
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Åke Sjöholm,
Gävle Hospital, Sweden

REVIEWED BY

Zhouyu Guan,
Shanghai Jiao Tong University, China
Sayna Rotbei,
University of Naples Federico II, Italy
A. Devi,
IFET College of Engineering, India

*CORRESPONDENCE

Jiale Zhang

zhang_tcm@163.com

Liangzhen You

youliangzh@126.com

†These authors have contributed equally to
this work and share first authorship

RECEIVED 05 February 2025
ACCEPTED 06 May 2025

PUBLISHED 26 May 2025

CITATION

Ji C, Jiang T, Liu L, Zhang J and You L (2025)
Continuous glucose monitoring combined
with artificial intelligence: redefining the
pathway for prediabetes management.
Front. Endocrinol. 16:1571362.
doi: 10.3389/fendo.2025.1571362

COPYRIGHT

© 2025 Ji, Jiang, Liu, Zhang and You. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Perspective

PUBLISHED 26 May 2025

DOI 10.3389/fendo.2025.1571362
Continuous glucose monitoring
combined with artificial
intelligence: redefining the
pathway for prediabetes
management
Chenyang Ji1†, Tong Jiang2†, Luolin Liu3,
Jiale Zhang4,5* and Liangzhen You2*

1Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 2Key Laboratory of Chinese
Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese
Medicine, Beijing, China, 3Heilongjiang Academy of Chinese Medical Sciences, Harbin, China, 4China
Science and Technology Development Center for Chinese Medicine, Beijing, China, 5Institute of Basic
Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
Prediabetes represents an early stage of glucose metabolism disorder with

significant public health implications. Although traditional lifestyle interventions

have demonstrated some efficacy in preventing the progression to type 2

diabetes, their limitations—such as lack of personalization, restricted real-time

monitoring, and delayed intervention—are increasingly apparent. This article

systematically explores the potential applications of continuous glucose

monitoring (CGM) technology combined with artificial intelligence (AI) in the

management of prediabetes. CGM provides real-time and dynamic glucose

monitoring, addressing the shortcomings of conventional methods, while AI

enhances the clinical utility of CGM data through deep learning and advanced

data analysis. This review examines the advantages of integrating CGM and AI

from three perspectives: precise diagnosis, personalized intervention, and

decision support. Additionally, it highlights the unique roles of this integration

in remote monitoring, shared decision-making, and patient empowerment. The

article further discusses challenges related to data management, algorithm

optimization, ethical considerations, and future directions for this

technological integration. It proposes fostering multidisciplinary collaboration

to promote the application of these innovations in diabetes management, aiming

to deliver a more precise and efficient health management model for individuals

with prediabetes.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1571362/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1571362/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1571362/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1571362/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1571362/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1571362&domain=pdf&date_stamp=2025-05-26
mailto:zhang_tcm@163.com
mailto:youliangzh@126.com
https://doi.org/10.3389/fendo.2025.1571362
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1571362
https://www.frontiersin.org/journals/endocrinology


Ji et al. 10.3389/fendo.2025.1571362
1 Introduction

Prediabetes is characterized by blood glucose levels higher than

normal but not high enough to be diagnosed as diabetes. It

represents a serious health concern as it significantly increases the

risk of developing type 2 diabetes, heart disease, and stroke (1). As a

critical early warning sign, prediabetes underscores the need to

actively explore and implement effective prevention and control

strategies (2).

A glycated hemoglobin (A1C) level between 5.7% and 6.4%

indicates prediabetes, reflecting the average blood glucose levels over

the past 2–3 months, according to the diagnostic criteria set by the

National Institute of Diabetes and Digestive and Kidney Diseases and

the American Diabetes Association (ADA) for 2025 (3), this range is

recognized as the standard for diagnosing prediabetes. It is important

to note that any diagnosis of diabetes must be confirmed through a

second test, unless obvious symptoms of diabetes are present.

