switching in B lymphocytes. IL-4 induces secretion of IgG1 

and IgE, and suppresses secretion of IgM, IgG3, and IgG2b, 
from routine B ceils stimulated with LPS (1--4). In addition, 
several groups have demonstrated that induction of IgE secre- 
tion from murine and human B cells by activated CD4 § T 
cells is dependent on Ib4 (5-10). IL,4 also induces IgG4 and 
IgE secretion from human peripheral blood lymphocytes (11) 
and from purified human B cells transformed by EBV (12), 
or stimulated with anti-CD40 (13, 14) or hydrocortisone (15, 
16). The important role of IL-4 in the production of IgG1 
and IgE in vivo has been confirmed in several studies (17-21). 

Ib4 induces alterations in the chromatin structure of the 
S'yl region (22, 23) and the accumulation of germline 3'1 
and e transcripts (24-27). These results led to the suggestion 
that Ib4 promotes switching to IgG1 and IgE by regulating 
the accessibility of $3'1 and SE regions to a switch recom- 
binase (26-28). Although Ib4 alone is sufficient to stimulate 
transcription of the unrearranged 3'1 and e H chain loci, a 
second signal is required for induction of switch recombina- 

tion to the 3'1 and e H chain loci, synthesis of productive 
3'1 and e transcripts, and secretion of the respective Ig iso- 
tyix~ This second signal can be provided to murine and human 
B cells by noncognate interaction with activated T cells (9, 
10, 29), by LPS in murine B cells (4, 30), by EBV transfor- 
mation of human B cells (31), and by crosslinking the CD40 
antigen on human B cells (32), 

In several experimental systems, IL-5 has been shown to 
enhance secretion of IgG1 and IgE from B cells stimulated 
with I1,4. I1,5 and -2 promote secretion of IgG1 and IgE 
from B cells or B lymphoblasts stimulated with LPS and I1,4 
(33, 34) and from B lymphoblasts treated with a mixture 
of T cell-derived lymphokines (35). Ib5 enhances secretion 
of IgE from human PBL stimulated with Ib4 (36, 37), and 
recent studies suggest that I1,5 plays an important role in 
induction of IgG1 and IgE secretion by murine T,2 clones 
(29, 38). Although numerous studies indicate a role for Ib5 
in isotype switching, the mechanism by which I1,5 promotes 
expression of IgG1 and IgE is not understood. 

We have used anti-Ig activated B lymphoblasts as a model 
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system to study lymphokine regulation of isotype switching. 
Resting, murine B cells exposed to insoluble anti-Ig for 48 h 
are quantitatively converted to low density B lymphoblasts 
(39). Reculture of anti-lg activated B cells (B lymphoblasts) 
with T cell supernatants containing Ib4 and -5 results in secre- 
tion of IgM and IgG1 (40). In this study, we e~amined whether 
IL-5 could provide the second signal that is required, in addi- 
tion to II:4, for isotype switching to IgG1 and IgE. We found 
that the combination of Ib4 and -5 stimulated proliferation, 
IgM secretion, and isotype switching to IgG1, but an addi- 
tional stimulus (e.g., LPS) was required for secretion of IgE. 
An investigation of the regulation of 3,1 and e gene expres- 
sion revealed that LPS enhanced accumulation of germline 
transcripts induced by Ib4, and -5 specifically enhanced the 
accumulation of productive 3`1 and e transcripts. Taken to- 
gether, these data suggest that Ib5 provides an essential second 
signal for isotype switching by B lymphoblasts by either 
regulating transcription of the rearranged 3`1 and e H chain, 
or inducing switch recombination in B lymphoblasts stimu- 
lated with Ib4. 

Materials and Methods 

Mice 
Female BALB/c mice were obtained (Cumberland Farms, 

Clinton, TN) and used at 8-12 wk of age. 

Reagents 
Affinity-purified antibodies were obtained from Jackson Im- 

munoresearch Laboratories, West Grove, PA (goat anti-mouse IgM 
plus IgG, anti-/~), and from Southern Biotechnology Associates 
of Birmingham, AL (goat anti-IgG1 and goat anti-g). Ig isotype 
standards were obtained from Pharmingen, San Diego, CA (IgE, 
K), and Southern Biotechnology Associates (IgM and IgG1). Poly- 
donal anti-IgE antibody was obtained from The Binding Site, Inc., 
San Diego, CA. Rat monodonal anti-IgE was prepared from EM95 
culture supernatants by precipitation with 45% NH,SO,. 

