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Abstract: This study developed a practical recovery for potato starch by-products by A. niger and
applied it on a plant scale to completely solve the pollution problems. Soughing to evaluate the effect
of A. niger applied towards the production of by-products recycling and analyze the composition
and characteristics of flocculating substances (FS) by A. niger and advance a possible flocculation
mechanism for by-product conversion. After fermentation, the chemical oxygen demand (COD)
removal rate, and the conversion rates of cellulose, hemicellulose, pectin, and proteins were 58.85%,
40.19%, 53.29%, 50.14%, and 37.09%, respectively. FS was predominantly composed of proteins
(45.55%, w/w) and polysaccharides (28.07%, w/w), with two molecular weight distributions of
7.3792 × 106 Da and 1.7741 × 106 Da and temperature sensitivity. Flocculation was mainly through
bridging and ionic bonding, furthermore, sweeping effects may occur during sediment. Flocculation
was related to by-products conversion. However, due to severe pollution problems and resource
waste, and deficiencies of existing recovery technologies, converting potato starch by-products via A.
niger liquid fermentation merits significant consideration.

Keywords: potato starch by-products; recovery biotechnology; industrial scale; Aspergillus niger;
flocculation mechanism

1. Introduction

Potato starch industry occupied above 70% of the potato processing industry in China
as a processing method to maximize the economic value of potatoes. The development of
the potato starch industry has brought problems of environmental pollution and waste of
biomass resources, as well as strict enforcement of environmental laws, which has hindered
its development. Starch production generated large wastewater quantities with high or-
ganic and high chemical oxygen demand (COD) levels that pollute the environment when
discharged without appropriate treatment. It mainly includes two parts: one is the wastew-
ater produced by extracting starch milk, which is mainly potato cell fluid with high protein
content; the other is the wastewater produced in the process of extracting starch, that is, the
process wastewater, mainly from the transport and washing wastewater. Potato residue is
the waste material in potato starch production process with high levels of cellulose and
hemicellulose but poor protein [1]. It is mainly composed of water, cell debris, residual
starch particles and potato peel cells or cellular structures. Previous research on the resource
utilization of potato starch by-products followed two typical pathways: one ought to satisfy
discharge standards by consuming macro molecular substances in water using anaerobic
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and aerobic sludge bioreactors [2,3]. Although these methods effectively removed COD,
continuous investment and routine sludge treatment increased production costs and led
to the waste of biomass resources. The other pathway recycled by-products to produce a
single substance, such as fiber extraction [4,5]; production of cellular protein by microbial
fermentation [6]; protein recovery [1,7]; biological hydrogen production [8,9]; preparation
of methane from potato residues [10]; production of pullulan polysaccharide [11]; pro-
duction of microbial flocculants [12,13], preparation the potato protease inhibitors (PPIs)
from wastewater [14] are just a few. Most of these methods remain theoretical in the labo-
ratory and have not completely solved the pollution problem or recovered by-products.
In this case, the value of the converted product is lower than the investment cost, which
greatly hinders the industrial application of many of these biotechnologies. In our pre-
liminary work, microbial liquid fermentation conversion of potato starch by-products for
cellular protein positively impacted COD removal from wastewater [1,6]. Based on that,
the recovery biotechnology was optimized for industrial production, the recyclable and
economically valuable substances in by-products were reclaimed more comprehensively
and wastewater recycling benefitted pollution remediation. In the process of industrial
recovery biotechnology of potato starch by-products, microbial fermentation performance
impacted all downstream unit operations and by-product conversions [15], such as the
degradation of cellulose, hemicellulose, and pectin, conversion of proteins. In addition,
solid–liquid separation and energy consumption were also affected. Lowering moisture
levels decreased energy consumption and represented a step in the right direction [16].

Aspergillus niger efficiently converts the complex structure of biomass resources by
secreting large amounts of hydrolytic and oxidative enzymes [17,18], from which the rele-
vant genes were identified [19], and is the most wildly used microbial strain in industry.
Additionally, as a safe use for enzyme and metabolite production [20], A. niger has great
potential industrial reuse of biological waste. Such as cellulase production [21], hemi-
cellulase production [22] and pectinase production [23]. In addition, A. niger positively
impacted on COD removal in sewage treatment [24]. In terms of bioflocculation, potato
starch wastewater was utilized by A. niger to produce flocculants by optimizing production,
the removal of COD and turbidity of potato starch wastewater reached 91.15% and 60.22%,
respectively. These studies showed that A. niger played an indispensable role in biomass
recycling and was a flocculating microorganism.