However, A1C should not be used to diagnose type 1 diabetes, and

certain medical conditions may lead to false results. Additionally, a

fasting plasma glucose (FPG) level between 100 and 125 mg/dL (5.6–

6.9 mmol/L) also indicates prediabetes, with the test conducted after

an overnight fast (4, 5). In the oral glucose tolerance test (OGTT), a 2-

hour blood glucose level between 140 and 199 mg/dL (7.8–11.0 mmol/

L) also indicates prediabetes. This test evaluates blood glucose levels

after consuming a sugary beverage. Multiple diagnostic criteria and

consensus guidelines emphasize the critical role of early detection and

intervention in preventing the progression to diabetes. Currently,

prediabetes has become a global health issue, with its prevalence

continuously rising. However, due to variations in diagnostic

standards and data collection methods, accurate global estimates

remain challenging (6, 7). Recent studies have shown that the

number of people affected globally is steadily increasing, primarily

driven by factors such as population aging, unhealthy diets, sedentary

lifestyles, and rising rates of overweight and obesity (8, 9). Traditional

management of prediabetes typically includes lifestyle interventions,

which are most effective (10), such as dietary modifications and

exercise adjustments, and sometimes includes pharmacological

treatments (11). These compelling pieces of evidence highlight the

urgency of managing prediabetes. However, these methods still have

limitations, such as a lack of personalization, difficulty in addressing

patients’ behavioral and psychological issues, insufficient monitoring,

and delayed interventions (12, 13). To overcome these limitations,

innovative approaches are crucial, particularly personalized strategies,

advanced technologies, and data-driven insights (14). The

combination of CGM and AI technology offers a promising solution

for the management and prevention of prediabetes, as confirmed by

the latest retrospective cohort study (15). Several recent systematic

reviews have examined the use of AI in diabetes or CGM applications

(16, 17). However, these reviews have primarily focused on type 1 or

type 2 diabetes management, algorithm development, or glucose

prediction accuracy. In contrast, this article emphasizes the

application of CGM-AI integration specifically in the context of

prediabetes, a stage often underrepresented in current literature.

Furthermore, this perspective highlights implementation strategies,

patient empowerment, and health system integration, offering a
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broader view beyond algorithmic performance. In this approach,

artificial intelligence-integrated CGM system, as a transformative

innovation tool, provides unprecedented continuous glucose

monitoring and drives personalized therapeutic interventions

through data analysis, with precision even exceeding that of

traditional primary indicators, thereby optimizing strategies for

management and prevention of prediabetes (18). This article is a

perspective based on an extensive analysis of the current literature and

emerging developments related to the integration of CGM and AI in

prediabetes management. Given the nature of a perspective article, no

formal systematic methodology or PRISMA flowchart is included.

Although every effort was made to ensure a comprehensive and

balanced discussion, potential limitations inherent in selective

literature exploration, such as subjective interpretation and coverage

bias, should be acknowledged. In the following sections, this article

first discusses the advantages of integrating CGM and AI in

prediabetes management, focusing on precision diagnosis,

personalized intervention, and decision support. It then elaborates

on the AI-enabled health process strategies involving personalized

management plans, remote monitoring, and shared decision-making.

Subsequently, the challenges and future directions of CGM-AI

integration are analyzed. Finally, the review concludes by

summarizing key findings and proposing future research directions.
2 Precision perspective: the
advantages of CGM combined with AI

The application of AI in prediabetes management is both

feasible and desirable, as it facilitates the development of efficient

data processing and management tools and devices. The

combination of CGM and AI can influence and improve three

key areas of prediabetes: diagnosis, management, and treatment

(Figure 1) (16, 19–21).
2.1 Diagnosis: the combination of CGM
and AI enhances the accuracy of early
detection

Studies have confirmed that even a slight increase in fasting

plasma glucose (FPG) levels is clinically significant (22, 23).

Specifically, when FPG levels exceed 4.9 mmol/L, insulin

resistance in individuals significantly intensifies, directly doubling

the risk of developing diabetes. This underscores the importance of

maintaining a specific balance to prevent disease progression, with

the identification of this critical range being a central element of

early intervention (24). Traditional diagnostic methods, such as

fasting blood glucose (FBG) and the oral glucose tolerance test

(OGTT), while widely used, have limitations in detecting glucose

variability and early prediabetes. For example, FBG is subject to

individual variability, which can affect its accuracy in identifying

early-stage prediabetes (25). The emergence of CGM technology

provides a revolutionary solution to this challenge. CGM allows for

real-time, continuous monitoring of blood glucose levels, revealing
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glucose fluctuation patterns that traditional tests are unable to

capture, thus improving the accuracy of monitoring and detection

(26, 27).