Lymphokines 
~comhinant baculovirus containing either routine I1,4 or -5 

cDNA were generously provided by Drs. William Paul, National 
Institute of Allergy and Infectious Diseases (NIAID), National In- 
stitutes of Health (NIH), and Warren Strober, NIAID, NIH, respec- 
tively, rib4 and -5 were prepared using the baculovirus expression 
system as described (41). I1,4 activity in SD cell supernatants was 
quantitated by comparison of activity on the HT-2 cell line with 
purified recombinant mouse Ib4 (7-14 U/rig), generously provided 
by Drs. Robert Kastelein, and Noburyuki Harada of DNAX, palo 
Alto, CA. I1,5 activity in Sf9 cell supernatants was assessed on 
BCL1 cells. 1 U of Ib5 was defined as the amount oflb5 required 
to induce half-maximal stimulation of IgM secretion from BCL1 
cells. Conditioned media derived from HeLa cells transfected with 
the I1,5 cDNA (generously provided by T. Honjo) was also used 
as a source of ri1,5. EL4 Sn was prepared and depleted of II,4 as 
described (33). 

B Cell Preparations 
B cells were prepared by treating spleen cells with monoclonal 

anti-Thy-1 and anti-L3T4 followed by lysis with baby rabbit serum 
(Pel-Freeze BiologicaLs, Rogers, ALL). High density B cells (1.081- 

1.086 g/ml) were isolated on discontinuous Percoll density gra- 
dients, as described (42). 

Cell Culture 
High density B ceils were cultured with anti-Ig-Sepharose (0.5 

ml of 10% Sepharose/10 ml of RPMI 1640, 5% FCS, 5 ~g/ml 
gentamicin, and 50 ~aM 2-va~) at 1-1.5 x 10' cells/ml for 48 h. 
Low density B cell blasts (anti-Ig blasts) were isolated by centrifu- 
gation (400 g for 10 min) over Ficoll-Hypaque (Pharmacia Fine 
Chemicals, Piscataway, NJ). B lymphobhsts were then washed and 
recultured in 96-well microtiter plates at 2-4 x 10 s cells/ml with 
lymphokines (Ib2, -4, and -5), or at 0.5-1 x 10. cells/m1 with 
LPS (20/~g/ml) _+ lymphokines. All additions in microtiter plates 
were made in triplicate. In experiments requiring isolation of total 
RNA, 20-40-ml secondary cultures were carried out in 75-cm 2 
culture flasks. 

MTT Assay 
B lymphoblast growth and viability was assessed in microcul- 

tures using the MTT ([3-]4,5-dimethylthiazol-2-yl-2,4-diphenyl 
tetrazolium bromide) assay of Mosmarm with minor modifications 
(43). After incubation with substrate (500/~g/ml) for 2-3 h, un- 
converted substrate and culture medium was aspirated from the 
wells. Product was solubilized with 100/~1 isopropanol and the 
absorbance at 570 nm was measured using an ELISA plate reader 
(Molecular Devices Corp., Menlo Park, CA). 

Isolation of Total Cellular RNA and RNA Blot Analysis 
Total cellular KNA was isolated by the method of Chirgwin 

et al. (44) with minor modifications. Total RNA was quantitated 
by UV spectrophotometry (10D Am = 40 #g/ml). 10-20 #g 
of KNA was fractionated on 1% agarose gels containing 0.22 M 
formaldehyde and then transferred to nitrocellulose filters. Ethidium 
bromide (0.5 #g/ml) staining of 28S and 18S rRNA was used to 
confirm spectrophotometric quantitation of RNA, and to assess 
the apparent ef~ciency of transfer to nitrocellulose. RNA blots were 
hybridized to either gel-purified fragments or whole plasmid that 
had been nick-translated with [3zp]deoxycytidine triphosphate. 
Filters were washed twice for 30 rain at ambient temperature in 
2x SSC/0.1% SDS, then twice for 30 rain at 65~ in 0.1x 
SSC/0.1% SDS. After air drying, filters were exposed to Kodak 
XAR-5 film for 2-5 d at -70~ with enhancer screen. 

Nuclease Protection Assay 
RNase protection assays were performed according to the method 

of Melton et al. (45). Total RNA was hybridized with 1-1.5 x 
105 cpm of antisense RNA probe (see below) in 80% forma- 
mide/40 mM Pipes, pH 6.4/0.4 M NaCI/1 mM E ~  for 16-18 h 
at 45~ RNA:RNA hybrids were digested with RNase A and 
RNase T1 for 1 h at 30~ as described (45). Protected fragments 
were fracdonated on 6% polyacrylamide/8 M urea sequencing gels. 
Gels were dried and exposed to Kodak SB5 diagnostic film for 
24-48 h with intensifying screen at - 70~ Band intensities were 
quantitated by SCanning densitometry (Ephortec~; Joyge Loebl Den- 
sitometer, Vickers Instrument Co., M21cbu, MA). Size markers were 
derived from HinfI-digested pBR322 labeled with 3~p, using 
Khnow polymerase and ~-[3:P]dATP. 