Flocculation by A. niger in the sedimentation process after fermentation was affected
by a variety of factors and the flocculation mechanism in biological systems was intricate
and many theories had been put forward on it: (1) Electric neutralization mechanism. The
electric neutralization of flocculants occurred between flocculant molecules with opposite
charges and flocculated particles. Due to the electrostatic attraction of flocculant molecules,
the charge density between them and particles decreased, as do the repulsions between
particles and flocculants, which eventually led to flocs formation [25]. (2) Adsorption
bridging mechanism. The distance of the microbial flocculant extending from the particle
surface to the solution exceeded particle repulsions, which resulted in adsorption bridging.
The effectiveness of the bridging mechanism depended on the molecular weight, active
group, charge on the molecule, hydrogen bonding of the flocculation system, van der
Waals forces, and other microbial flocculant factors [26,27]. (3) Compression electric double
layer mechanism. The flocculant was thought to act with colloidal particles via hydrogen
bonds, van der Waals forces, electrostatic attractions, which resulted in the electric double
layers between particles being compressed and overlapped, and the charges of colloidal
particles were combined by flocculant molecules with opposite charges, which lowered
the repulsion between particles and destabilized the colloidal system to form flocs [28,29].
(4) Sweeping effect. When the flocculant was added to the solution, sedimentation formed
due to adsorption bridging or electric neutralization. The sedimentation swept or netted the
colloidal particles in the solution during flocculation sinking and resulted in precipitation.
(5) Chemical reaction mechanism. Flocculant molecules and colloidal particles were thought
to react chemically to form large flocs that ultimately precipitate from the solution.
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In this study, we developed a practical industrial recovery for potato starch by-
products by A. niger and fundamentally solved the wastewater pollution problems with
a closed-loop cycle. The circulating water reduced the water consumption of the potato
starch production line and thus reduces the production cost. The production process is as
follows (Figure 1a): (1) All by-products (potato residues and wastewater) from the potato
starch production line were transported to the Premix tank that maintained a by-products
temperature of 30–35 ◦C by stirring and heat exchange, followed by transportation into
the fermentation tank. Activated A. niger (from the Seed culture tank) was added into
the fermentation tank (solid green line), followed by the air injection to start fermentation
at a ventilation ratio of 0.01 VVM (air system not shown). (2) After fermentation (72 h),
the solid-liquid stratification resulted in sedimentation (for 2 h); the supernatant was cen-
trifuged for solid–liquid separation (solid blue line), and the solid was taken to a storage
tank. The liquid was spray-dried after low-temperature (50 ◦C) concentration, and the solid
was recovered (solid red line). (3) The sediment in the fermentation tank was discharged
into the solid–liquid separator for preliminary solid–liquid separation (solid pale brown
line), and the recovered solid matter was transported to the storage tank (solid red line).
The liquid entered the water treatment unit of the supernatant for secondary solid-liquid
separation. The solid substances in the storage tank were dried by the cyclone drying
system to become recycled finished products and the dry matter content was about 92%,
w/w (solid red line). Most of the water became a steam condensate during low temperature
(50 ◦C) concentration and entered the potato starch production line for cleaning potatoes
and starch (solid purple line). All units formed a closed-loop cycle.
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Figure 1. (a) Industrial reutilization biotechnology of potato starch by-products from a plant with an
annual output of 1000 tons of starch and composed of three parts: Microbial fermentation production
line, Solid-liquid separation production line, Drying and recovery production line. (b) Real photo of
Microbial fermentation production line in the factory. (c) Recycled products.