When combined with AI, particularly machine learning and

deep learning technologies, the potential of CGM data is further

enhanced (28, 29). Emerging research integrating AI-driven

diabetes care with cardiovascular risk prediction highlights the

interplay between metabolic and cardiac health, reinforcing the

value of interdisciplinary approaches (30). By utilizing deep neural

networks (DNNs) and explainable AI methods, multiple factors

(e.g., pre-meal glucose, insulin dose, nutritional content) can be

analyzed to accurately predict postprandial glucose levels (31).

Recent studies have developed AI algorithms specifically for meal

detection from CGM readings, highlighting subtle patterns not

easily detectable by conventional methods. AI can extract

complex features from the vast amount of CGM data, identifying

subtle patterns associated with the risk of developing type 2 diabetes

(T2D) (30). For example, by training deep learning models to

predict blood glucose levels and simulate glucose dynamics, AI

can assist physicians in more accurately identifying high-risk

individuals, even providing early warnings before abnormal blood

glucose levels appear (16, 20). By evaluating blood glucose

indicators over selected time periods (24 hours, daytime,

nighttime, breakfast, lunch, and dinner), “features” are generated

to calculate an individual ’s window period, along with

corresponding sensitivity and specificity ranges. Regarding the

reliability of AI methods referenced in this article, the majority

are supported by empirical evaluations using large-scale, multi-

institutional datasets or validated through cross-validation and real-

world clinical trials. For instance, models developed by Woldaregay

et al. and Annuzzi et al. were tested on continuous glucose

monitoring data under diverse dietary, lifestyle, and insulin

dosing conditions, showing high predictive accuracy and
Frontiers in Endocrinology 03
generalizability (31, 32). Additionally, many recent frameworks

utilize explainable AI (XAI) techniques, which enhance model

interpretability and clinician trust. These evidences strengthen the

robustness of AI findings and their applicability to prediabetes

management. This process enables accurate collection of the

“fingerprint” of CGM data, effectively serving as a form of

identity recognition (33). This early diagnostic strategy based on

CGM and AI not only enhances diagnostic accuracy but also

enables personalized assessment of diabetes risk, providing a

technological foundation to ensure precision in identification.
2.2 Management: the advantages of
personalized interventions

Once prediabetes or early T2D patients are identified through

CGM and AI technology, the next step is to develop a personalized

management plan. The real-time blood glucose data provided by

CGM, combined with AI’s data analysis capabilities, allows physicians

to gain deep insights into the patient’s glucose fluctuations, including

intra-day variability and long-term trends, this approach could

enhance precise monitoring of diabetic symptoms (34, 35). Multiple

studies have shown that personalized postprandial-targeting (PPT)

diets have a more positive impact on blood glucose control and

metabolic health in prediabetes compared to the Mediterranean

(MED) diet (36), studies examining the associations of related

biomarkers, such as glycated hemoglobin (HbA1c), high-density

lipoprotein cholesterol (HDL-C), and triglycerides, with cardiac

metabolic markers further support this finding (37). The use of

CGM and intermittent scanning CGM (isCGM) systems for

exercise-related glucose management in type 1 diabetes has been

endorsed by position statements from the European Association for

the Study of Diabetes (EASD), the International Society for Pediatric
FIGURE 1

The figure illustrates the processes of “Accurate Identification ‘Fingerprint’ Collection of CGM Data,” “AI Interventions for Personalized Management,”
and “Auxiliary Clinical Practice for Improving Decision Support.”. This diagram describes how CGM technology precisely collects patients’ blood
glucose data, forming a unique “fingerprint” dataset that lays a solid foundation for subsequent analysis and management. These data are then input
into advanced AI systems, where deep learning and analysis of large datasets enable the identification of potential blood glucose patterns, providing
scientific evidence for personalized management strategies. This innovative, interconnected approach aims to offer patients a more personalized,
efficient, and comprehensive healthcare management plan through accurate data collection, intelligent analytical interventions, and enhanced
clinical decision-making support.
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and Adolescent Diabetes (ISPAD), as well as the ADA (38). This

information is crucial for developing targeted dietary adjustments,

exercise plans, and pharmacological treatment strategies.