Probes 
RNA Probes. pl'y1/PCR.3, a pGEM-4Z phsmid vector (Pro- 

mega Biotec, Madison, WI) containing a 419-bp cDNA fragment 
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of the germline 3'1 transcript was generously provided by Dr. M. 
Berton (University of Texas Southwestern Medical Center, DaLlas, 
TX). The pi3'1 insert encompasses 285 bp of the I3"1 exon and 
134 bp of the C,1 exon of C3'1. The plasmid pI3'l was linearized 
with EcoRI and used as a template to transcribe antisense RNA 
probe using T7 polymerase (Riboprobe Gemini II system; Promega 
Biotec), according to the method of Melton et al. (45). For prepa- 
ration of control sense RNA, probe pi3'1 was linearized with BamHI 
and transcribed using SP6 polymerase. 

$3"1 Prom Germline 3"1 transcripts were detected using nick- 
translated pS3"IB.X plasmid, pS3'IB.X contains a 1.85-kb BamHI 
fragment from p3,1/EH10.0 (46) subcloned in the antisense orien- 
tation into the BamHI site of plasmid vector pGEM-3Zf(+) 
(Promega Biotec). The BamHI fragment of pS3'IB.X, which con- 
rains the I3'1 exon (47), encompasses the 5' portion of $3'1 and 
5' flanking sequences. The $3"1 probe did not detect transcripts 
in RNA isolated from MOPC 21 (an IgG1 producing myeloma), 
demonstrating that it does not hybridize to mRNA for the 3'1 
H chain. 

Ce Probe. Germline and productive e transcripts were detected 
using a nick-translated 797 bp AvaI/PstI fragment from pe (48). 
The 797 bp AvaI/PstI fragment encompasses the CH1 exon and 
most of the IVS I of the e H chain gene. The pS3'IB.X and pe 
plasmids were generously provided by Dr. M. Berton. 

Assay for Ig Isotypes 
Culture supernatant was assayed for Ig isotypes by solid phase 

RIA (IgG1) or ELISA (IgM and IgE). For IgE ELISA, plates were 
coated with a monoclonal anti-IgE, EM95. Primary incubation with 
IgE standards or sample was followed by a secondary incubation 
with biotinylated polyclonal anti-IgE (The Binding Site Inc.). Alka- 
line phosphatase-conjugated avidin (Zymed Laboratories, Ina, South 
San Francisco, CA) was then added, and plates were developed with 
p-nitrophenylphosphate (2 mg/ml) (Sigma Chemical Co., St. Louis, 
MO) in 0.1 M NaCO3 pH 10, 2 mM MgC12. All ELISA incuba- 
tions were performed in 1% FCS/PBS/10 mM NAN3/0.1% 
NP-40. 

Results 

The Combination of lL4 and -5 Induces Proliferation and Matu- 
ration to IgM Secretion by B Lymphoblasts. In the absence of 
an added stimulus, B lymphoblasts die within 24--48 h after 
removal of anti-Ig and initiation of secondary culture (39 and 
Fig. 1). In contrast, B lymphoblasts cultured with EL4 Sn 
or LPS undergo rapid and extensive proliferation (42). We 
first wished to define the lymphokines responsible for the 
mitogenic activity of EL4 Sn. Initial studies suggested that 
combinations of 1I.-2, -4, and -5 failed to mimic the activity 
of EL4 Sn on B lymphoblasts (49), but these studies were 
hampered by the lack of Ib5 preparations with high specific 
activity. Therefore, we have reexamined the ability of Ib4 
and -5 to promote the growth and maturation orb  lymphob- 
lasts. B lymphoblasts were cultured with I1-5 and -4, alone 
or in combination, and B lymphoblast growth and viability 
was assessed at 24-h intervals by the MTT assay. Although 
I1-4 maintained B lymphoblast viability for 24--48 h, neither 
I1-4 nor -5 induced substantial B lymphoblast proliferation. 
In contrast, the combination of I1-4 and -5 induced marked 
B lymphoblast proliferation. In cultures with Ib4 and -5, 
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Figure 1. The combination of 1I-4 and -5 promotes B lymphoblast 
proliferation. Anti-lg-activated B lymphoblasts (2-4 x 10S/m1) were cul- 
tured in microtiter plates with the indicated combinations of Ib4 (150 
U/ml) and -5 (100 U/ml) for 1-5 d. B lymphoblast growth and viability 
were assessed by the MTT assay. Results presented are the mean of tripli- 
c.ate wells from a representative experiment. 

viability of B lymphoblasts peaked on day 2 or 3 and slowly 
declined thereafter. B lymphoblast proliferation in response 
to I1.4 and -5, as measured by the MTT assay, was lower 
in magnitude than the response to either LPS or EL4 Sn, 
and inclusion of Ib2 in cultures with IL-4 and -5 did not 
further enhance proliferation orB lymphoblasts (not shown). 