A. niger was applied to convert by-products (potato residues and wastewater) into
multifunctional potato powder. During production, solid-liquid separation was an impor-
tant step during sedimentation process after fermentation, bioflocculation directly affected
the subsequent production units by affecting the settling substance water content. Due to
high-water levels of settling substances, the energy consumption and production costs of
dehydration and drying increased [16]. The conversion effect directly determinized the
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value of the end product, multifunctional potato powder, which contained dietary fiber,
proteins, vitamins, amino acids, etc. (data not shown), with applications in medical care,
medical raw materials, and food additives. In addition, A. niger has been confirmed as
a flocculation microorganism [30,31]. The possible flocculation mechanism was inferred
by analyzing the soluble components with flocculation in the fermentation broth and the
changes in the main components of potato starch by-products converted by A. niger, and by
analyzing factors that affected the flocculation during sedimentation. It facilitates energy
savings and cost reductions through subsequent fermentation optimization.

2. Materials and Methods
2.1. Strains and Cultural Conditions

Fungal strain Aspergillus niger, isolated and preserved in the Laboratory of Microbiol-
ogy of Harbin Institute of Technology, was used in these experiments [6]. Spore culture
medium: bran passed through 40 mesh sieve, mixed bran and water 4:6 ratio, sterilized at
121 ◦C for 30 min, then cultured at 30 ◦C for 5−7 d until A. niger reached 109 spores g−1.
The potato starch production line of the factory has an annual output of 1000 tons of starch,
the by-products contain 3.5−4% dry matter. The liquid fermentation volume of each tank
was 24 t/30 t with a 0.1% (w/w) inoculation amount of A. niger spores, cultured at 30 ± 2 ◦C
for 72 h, and the ventilation ratio by 0.01 VVM (volume of air per volume of liquid per
minute). The fermentation tank was an airlift fermentation tank developed independently
by the Harbin Institute of Technology.

2.2. By-Products Component Analysis

Microbial fermentation decomposed and metabolized biomass [4]. Analyzing the
changes of by-product components before and after fermentation intuitively verified the
conversion effect of A. niger on by-products and provided mechanistic insights or factors
that influence flocculation. Several experiments analyzed the primary by-product compo-
nents before and after fermentation. Samples were taken after 24 h, 48 h, and 72 h, then
layered for 2 h. The supernatant was used to determine COD levels, pH, and protein
content. The precipitates were gathered and dried at 80 ◦C for 24 h, ground, and passed
through 100 mesh sieves to determine cellulose, hemicellulose, and pectin levels.

2.3. Extraction and Characteristics of Flocculating Substance (FS)

All potato starch by-product samples were taken from Jilin MaoQuanShuBao Biotech-
nology Development Co., Ltd., (Changchun, China). FS was prepared by sampling after
fermenting for 72 h. The fermentation solution was centrifuged at 5000 rpm 4 ◦C for 10 min,
stirred with a double volume of pre-chilled 95% ethanol, stored at 4 ◦C for 24 h, then
centrifuged at 5000 rpm for 10 min at 4 ◦C. The precipitates were collected and freeze-dried
for FS.

A 1% solution of FS lyophilized powder was prepared for subsequent experiments.
Components in FS were preliminarily analyzed by full band scanning. A 200 µL FS solution
was added to 96 well plates and measured using a microplate reader (Infinite M200 Pro,
Tecan, Männedorf, Switzerland) at wavelengths from 230–1000 nm. FTIR (Nicolet 6700,
Thermo Fisher Scientific, Waltham, MA, USA) investigated FS functional groups. Gel
Permeation Chromatography (GPC, Agilent 120, Walterbloom, Germany) determined the
FS molecular weights (column model, Agilent PL aqua gel-OH 8 µm). The Monosaccharide
composition analysis was carried out by Ion Chromatography (ICS5000, Thermo Fisher
Scientific) with an electrochemical detector, Dionex™ CarboPac™ PA20 (150 × 3.0 mm,
10 µm, Thermo ScientificTM, Waltham, MA, USA) liquid chromatography column with a
5 µL injection volume. The GPC and monosaccharide composition tests were performed by
shiyanjia lab (www.shiyanjia.com) (accessed on 21 January 2022).

www.shiyanjia.com
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2.4. FS Stability Analysis

The effects of different temperatures and initial pH levels were studied on a kaolin
flocculation system to evaluate the stability of FS flocculation. Several experimental groups
determined the stability of FS flocculation: a 0.5% (v/v) FS solution (1%) was heated at
30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, 80 ◦C, 90 ◦C and 100 ◦C for 0.5 h. After cooling, the 0.3%
(w/v) kaolin suspension was flocculated, and the flocculation results were compared. The
pH of the 0.3% (w/v) kaolin suspension was adjusted to 3, 4, 5, 6, 7, 8, 9, and 10. A 0.5%
(v/v) FS solution (1%) was added to each group, stirred at 30 ◦C for 0.5 h, then stood for
0.5 h to compare the flocculation effect.