AI algorithms can also predict the effectiveness of different

interventions based on a patient’s specific characteristics, such as

age, gender, weight, and lifestyle, thereby recommending the most

optimized management strategies (39). This personalized

management approach not only improves the effectiveness of

treatment but also enhances patient compliance and satisfaction, as

the treatment plans are tailored to their specific needs and preferences.

Additionally, AI technology has driven the development of CGM

devices, such as the Eversense CGM system, which can measure blood

glucose levels without traditional invasive needles and provide up to

90 days of real-time glucose monitoring data, significantly improving

the convenience and comfort of blood glucose monitoring for

patients (40).
2.3 Clinical support: enhancing decision-
making assistance

In clinical practice, the combination of CGM and AI provides

physicians with powerful decision support, significantly enhancing the

efficiency and effectiveness of diabetes management. By continuously

monitoring blood glucose levels and intelligently analyzing data,

physicians can respond rapidly to glucose fluctuations, making

timely adjustments to treatment plans and effectively preventing

complications. This integration not only enables physicians to

identify and manage risk factors that could lead to disease

deterioration, such as nocturnal hypoglycemia or postprandial

hyperglycemia, allowing for prompt preventive measures, but also

improves patient understanding and engagement in their health status

(41). Patients can access real-time blood glucose data through mobile

applications, monitor glucose trends, and receive AI-based

personalized recommendations. This enhancement of self-

management capabilities is a crucial component of precision

medicine, fostering effective communication between patients and

healthcare providers (42).

Additionally, CGM itself, as a key tool for clinical decision

support, offers several significant advantages. The CGM system

provides real-time, continuous blood glucose readings, dynamically

displaying glucose fluctuations throughout the day, offering a more

comprehensive and accurate representation of blood glucose

compared to traditional self-monitoring of blood glucose (SMBG)

(43). CGM can also capture detailed glucose patterns, including

trends, variability, and time spent within different glucose ranges.

This data helps healthcare providers identify important patterns

that SMBG may miss, such as nocturnal hypoglycemia or

postprandial glucose spikes (44). By integrating patient

characteristics and other clinical information, CGM data can also

provide personalized insights into glucose responses, guiding

treatment decisions and enhancing patients’ autonomy in diabetes

management. Research has shown that the use of CGM significantly
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improves blood glucose control, particularly in type 1 diabetes

patients, while also enhancing patient engagement and increasing

adherence to treatment plans (44). Furthermore, CGM helps in the

early detection of potential issues, such as hypoglycemia or

hyperglycemia, allowing for timely intervention to prevent severe

complications. It also enables remote monitoring and telemedicine

services, thereby improving healthcare accessibility (45).
3 Health process strategy—AI-enabled
CGM management

With the rapid development of AI technology, its application in

the field of CGM is progressively deepening, bringing about

revolutionary changes in diabetes management. AI-powered

CGM management not only significantly enhances the accuracy

and real-time nature of blood glucose monitoring but also plays a

crucial role throughout the entire diabetes health management

process. Through intelligent data analysis and personalized

management strategies, AI is gradually optimizing the health

management process for diabetes patients (Figure 2).
3.1 Personalized management plan:
tailored care