We next assessed the ability of I1.4 and -5 to induce B 
lymphoblast maturation to Ig secretion. As shown in Fig. 
2, culture of B lymphoblasts with both IL-4 and -5 resulted 
in marked secretion of IgM. Optimal induction of IgM secre- 
tion was dependent on both lymphokines, as addition of ei- 
ther monoclonal anti-Ib4 (10 #g/ml) or anti-IL-5 (20/zg/ml), 
but not control rat IgG, inhibited this response. Ib5 alone 
caused small increases in IgM secretion, and Ib4 consistently 
and markedly enhanced secretion of IgM in conjunction with 
IL-5. In contrast, IL-4 alone, even at concentrations in excess 
of 1,000 U/ml, failed to stimulate IgM secretion (not shown). 
IgM secretion was maximal at 50-150 U/ml Ib4 (with II.,5 
at 100 U/ml), or 5-10 U/ml IL-5 (with 600 U/ml IL-4). As 
with B lymphoblast growth, inclusion of Ib2 (100 U/ml) 
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Figurr 2. Induction of IgM secretion from B lymphoblasts requires both 
Ib4 and -5. B lymphoblasts (2-4 x 10S/ml) were cultured with I1.-4 
and/or -5 in the presence or absence of monodonal anti-IL-4 and mono- 
clonal anti-IL.5 for 3 d. The amount of secreted IgM in culture superna- 
tants was determined by ELISA. (/..eft) 100 U/ml Ib5, 10/~g/ml mono- 
clonal anti-II.-4; (right) 600 U/ml IIA, 20 I~g/ml monoclonal anti-Ib5. 
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had virtually no effect either alone or in combination with 
II.-4 and -5 (data not shown). These data demonstrate that 
the combination of Ib4 and -5 is sufficient to induce B lym- 
phoblast proliferation and maturation to Ig secretion. 

1I.,4 and-5 Induce Secretion of lgG1, but Not IgE from B Lym- 
phoblasts. Since the combination of IIA and -5 was sufficient 
to promote maturation of B lymphoblasts, the ability of IL-4 
and -5 to induce isotype switching to IgG1 and IgE was ex- 
amined. As shown in Fig. 3, culture of B lymphoblasts with 
both Ib4 (15-3,000 U/ml) and Ib5 (100 U/ml) resulted in 
substantial IgG1 secretion, but either lymphokine alone was 
ineffective. In four independent experiments, secretion of IgG1 
was half-maximal between 50 and 150 U/ml Ib4, and max- 
imal levels of IgG1 secreted in these cultures were comparable 
with those observed in cultures containing LPS. These results 
demonstrate that IL-5 induces secretion of IgG1 from B lym- 
phoblasts stimulated with Ib4. 

Previous studies demonstrated that LPS and IL-4 (up to 
50 U/ml) failed to induce IgG1 secretion from B lympho- 
blasts (33). However, exceptionally high concentrations of 
IL-4 are required for induction of IgE secretion by B cells 
stimulated with LPS (4). Therefore, the ability of LPS and 
high concentrations of Ib4 to stimulate IgG1 secretion in 
the absence of IL-5 was examined. As shown in Fig. 3, marked 
secretion of IgG1 in cuhures with LPS was not observed until 
Ib4 concentrations approached 1,000 U/ml. Inclusion of IL-5 
in cultures with LPS and IL4 shifted the concentration re- 
sponse curve to Ib4 100-fold to the left. Thus, consistent 
with our previous results, Ib5 promotes secretion of IgG1 
from B lymphoblasts treated with LPS and Ib4 (33). How- 
ever, induction of IgG1 secretion from B lymphoblasts cul- 
tured with LPS was observed in the absence of Ib5 when 
exceptionally high concentrations of IL-4 were employed. 

In contrast to what was observed with IgG1 secretion, vir- 
tually no secreted IgE was detected in cultures of B lympho- 
blasts with Ib4 and -5, even at very high concentrations of 
IL-4, whereas marked secretion of IgE was observed in cul- 
tures where LPS was included along with Ib4 and -5 (Fig. 
3, bottom). Inclusion of Ib2 along with IL-4 and -5 failed 
to induce IgE secretion (not shown). Induction of IgE secre- 
tion by LPS and Ib4 required Ib4 concentrations of 1,000 
U/ml or greater, and addition of Ib5 to these cultures shifted 
the concentration response 10-fold to the left. 