2.5. Analytical Methods and Statistical Analysis

Changes in kaolin flocculation morphologies by FS were observed, and all samples
were characterized by SEM (QUANTA FEG 250, FEI, Hillsboro, OR, USA). Kaolin solid
powder, FC powder, floc formed with 0.3% (w/v) kaolin solution, 0.08% (w/v) CaCl2 and
0.5% (v/v) FS solution (1%) were fixed with 2.5% glutaraldehyde for 12 h at 4 ◦C then
dehydrated by different concentrations of ethyl alcohol. After drying, the surface state of FS
and kaolin before and after FS flocculation were observed by SEM. The surface charges of
kaolin, FS, and the flocculated kaolin treated by FS were determined based on zeta potential
measurements. All samples were measured at pH 7/25 ◦C (Zeta-PALS, BIC, Shelton, CT,
USA). Aliquots of 100 mL 2 mol·L−1 EDTA, 100 mL 0.5 mol·L−1 HCl, and 100 mL 5 mol·L−1

urea was added into the flocs to determine whether there was exclusive adsorption during
floc formation in the ternary systems of kaolin, CaCl2, and FS, respectively, which was the
sedimentation after supernatant removal in a system of total volume 100 mL, comprising
0.3% (w/v) kaolin solution, 0.08% (w/v) CaCl2, and 0.5% (v/v) FS solution (1%), pH 7.
Changes in flocs were observed and recorded.

Cellulose and hemicellulose were determined by the Van Soest method [32]. Pectin was
determined by the calcium pectate method [33]. COD was determined by the dichromate
method [34]. The total sugar content of the FS was determined by the phenol sulfuric
acid method [35]. The protein content of FS was determined by the Bradford method [36].
The flocculating rate was determined by the research method [37] and the flocculation
system was substituted by 0.3% (w/v) kaolin solution, 0.08% (w/v) CaCl2, and 0.5% (v/v) FS
solution (1%). Three parallel experiments were conducted for all experimental groups and
the data was analyzed using Microsoft Office Excel 2016 (Microsoft, Redmond, DC, USA).

3. Results and Discussion
3.1. Changes in By-Product Components

COD levels (Figure 2) decreased with fermentation time. After 72 h, the removal rate
was 58.85%, lower than 65.92% of the previous 150 m3 volume fermentation by mixing
microorganisms for 6 d [1] and much lower than anaerobic sludge (AS) and co-cultured
microalgae [8]. Given that COD removal was related to flocculation [38,39], it indirectly
helped investigate the correlation between the main components changes of by-products
and flocculation in this process. Meanwhile, the pH decreased with time from 5.61 to 4.04.
The protein contents in the supernatant decreased rapidly in the first 24 h to the decrease
from 24–72 h, and the conversion efficiency was 37.09% after 72 h. The utilization of basic
protein may have caused the pH decline [40] or the A. niger produced organic acids [41].
Generally, potato residues contain abundant celluloses, hemicellulose, and pectin [42],
predominantly polymers with complex structures polymerized by various sugars. As
shown in Figure 3, after 72 h of fermentation, the contents of cellulose, hemicellulose, and
pectin decreased by 40.19%, 50.14%, and 53.29%, respectively. The conversion rates of
cellulose and hemicellulose were lower than the previous study [1]. These polysaccharides
decomposed into adequate monosaccharides (reducing sugar) by A. niger as carbon sources
for growth. As shown in Figure 4, the removal ratio of COD in the first 24 h maximized
at 32.62%, while the degradation ratio of cellulose, pectin, and hemicellulose occurred
in the first initial 24 h (10.69%, 7.67%, and 10.96%, respectively), and conversion ratio of