In prediabetes management, precision medicine is gradually

transitioning from theory to practice, offering patients more

personalized, efficient, and compassionate healthcare services. At the

core is the development of personalized management plans, which,

through CGM and deep insights from AI, tailor dietary, exercise, and

medication interventions to individual patients. This data-driven,

personalized approach not only overcomes the limitations of the

traditional “one-size-fits-all” model but also incorporates the

patient’s physiological data, lifestyle, and personal preferences,

significantly improving the precision and effectiveness of

interventions. For example, AI can analyze CGM data to identify

specific foods that cause blood glucose fluctuations and provide

optimized dietary recommendations (46). Additionally, by utilizing

deep neural networks (DNN) and explainable artificial intelligence

(XAI) methods, multiple factors, including pre-meal blood glucose,

insulin dosage, and dietary nutritional components, can be analyzed to

accurately predict postprandial blood glucose levels in type 1 diabetes

(T1DM) patients. This enables the identification of specific foods that

influence blood glucose fluctuations and provides patients with

optimized dietary recommendations based on personalized data

(31); It can also integrate the patient’s activity level to recommend

suitable types of exercise, intensity, and duration, helping patients

incorporate physical activity into their daily lives. In terms of

pharmacological interventions, AI can precisely identify patients

suitable for medication treatment and design personalized

medication regimens. These personalized management plans, by

enhancing patient engagement and adherence, reduce the risk of
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progression to type 2 diabetes (47). If combined with large language

models (LLMs), the problem solving of CGM data can also be

optimized to better serve the personalized management plan of

patients (48).
3.2 Remote monitoring and intervention:
cloud-based approach

In the field of telemedicine, the integration of AI and CGM as

an innovative cloud-based technology solution demonstrates a

unique ability to identify early risks of T2D. This technology can

precisely capture postprandial hyperglycemia and the dawn

phenomenon, a subtle rise in blood glucose levels during the

night—two common glucose fluctuation patterns in prediabetes

patients that indicate an increased risk of developing T2D (49, 50).

Leveraging cloud-based remote monitoring, CGM not only enables

real-time identification of these critical indicators but also provides

medical teams with the opportunity for rapid response and the

development of personalized intervention strategies, effectively

reducing the risk of disease progression.

Additionally, the integration of CGM and AI technologies has

opened new avenues for managing prediabetes. The real-time

glucose data provided by CGM enables healthcare teams to

continuously monitor patients’ blood glucose dynamics and

implement timely interventions. AI deeply analyzes this data,

automatically generating feedback that includes glucose anomaly

alerts, personalized lifestyle recommendations (such as diet and

exercise), and medication guidance. Cloud-based services further

enhance the effectiveness and accessibility of remote healthcare by

securely storing and analyzing patient data, overcoming geographic

barriers, and offering timely, efficient medical services to patients in

remote areas or those with limited mobility. This approach also
Frontiers in Endocrinology 05
reduces unnecessary in-person visits and hospitalizations,

effectively controlling healthcare costs (51).
3.3 Shared decision-making: enhancing
patient participation and empowerment

In the management of prediabetes, patient engagement is crucial

to achieving the goals of precision medicine. Shared decision-making,

as a patient-centered care model, not only enhances patients’ sense of

responsibility for their health management but also improves clinical

outcomes through personalized intervention strategies (52). The

integration of CGM and AI provides a more robust data foundation

for shared decision-making. With real-time monitoring and dynamic

feedback, CGM technology allows patients to intuitively understand

the relationship between their glucose fluctuations and lifestyle factors

such as diet and exercise, while AI algorithms leverage big data

analysis to offer optimized management recommendations for both

patients and clinicians.

This data-driven shared decision-making process not only

enhances patients’ health literacy but also helps them develop

personalized intervention plans under the guidance of clinicians,

ultimately improving treatment adherence and long-term

outcomes. Research indicates that digital health tools contribute

to shared decision-making and have a positive impact on improving

diabetes care and quality of life, recent studies specifically confirm

that real-time CGM-AI feedback significantly enhances patient

satisfaction and quality of life by alleviating anxiety related to

glycemic fluctuations (53). Moreover, AI technology can further

support patients’ proactive interventions by identifying potential

health risks. This shift from a “prescriptive”model, reliant solely on

healthcare providers, to a “collaborative” model marks a new era in

prediabetes management, one that is more precise and efficient.
FIGURE 2

The diagram demonstrates the innovative integration and application of Personalized Management Plan, Remote Monitoring, and Intervention
Shared Decision Making in modern healthcare management. At its core, the diagram presents the Personalized Management Plan, which is
formulated through comprehensive analysis based on patients’ specific health conditions, lifestyles, and preferences, resulting in a tailored treatment
plan. Following this, the introduction of Remote Monitoring and Intervention technology enables the continuous and real-time collection of data,
allowing doctors to promptly grasp changes in patients’ health statuses and, when necessary, conduct remote interventions to adjust treatment
plans. Lastly, Shared Decision Making serves as the culmination of this innovative integration, emphasizing equal communication and joint decision-
making between doctors and patients. Based on the Personalized Management Plan and remote monitoring data, doctors and patients
collaboratively discuss the treatment plan, ensuring patients fully understand and participate in their own health management. This decision-making
model not only enhances patients’ adherence to treatment but also fosters trust and cooperation between doctors and patients.
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Furthermore, AI technology can further support patients’ proactive