The preceding data suggest that an additional signal(s), 
which can be provided by LPS, is required for expression of 
IgE in B lymphoblasts cultured with Ib4 and -5. Whether 
a cytokine could also provide this other signal was examined. 
As shown in Table 1, culture of B lymphoblasts with EL4 
Sn (which contains cytokines in addition to IL-4, -5, and -2) 
was sufficient to induce secretion of IgE. This result sug- 
gests that a cytokine(s) present in EL4 Sn can provide the 
additional signal required for expression of IgE. The obser- 
vation that a stromal cell-derived cytokine is mitogenic for 
B lymphoblasts (49), prompted us to examine whether this 
cytokine could also support Ib4-mediated induction of IgE 
secretion. B lymphoblasts cultured with conditioned medium 
derived from TC-1 cells proliferate and secrete IgM (49), but 
do not secrete IgG1 and IgE (Table 1). Similar to resuhs with 
LPS, marked induction of IgG1 and IgE secretion from B 
lymphoblasts cultured with TC-1 CM required Ib4 concen- 
trations in excess of 1,000 U/ml. Inclusion of Ib5 in cultures 
with TC-1 CM and Ib4 (150 U/ml) promoted IgGt and IgE 
secretion. Taken together, these data suggest that a cytokine(s) 
produced by TC-1 or EL4 cells provides a signal(s) that may 
play an important role in switching to IgE. 

LPS Promotes Accumulation of Germline Transcripts Induced 
By 11.,4. The next set of experiments were designed to in- 
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Figure 3. Stimulation of lgG1 and IgE secretion from B lymphoblasts. 
B lymphoblasts were cultured with LPS (20 #g/ml), Ib4, or -5 (100 U/ml) 
alone, or in the indicated combinations for 5 d. Levels of secreted IgG1 
and IgE were determined by RIA and EL1SA, respectively. 

Table 1. A Cytokine Promotes IL-4-mediated Secretion of IgE 

Exp. Stimulus IgG1 IgE 

A 

B 

ng/ml ng/ml 
(D)EL4 ND 15 
(D)EL4 + IL-4 (100 U/ml) ND 379 

IL-4 (1,500 U/ml) <10 <10 
IL-5 340 31 
IL-4 (1,500 U/ml) + IL-5 3,467 85 
TC-1 CM 73 <10 
TC-1 + IL-4 (150 U/ml) 273 <10 
TC-1 + IL-4 (150 U/ml) + IL-5 3,863 370 
TC-1 + IL-4 (1,500 U/ml) 2,725 567 

B lymphoblasts (10S/ml) were cultured with the indicated combinations 
of TC-1 CM (1% vol/vol), IL-4 and -5 (100 U/ml) for 6 d. The amounts 
of secreted IgG1 and IgE in culture supernatants were determined by 
R.IA and ELISA, respectively. Results presented are the mean of tripli- 
cate wells. (D) EL4, IL-4 depleted EL4 Sn. 
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Figurr 4. LPS promotes accumulation of germline 
transcripts induced by IL-4. Total cellular RNA was 
isolated from B lymphoblasts cultured with LPS for 
48 h (lanes I and 5), LPS and 1,500 U/ml IL.4 for 
24 (lanes 2 and 6) or 48 h (lanes 3 and 7), or Ib4 (1,500 
U/ml) and -5 (100 U/ml) for 48 h (lanes 4 and 8). 
Steady state levels of germline 3,1 and E transcripts were 
assessed by Northern blot analysis using the S')'1 and 
Ce probes, respectively. 

vestigate the mechanisms by which: (a) LPS induces secre- 
tion of IgE in B lymphoblasts stimulated with IL-4 and -5; 
and (b) I115 promotes secretion of IgG1 and IgE from B ]ym- 
phoblasts stimulated with I114. To investigate the molecular 
basis for the effects of LPS and I115 on isotype switching, 
we examined induction of germline 3,1 and e transcripts in 
B lymphoblasts. Total KNA was isolated from B lympho- 
blasts 1--4 d after initiation of secondary culture with the 
indicated combinations of I114, -5, and LPS. In some experi- 
ments, steady state levels of germline 3,1 transcripts were mea- 
sured by Northern blot analysis using a $3,1 probe. The $3,1 
probe detected two species of germline 3,1 transcripts of 3.2 
and 1.8 kb, that differ at the 3' end due to differential splicing 
of membrane exons and length of the Y untranslated region 
(Fig. 4). Since germline and productive 3,)'1 transcripts are 
equivalent in size (24), steady state levels of germline and 
productive transcripts were determined independently with 
the I3,1 probe in a nuclease protection assay (see Materials 
and Methods). The germline 3,1 transcript is detected as a 
419 bp protected fragment, and a 134-bp protected fragment 
corresponds to the productive 3,1 transcript (Fig. 5). Steady 
state levels of germline (1.7 kb) and productive (1.9 kb) e 
transcripts were assessed independently by Northern blot anal- 
),sis using a Ce probe. 