Microorganisms 2022, 10, 1847 6 of 17

proteins maximized at 28.62%, which indicated that in the first 24 h, the COD removal in
wastewater was mainly related to the protein conversion. In addition, the pH of wastewater
decreased. This may be due to the basic proteins in wastewater conversion and utilization
by A. niger [40]. Fermentation from 24 h to 48 h, the degradation ratio of cellulose was
insignificant (11.72%), but the hemicellulose and pectin degradation ratio improved con-
siderably (15.79% and 16.87%, respectively), and the conversion ratio of proteins reduced
(6.71%). From 48 h to 72 h, the conversion ratio of hemicellulose and pectin improved
considerably (22.30% and 28.75%, respectively), which may be due to the A. niger elevated
viability of hemicellulase and pectinase, but the conversion ratio of cellulose improved
slightly (17.79%), which may be due to glucose in a certain concentration inhibited cel-
lulase [43]. The conversion ratio of proteins in the wastewater reduced (5.53%) and the
pH decreased to 4.04. From 24 h to 72 h, the COD total removal ratio was at 25.24% and
the total conversion ratio of cellulose, hemicellulose and pectin occurred (29.50%, 38.08%,
and 45.62%, respectively), while the total conversion ratio of proteins was at 12.24%. This
indicated that the COD removal from 24 h to 72 h was mainly related to the degrada-
tion of cellulose, hemicellulose, and pectin. This may be due to the degradation of three
main polysaccharide components: cellulose degradation for providing glucose for A. niger
growth priority utilization; pectin degradation converted to most of the monosaccharides
may combine with unconverted proteins in the water; furthermore, the monosaccharides
from hemicellulose degradation, such as arabinose and galactose were bound to proteins in
the wastewater. Most of the monosaccharides after hemicellulose and pectin degradation
were bound to the unconverted proteins and constituted the initial FS components. All the
results indicated that in the production process, the proteins from wastewater provided a
nitrogen source for A. niger growth, while the degradation of cellulose, hemicellulose, and
pectin provided a carbon source. The COD removal was correlated with the conversion of
cellulose, hemicellulose, pectin, and proteins by A. niger.
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3.2. Composition and Functional Groups

Full band scanning results demonstrated that a 1% FS solution had absorbed at
280 nm (Figure 5), which indicated that FS contained protein. By the determination of
protein content, the existence of protein substance in FS was further verified, and the
proportions of the protein content were determined to be 45.55% (w/w): the proportions of
the polysaccharides content were determined to be 28.07% (w/w), the results indicated that
the main components of FS were proteins and polysaccharides. Similar results have been
found [44].
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The FTIR spectrum of FS (Figure 6) shows typically broad and sharp stretching vi-
brations between 3000–3700 cm−1, and the broad absorption wavelength at the peak of
3388.37 cm−1 was from -OH stretches (polysaccharides) and amino groups (proteins). The
peak at 2933.85 cm−1 was due to asymmetric CH sugar stretches; the peak at 1720.22 cm−1

was characteristic of C=O stretching vibrations in -COOH, while the peak at 1645.01 cm−1

was due to C=O stretching vibrations caused by the protein amide bond, that confirmed the
presence of carboxylates [37]. The peak at 1407.80 cm−1 was caused by variable angle C-H
vibrations; the peaks at 1240.02 cm−1 and 1072.25 cm−1 were attributed to two kinds of C-O
stretching vibrations—the C-O-C characteristic absorption peak of ether in polysaccharides
ring, and a C-O-H absorption peak, characteristic of all sugar moieties [45]. The weak
absorption at 927.61 cm−1 indicated the polysaccharides contained a β-Type glycosidic
bond. Those results indicated the FS functional groups comprised hydroxyl, carbonyl,
carboxyl groups, and amide groups, which have a high binding capacity in flocculation.
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3.3. Molecular Weight and Monosaccharide Composition

The FS molecular weight distributions were highly important, particularly when
bridging was the primary flocculation mechanism [27]. GPC chromatography showed that
FS had a bimodal molecular weight distribution (Figure 7). The average molecular weight
(Mw), molecular mass (Mn), and polydispersity (PDI) results are shown in Table 1. The Mw,
Mn, and PDI of M-1 were 7.3792 × 106 Da, 7.2665 × 106 Da, and 1.0156, respectively. The
Mw, Mn, and PDI of M-2 were 1.7741 × 106 Da, 1.4987 × 106 Da, and 1.1838, respectively.
The molecular weight distributions of the two polymers are shown in Figure S1. FTIR
results showed protein functional groups in FS. In addition, full band scanning and protein
content detection of FS also suggested the double peaks of GPC chromatography might be
due to proteins and polymer compositions by polysaccharides and proteins. Given that
the biopolymer molecular masses with flocculation activity generally exceed 0.102 × 106