intervention capabilities by identifying potential health risks. This

shift from a purely “directive” model, which relies solely on

healthcare providers, to a “collaborative” model marks the advent

of a more precise and efficient era in prediabetes management.
3.4 User training and education

One critical component of successfully implementing CGM-AI is

the development of tailored training programs for diverse

stakeholders. For healthcare providers, this involves competency-

based programs to interpret AI-generated insights (e.g., glucose

trend predictions) and integrate them into clinical workflows (54).

For patients, in contrast, simplified education on data interpretation

and self-management tools is required, such as interactive mobile

applications that translate CGM data into actionable

recommendations (55, 56). For community health workers, who

often serve as frontline providers in resource-constrained settings,

training should focus on basic device operation and telemedicine

coordination to support remote monitoring.
4 Challenges and future directions

The use of wearable devices for monitoring physical activity is

expected to increase more than fivefold within the next five years,

with the integration of medicine and engineering being a key trend

in the future of healthcare (57). In recent years, the deep integration

of CGM and AI has sparked profound changes in diabetes

management, driving a revolution in the healthcare industry. At

the heart of this transformation, CGM sensors have gradually

become an indispensable revolutionary tool in the field of

diabetes treatment. As guardians of blood glucose, they provide

precise real-time blood glucose data around the clock, offering us a

deeper understanding of blood glucose fluctuations (43). These

high-tech devices, which combine wearable, non-invasive, or

minimally invasive designs, have not only greatly improved

patients’ quality of life but also provided healthcare professionals

with unprecedented insights. This allows them to precisely

understand the patterns of individual blood glucose fluctuations,

enabling the development of more accurate and personalized

management plans, significantly promoting the control and

alleviation of diabetes.

At the same time, the rapid development of AI in the healthcare

field has opened up new possibilities for the long-term management

of chronic diseases (58). Leveraging its powerful algorithms, AI can

efficiently analyze the vast amounts of data generated by CGM

devices, identify potential patterns and correlations, accurately

predict future blood glucose trends, and even detect early signs of

risk (59). This provides patients and their medical teams with highly

personalized management strategies based on big data. Such

intelligent analytical tools undoubtedly bring unprecedented

scientific rigor and foresight to diabetes management.
Frontiers in Endocrinology 06
The integration of continuous glucose monitoring CGM

technology with AI has revolutionized diabetes management by

providing real-time, personalized insights for prevention,

intervention, and treatment. However, despite the significant

advancements, this integration also presents a range of complex

challenges. Table 1 summarizes the major challenges encountered

in CGM-AI integration and outlines corresponding proposed

solutions. Firstly, data integration remains a prominent issue. To

achieve comprehensive and refined management, it is crucial to

effectively integrate CGM data with other health information about

the patient, such as demographics, lifestyle habits, medical history,

and treatment plans. Building a secure, reliable, and flexible data

management system that ensures efficient integration, in-depth

analysis, and accurate interpretation of data is a daunting task.

Additionally, with the surge in the use of wearable devices for

monitoring physical activity, integrating these devices seamlessly

with CGM systems to achieve comprehensive data fusion is another

pressing challenge.

Addressing these challenges requires innovative solutions,

including the integration of blockchain technology to ensure

secure and transparent data management for AI-driven CGM

systems. Blockchain operates as a decentralized, immutable ledger

in which data transactions are encrypted, timestamped, and

distributed across a network of nodes. This structure inherently

prevents unauthorized data tampering and ensures traceability,

providing an additional layer of security for sensitive health

information collected from CGM devices. By integrating

blockchain with AI-enabled CGM platforms, patient data can be

securely stored and accessed while enabling real-time updates

without compromising privacy.