As shown in Fig. 4, germline 3,1 transcripts were detected 
in KNA from blasts cultured for 24 or 48 h with LPS and 
IL-4 (1,500 U/ml). Marked induction of germline 3,1 tran- 
scripts was also observed in B lymphoblasts cultured with 
LPS and 150 U/ml I114 for 48 h (Fig. 5). Steady state levels 
of germline 3,1 transcripts decreased slightly after 3-4 d of 
culture. Thus, concentrations of I114 (e.g., 150 U/ml) that 
fail to induce secretion of IgG1 are sufficient to induce ac- 
cumulation of germline 3,1 transcripts. Although germline 
3,1 transcripts were also detected in RNA isolated from blasts 
cultured with I114 and -5 (Fig. 4 and 5), or I114 alone for 
24 h (not shown), the steady state levels of germline 3,1 tran- 
scripts in blasts cultured with I114 and -5 were four- to seven- 
fold lower than the levels in blasts cultured with LPS and Ib4. 

In contrast, germline e transcripts were not detectable in 
blasts cultured with I114 and -5, in the absence of LPS (Fig. 
4). Induction of germline e transcripts was observed in B 
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lymphoblasts cultured with LPS and I114 for 24 h, and steady 
state levels increased after 48 h of culture. Neither 3'1 nor 
e transcripts were detected in RNA isolated from B lym- 
phoblasts cultured with LPS alone (Figs. 4--6) or LPS and 
Ib5 (Fig. 5), demonstrating that induction of these transcripts 
was dependent on Ib4. Consistent with the results of others 
(24, 50), these data demonstrate that LPS promotes accumu- 
lation of germline transcripts induced by Ib4. 

Whereas LPS enhanced accumulation of germline tran- 
scripts, LPS was relatively ineffective at promoting accumu- 
lation of productive 3,1 and ~ transcripts. As shown in Fig. 
5, low levels of productive 3,1 transcripts were detected in 
RNA isolated from B lymphoblasts cultured with LPS and 
II14 after 2 or 3 d of culture, and the level of these transcripts 
increased slightly through 4 d of culture. Virtually no produc- 
tive ~ transcripts were observed in B lymphoblasts cultured 
with LPS and IL-4 (150 U/ml) (Fig. 6). The failure to detect 
high steady state levels of productive transcripts under these 
conditions is consistent with the relative ineffectiveness with 
which LPS induces secretion of IgG1 and IgE from B lym- 
phoblasts cultured with moderate concentrations of IL-4 
(15o-300 U/ml). 

Higk Concentrations of lL-4 Promote Accumulation of Produc- 
tive 3,1 and e Transcripts in B Lympkoblasts. As shown in Fig. 
3, marked secretion of IgG1 and IgE was observed in the 
absence of I115 when B lymphoblasts were exposed to LPS 
and Ib4 concentrations of 1,000 U/ml or more. Therefore 
it was interesting to determine whether high concentrations 
of I114 promoted accumulation of productive transcripts. As 
shown in Figs. 5 and 6 C, IL-4 (1,500 U/ml) induced ac- 
cumulation of productive 3,1 and e transcripts in B lympho- 
blasts cultured with LPS. In the presence of LPS, high con- 
centrations of I114 (1,500 U/ml) induced three- to fivefold 
greater increases in steady state levels of productive 3/1 tran- 
scripts than were observed with 150 U/ml I114. Thus, though 
Ib4 at 150 U/ml was sufficient to induce expression of germ- 
line 3'1 and e transcripts, 10-fold higher concentrations of 
I114 were required for marked accumulation of the respective 
productive transcripts and secretion of IgG1 and IgE in the 
absence of I115. 

11_,5 Induces Accumulation of Productive 3,1 and e Transcripts. 
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Figure 5. Ib5 promotes accumulation of productive 71 transcripts. B 
lymphoblasts were cultured with LPS (20 ~tg/ml) and Ib4 (150, 1,500 
U/m]), or Ib4 (150 U/ml) and -5 (50 U/ml). Total cellular IkNA was 
isolated after 2, 3, and 4 d of culture. 5 ~g of total cellular RNA/condi- 
tion was analyzed by the nuclease protection using the 1~/1 RNA probe. 
(Tbp) Autoradiogram. (Bottom) Band intensities were quantitated by scan- 
ning densitometry. SP - sense probe; ASP - antisense probe. (-)RNA 
- total RNA not included in hybridization mixture. 