Da, flocculants with higher molecular masses involve more adsorption points for bridging
and resulted in larger flocs [46,47]. The two molecular weight distributions of FS were
considerably higher than 0.102 × 106 Da, which provided the building blocks for bridging
during flocculation. In addition, the flocculant with two molecular masses distributions
demonstrated a better flocculation effect [48].
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Table 1. Composition and characteristics of FS.

Carbohydrate
(%, w/w)

Proteins
(%, w/w)

Molecular Weight Distributions Monosaccharide Component (%, w/w)

Mw (g/mol) Mn (g/mol) PDI Fuc Ara Rha Gal Glc Xyl Man Fru Gla-
UA

Glc-
UA

28.07 ± 0.12 45.55 ± 0.04
M-1 7.3792 × 106 7.2665 × 106 1.0156

0.42 8.80 8.69 49.94 21.98 0.51 0.54 3.47 4.57 1.06M-2 1.7741 × 106 1.4987 × 106 1.1838

Monosaccharide analysis (Figure 8) showed that polysaccharide components in FS
were composed of Ara, Rha, Gal, Glc, Xyl, Gal-UA, and Glc-UA (molar ratios—11.72:9.54:
55.44:24.40:3.85:4.71:1.09, respectively). Table 1 shows, that the Gal-UA and Glc-UA content
levels were 3.47% and 4.57% (w/w), respectively, which supply carboxyl groups to the FS
molecular chain to produce flocculation in wastewaters [49]. Ara, Rha, and Gal as neutral
sugar components in the RG-I domain of the pectin polymers [50], and Gal-UA as the main
component of the HG domain are all components of potato pectin [51]. In addition, Ara
and Gal are also the constituents of hemicellulose molecules [52]. The FS monosaccharide
composition results indicated that potato residue hemicellulose and pectin degradation
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correlated with flocculation. This may explain that the COD removal was mainly associated
with the conversion of hemicellulose and pectin during fermentation from 24 h to 72 h.
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3.4. Stability Analysis of FS

Active ingredients of FS components affect flocculation, and pH and temperature may
affect the stability of those components. By comparing the flocculation effects of FS on
kaolin suspensions with different initial pH levels, the lowest flocculation rates (about
60%) occurred under strongly acidic or alkali conditions, but the highest flocculation rate
(76.91 ± 4.21%) occurred at pH 7 (Figure 9). The maximum influence range by pH on
the flocculation rate was approximately 20%, attributed to the weakening of FS spatial
charge arrangements under different pH conditions [45]. This indicated that pH did not
significantly affect the flocculation efficiency, which affected the electronic states of FS.
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FS solutions were heated for 30 min at different temperatures, then cooled to room
temperature to flocculate the kaolin suspension. The flocculation rate reached 81.10 ± 2.91%
after heating at 30 ◦C and decreased at higher temperatures. The lowest flocculation
rate occurred when FS was heated at 100 ◦C and decreased by 69.54%. These results
indicated that temperature significantly impacted the flocculation of FS, which may stem
from bond dissociation between proteins and polysaccharides or the disintegration of the
flocculation system caused by protein structure changes at higher temperatures (Figure 10).
A similar study demonstrated flocculants with protein as the main chain was sensitive
to temperature [53]; this may explain the presence of proteins and polysaccharides in FS,
which polymerize and adsorb particles to generate flocculation.
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3.5. SEM, Zeta Potential, Inspection of Ionic and Hydrogen Bond

The kaolin particles observed by SEM were loose and unevenly shaped, while the
flocculated kaolin particles gathered closely to form a large floc. Flocculated kaolin particles
attached to the floc surface, which has the shape of some long chain structures similar to
the bridging structure. All units formed a dense reticular structure and aggregated into
larger flocs. The FS surface had a convex prism structure, which added more charge surface
area and bridging sites during flocculation. The SEM results are shown in Figure S2.