Developing AI algorithms with high precision and strong

adaptability also poses difficulties. These algorithms need to

undergo deep learning and optimization based on a broad and

diverse clinical data set to accurately predict blood glucose

fluctuations, identify personalized risk factors, and provide

practical management recommendations. Moreover, algorithm

design must fully consider individual patient differences to ensure

that each suggestion is accurately tailored to the patient’s actual

needs. Blockchain facilitates the implementation of smart contracts

based on predefined conditional automated data-sharing protocols.
TABLE 1 Major challenges and proposed solutions for integrating
continuous glucose monitoring and artificial intelligence in
prediabetes management.

Challenges Proposed solutions

Data integration across
devices and systems

Develop standardized interoperability protocols and
adopt blockchain-secured data systems

Algorithm adaptability to
diverse populations

Train models on multi-ethnic, multi-center datasets

Data privacy and
security concerns

Implement blockchain technology and comply with
GDPR and HIPAA standards

High costs of CGM
devices and AI platforms

Develop affordable graphene-based sensors and
subsidized public health programs
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For example, patients could provide limited access to specific

healthcare providers or researchers, ensuring that data utilization

meets ethical and regulatory standards. This framework enhances

patient autonomy and enables individuals to take control of their

own health data while supporting collaborative research and

innovation in diabetes management.

Apart from these technical challenges, issues such as regulatory

compliance, privacy protection, and ethical considerations must not

be overlooked. Blockchain technology supports interoperability by

securely connecting CGM data with other electronic health records

(EHRs) and wearable devices. This integration provides a holistic view

of patient health, enabling AI algorithms to generate more accurate

predictions and tailored interventions. Moreover, the transparency

and auditability of blockchain ensure stakeholder accountability,

addressing regulatory requirements such as the General Data

Protection Regulation (GDPR) and the Health Insurance Portability

and Accountability Act (HIPAA). Ai-driven CGM systems must

comply with such regulations to ensure confidentiality of patient

data and transparency of algorithmic decision-making. Blockchain

technologies, through immutable ledgers and smart contracts, can

enhance transparency, accountability, and patient consent

management, aligning closely with GDPR principles. Additionally,

incorporating explainable AI (XAI) techniques can significantly

enhance transparency in decision-making processes, fostering

patient and clinician trust.

Implementation of CGM and AI technology in low- and

middle-income countries (LMICs) poses distinct challenges,

primarily due to high device costs (ranging from $300 to $1,000

per sensor) and limited healthcare infrastructure. In many LMICs,

healthcare expenditures on diabetes care remain disproportionately

low; for instance, diabetes care accounts for less than 2% of

healthcare spending in sub-Saharan Africa (60). Economic studies

further highlight that current patient expenditure for diabetes care

in countries like Nepal averages approximately $23 per half-year,

demonstrating the stark contrast with the cost of CGM technologies

(61). Infrastructure limitations such as intermittent internet

connectivity and low smartphone penetration further complicate

the deployment of these advanced technologies. However, cost-

effective, adaptive solutions like SMS-based interventions or offline

AI models show promising results in improving glycemic control in

resource-limited settings. Innovations, such as the development of

low-cost graphene-based CGM sensors, coupled with targeted

public health initiatives and international collaborations like the

WHO Global Diabetes Compact, may offer viable strategies to

bridge these gaps (WHO Global Diabetes Compact, 2021).

Addressing these economic and infrastructural barriers through

innovation, subsidization, and workforce training will be critical for

achieving widespread adoption of AI-driven CGM systems

in LMICs.

Looking ahead, the deep integration of CGM and AI, combined

with blockchain technology, presents vast potential in the field of

diabetes management. Technological innovations will continue to

drive CGM devices toward greater accuracy, convenience, and non-
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invasiveness, while AI algorithm optimization will further improve the

accuracy of blood glucose predictions and the level of personalized

management. Through interdisciplinary research and close

collaboration, we can expect to see more intelligent closed-loop

systems in the future that automatically adjust insulin doses based on

real-time blood glucose data, as well as innovative applications

integrating AI virtual assistants to provide personalized health

guidance and psychological support around the clock. At the same

time, integrating social determinants of health into the diabetes

management system to achieve a comprehensive and

multidimensional health management upgrade will also be an

important direction for future development.