Inclusion of Ib5 (50 U/ml) in cultures with Ib4 resulted 
in marked induction of steady state levels of productive 3'1 
transcripts that was detectable after 3 d of culture, increased 
through day 4 (Fig. 5), and correlated with the appearance 
of secreted IgG1 in supernatants of parallel cultures (not 

shown). Ib5 also enhanced steady state levels of both produc- 
tive yl  transcripts in B lymphoblasts treated with IL-4 (150 
U/ml) and LPS. In three independent experiments, accumu- 
lation of 3'1 productive transcripts was increased by Ib5 
(50-100 U/ml) 4-10-fold over the levels stimulated by LPS. 
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Figure 6. Ib5 and high concen- 
trations of R,4 induce accumulation 
of productive e transcripts. B lym- 
phoblasts were cultured with LPS 
and II.,4, with or without I1.,5/ 
Ib2. Total cellular RNA was iso- 
lated from blasts in each condition 
after either 2, 3, or 4 d (A), or 4 d 
of culture (B and C). 20/~g of total 
cellular RNA/condition was ana- 
lyzed by Northern blot analysis 
using a C,-specific probe, lb4(L) 
= 150 U/ml, II.-4(H) = 1,500 
U/ml, lb5 - 100 U/ml, IL-2 
100 U/ml. 

These results demonstrate that IL-5 promotes expression of 
productive 3'1 transcripts, and that this effect of Ib5 is inde- 
pendent of costimulation with LPS. 

IL-5 also stimulated accumulation of productive e transcripts 
in B lymphoblasts treated with LPS and Ib4 (150 U/m1). 
Accumulation of productive e transcripts by IL-5 was not ob- 
served before day 4 (Fig. 6 A), and coincided with the ap- 
pearance of secreted IgE in culture supernatants (not shown). 
Induction of the 1.9-kb transcript by IL-5 was accompanied 
by an apparent decrease in the level of germline 1.7-kb tran- 
scripts, resulting in a marked increase in the apparent ratio 
of productive (1.9-kb)/germline (1.7-kb) transcripts (Fig. 6, 
A and B). In contrast, II--2 did not enhance the accumula- 
tion of productive e transcripts in B lymphoblasts cultured 
with LPS and Ib4 (Fig. 6 B). Taken together, these data sug- 
gest that IL-5 promotes secretion of IgG1 and IgE by inducing 
accumulation of productive 3'1 and e transcripts. 

Discussion 

IL-4 induces transcription of the unrearranged 3'1 and 
H chain loci resulting in the accumulation of germline 3'1 
and e transcripts in B lymphocytes. However, Ib4 alone is 
not sufficient to induce switch recombination, accumulation 
of productive transcripts, or secretion of IgE (7-10). Results 
presented here demonstrate that Ib5 can provide a second 
signal necessary for isotype switching to IgG1 and IgE. In 
routine B lymphoblasts we found that Ib5 with IL-4 was 
both necessary and sufficient to elicit IgG1 secretion, and that 
IL-5 promoted Ib4 dependent IgG1 and IgE secretion from 
B lymphoblasts treated with LPS. This indicates that Ib5 
can substitute for interaction with T cells hy providing a second 
stimulus required for switching to IgG1 in B lymphoblasts. 
However, this effect of Ib5 is dependent on an initial B cell 
activation stimulus, such as crosslinking surface Ig, or con- 
tact with plasma membranes isolated from activated T cells 
(51), since resting B cells do not respond to Ib5 (42, 52). 
Furthermore, cognate interaction with T ceils induces both 
IgG1 and IgE secretion (5, 6) but IbS, in conjunction with 
IL-4, was not sufficient to induce IgE secretion from B lym- 
phoblasts. Thus, Ib5 does not completely replace signals 
provided by contact with CD4 ~ T cells. 

Data presented in Figs. 5 and 6 suggest possible mecha- 
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nisms by which IL-5 promotes expression of IgG1 and IgE. 
A trivial explanation for the effects of Ib5 on Ig isotype ex- 
pression was that IL-5 promoted maturation or growth of 
cells precommitted to IgG1 and IgE by IL-4. However, the 
observation that IL-5 induced accumulation of productive 3'1 
and e transcripts, and that (in the absence of LPS) steady state 
levels of productive 3'1 transcripts were consistently increased 
by more than 10-fold over a period of 48 h, is inconsistent 
with the notion that Ib5 simply promotes maturation or 
selective expansion of"switched" cells. Alternatively, Ib5 may 
promote IgG1 and IgE secretion by enhancing transcription 
of the rearranged 3'1 and e heavy loci (53-55), regulating 
RNA polymerase termination leading to preferential accumu- 
lation of 3'1, and E, mRNA (56), or increasing stability of 
the VDJ-C3'1 and VDJ-CE mRNA. However, results 
presented here are also consistent with the supposition that 
Ib5 stimulates accumulation of productive transcripts and 
secretion of IgG1 and IgE by inducing switch recombina- 
tion to the 3"1 and e H chain loci. 