In summary, the fusion of blockchain and AI in CGM systems

offers a transformative approach to diabetes management, ensuring

data security, promoting trust, and enabling seamless data sharing.

Future research should focus on optimizing the use of blockchain in

healthcare, addressing scalability challenges, and validating its

effectiveness through multicenter trials. To realize this vision,

researchers, healthcare professionals, and policymakers must

continue to collaborate, overcome technical challenges, and unlock

the tremendous potential of these transformative technologies,

ultimately bringing unprecedented benefits and hope to diabetes

patients worldwide. To maximize the global impact of CGM-AI

integration, addressing healthcare access disparities is imperative,

notably in low- and middle-income countries (LMICs), which

account for over 75% of diabetes-related deaths (62), in Sub-

Saharan Africa, healthcare expenditure on diabetes accounts for less

than 2% of total health budgets (60). The prohibitive cost of CGM

devices remains a barrier in LMICs with constrained health budgets

(63), necessitating innovation in affordable alternatives such as

graphene-based biosensors (64). Meanwhile, infrastructure barriers

—including intermittent internet connectivity and low smartphone

penetration—demand adaptive solutions like SMS-based glucose

alerts or lightweight AI models optimized for offline use. A pilot

study in rural India demonstrated that AI-driven SMS interventions

improved glycemic control among prediabetic populations by 18%

(65), validating the potential of low-resource adaptations.

Multistakeholder collaborations, such as the WHO Global Diabetes

Compact (66), must prioritize equitable technology distribution and

localized training programs aligned with Sustainable Development

Goals (67). By addressing cost, infrastructure, and workforce gaps,

CGM-AI integration can transcend geographical and economic

boundaries, delivering scalable solutions for prediabetes

management in underserved regions.

Despite the transformative potential of CGM-AI integration, its

widespread adoption remains hindered by critical barriers related to

affordability and accessibility. In LMICs, where approximately

three-quarters of the global diabetic population resides in these

underdeveloped regions (68), the prohibitive costs of CGM devices

($300–$1000 per sensor) and AI-driven analytics platforms may

limit equitable access. A cross-sectional study from the perspective

of Nepalese diabetes patients revealed that the average healthcare

resource cost for managing type 2 diabetes over six months was just
frontiersin.org

https://doi.org/10.3389/fendo.2025.1571362
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ji et al. 10.3389/fendo.2025.1571362
$22.87 per patient, rendering advanced technologies unaffordable

for most (61). A U.S. study found that CGM could reduce long-term

medical costs by 15–20% through early intervention, achieving a

cost-effectiveness ratio of approximately $33,000 per quality-

adjusted life year (QALY) when sensors are used for 10 days, yet

upfront investments remain prohibitive (69). Further economic

evaluations reinforce the sustainability of CGM-AI interventions

by demonstrating long-term reductions in healthcare utilization

and complications. To address this, collaborative development of

low-cost, modular devices and implementation of government-

subsidized programs are required, as demonstrated by Thailand’s

National Diabetes Prevention Initiative (70).
5 Summary

This article provides an in-depth analysis of the integration of

CGM technology and AI in the management of prediabetes,

exploring its practical value and future potential in diagnosis,

management, and intervention. The real-time, dynamic data

collection capabilities of CGM, combined with AI-driven

analytical tools, have brought revolutionary changes to the

personalized management of prediabetes. Despite challenges in

data processing, algorithm development, and ethical compliance,

the significant advantages demonstrated by this technological

integration—such as improving blood glucose monitoring

accuracy, optimizing treatment plans, and promoting patient

empowerment—have paved the way for a new approach to

diabetes management. Future research and practice should focus

on the development of higher-precision CGM devices, optimized AI

algorithms, and integrated management systems. Through

interdisciplinary collaboration and policy support, the full

potential of this technology integration can be unlocked, offering

a new paradigm for global health management in prediabetes (71).
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