In contrast to IbS, LPS was an ineffective second signal 
for isotype switching in B lymphoblasts. B lymphoblasts cul- 
tured with LPS and lb4 (up to 300 U/ml) expressed low 
levels of productive transcripts and secreted little or no IgG1 
and IgE. However, the combination of Ib4 (150 U/ml) and 
LPS was suf~cient to induce marked accumulation of germ- 
line 3"1 and e transcripts (Figs. 4 and 5), demonstrating that 
B lymphoblasts are capable of responding to LPS and II.,4. 
Although LPS stimulation was a relatively ineffective second 
signal for isotype switching in B lymphoblasts, LPS does con- 
tribute to lymphokine regulation of Ig gene expression. LPS 
promoted IgE secretion from B lymphoblasts cultured with 
Ib4 and -5 (Fig. 3), and increased the steady state levels of 
germline transcripts induced by IL-4 (Figs. 4 and 5). It has 
been suggested that steady state levels ofgermline transcripts 
correlate with the propensity of B ceils to switch to the respec- 
tive Ig isotypes (27). Thus, it is interesting to speculate that 
LPS increases the frequency of switching to IgE by promoting 
accumulation of germline transcripts, which in turn, may 
play a functional role in switch recombination. 

Surprisingly, exceptionally high concentrations of IL-4 
(>1,000 U/ml) induced marked accumulation of productive 
transcripts and secretion of IgG1 and IgE (Figs. 3, 5, and 
6). Since high concentrations of Ib4 alone fail to induce Ig 



secretion from B lymphoblasts, a mitogenic stimulus (e.g., 
LPS) is required in addition to high concentrations of II.-4 
for stimulation of IgG1 and IgE secretion. Similar findings 
were reported by Snapper et al. (4) who showed that high 
concentrations of I1,4 were required for stimulation of IgE 
secretion from LPS-treated B cells. Concentrations of I1.4 
(150-300 U/ml) that fail to elicit secretion of IgG1 and IgE 
are equivalent to 0.5-1 riM, which is 10-100-fold in excess 
of the reported Ka (10-100 pM) of the high-affinity receptor, 
and therefore should be sufficient to saturate this receptor 
(57). It is possible that the effects of high IL-4 concentrations 
are not mediated by interactions with the 140-kD IL-4 receptor 
(58). Fernandez-Botran et al. recently reported that, at high 
concentrations, I1,4 interacts with a second cell surface mol- 
ecule that may be distinct from the 140-kD II,4 receptor (59). 
It is interesting to speculate that I1,4 binds with low affinity 
to an uncharacterized cell surface molecule, and that this in- 
teraction produces additional signals that supplant the require- 
ment for IbS. 

Another important finding of this study was that, although 
IL-4 and -5 were sufficient to induce switching to IgG1, an 
additional stimulus was required for induction of IgE secre- 

tion. It is important to note that even exceptionally high con- 
centrations of Ib4 (in excess of 1,000 U/ml) failed to induce 
IgE secretion from B lymphoblasts cultured with IbS. Related 
findings were recently reported by Snapper et al. (60), who 
showed that induction of IgE secretion by lymphokines was 
dependent on the efficiency of surface Ig crosslinking (60). 
Thus, production of IgE in B lymphoblasts required three 
distinct signals: (a) an isotype-specific switch signal provided 
by II.4; (b) a nonisotype-specific maturation and/or switch 
signal provided by I1.5; and (c) an additional signal(s) that 
can be provided by LPS. This additional stimulus was also 
provided by conditioned medium derived from EL4 or TC-1 
cells (Table 1). As noted above, LPS may enhance switching 
to IgE by increasing the steady state levels of germline e tran- 
scripts induced by Ib4. Although we have not demonstrated 
that the cytokine(s) produced by EL4 or TC-1 cells regulates 
steady state levels of germline transcripts induced by Ib4, 
it seems likely that the cytokine(s) promotes switching to 
IgE by a similar mechanism. Nonetheless, these results sug- 
gest that in a T cell-driven response, other cytokines may 
act in concert with Ib4 and -5 to induce switching to IgE. 
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