The zeta potential of the kaolin suspension was −28.15 ± 0.56 mV at pH 7, which
indicated a negatively charged kaolin particle surface. The solution zeta potential decreased
to −7.82 ± 0.14 mV upon Ca2+ addition, likely due to the ionic neutralization which resulted
in lower zeta potential. The FS zeta potential was −1.87 ± 0.46 mV at pH 7 (Figure 11),
which indicated a negatively charged FS surface and possibly due to the existence of
hydroxyl, carboxyl, and amide groups on FS. The change of kaolin potential before and
after flocculation indicated a charge neutralization of FS occurred during flocculation. The
pH stability results demonstrated the flocculation rate was not particularly sensitive to pH,
indicating that charge neutralization may not be the main mechanism of flocculation.
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Active functional groups on polymer FS form flocs by adsorption bridging with
colloids or particles. Bonds between FS, kaolin, and Ca2+ were estimated by identifying
the flocculated flocs with EDTA, HCl, and urea. As described in Table 2, flocs were so
sensitive to EDTA and HCl that flocs disintegrated but were not sensitive to urea. Urea
forms hydrogen bonds, while EDTA and HCl disrupted the ionic bonds between FS and
particles and disintegrated flocs. This implied the binding mode between FS, kaolin, and
Ca2+ was predominantly ionic bonds.

Table 2. Inspection of ionic and hydrogen bonds.

EDTA HCl Urea

Phenomenon
The flocs disintegrated

obviously; the supernatant
was turbid

The flocs disintegrated
obviously; the supernatant

was turbid

The flocs no obvious
disintegrated; the supernatant

was clarified
Ionic bonds + + −

Hydrogen bonds − − +

“+” indicates the presence of a bond, and “−” indicates the absence of a bond.

3.6. The Hypothesis of Flocculation Mechanism of A. niger during the Potato Starch
By-Products Conversion

The functional group analysis results indicated the main functional groups in FS were
hydroxyl, carboxyl, and amido groups; all provide adequate bridging sites [54]. SEM
observations showed the FS surface had a prismatic structure and surface depressions,
which provided additional surface area and bridging sites. The higher molecular weight
provided more binding sites for bridging flocculants, which resulted in higher flocculation
activities and larger flocs formation [54]. The two molecular weight distributions had better
flocculation effects and more readily formed large flocs [48]. This indicated the primary
flocculation by FS was bridging. However, the influence of pH on flocculation rate was
limited and the change in flocculation rate was <20%. This indicated that charge adsorption
was not the main flocculation mechanism. Differences in EPS polysaccharides secreted
by microorganisms [55], indicated many FS polysaccharides came from potato starch by-
product decomposition, especially hemicellulose and pectin. This indicated that the FS
synthesis related to pectin and hemicellulose degradation and agreed with a previous
study [44]. The sensitivity of FS to temperature indicated that glycoprotein in FS might
drive flocculation. In practical sedimentation process, FS formed large flocs with particles
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via charge neutralization and adsorption bridges, and the large flocs attracted each other
more easily to form a grid structure. SEM results demonstrated that the flocs were closely
connected and formed a sweeping effect to reduce COD in the wastewater. The previous
study showed that a bioflocculant (MBFA18) produced by fermentation of potato starch
wastewater (juice) by A. niger was mainly polysaccharide [56]. Differently, A. niger was
used to convert all the by-products simultaneously, and the flocculating substances (FS)
generated were predominantly protein and polysaccharide in this study. The stability of FS
is related to the different components of flocs. Flocs mainly containing protein are affected
by temperature, while polysaccharide is relatively less affected, which is consistent with
the results of the studies [12,13,44]. The factors affecting flocculation can be summarized
as the active components of the flocculant, the products of different microorganisms and
the raw materials, etc. Previous studies have shown that by using different sources of
microorganism flocculants to floc potato starch wastewater, the predominantly flocculant
mechanism was adsorption bridging.

4. Conclusions

This study developed a recovery biotechnology by A. niger to convert the potato starch
by-products for industrial adaptation and solve the wastewater pollution completely. The
impact of the COD removal, the protein conversion, and the degradation of by-products
(cellulose, hemicellulose, and pectin) by A. niger was significant. Furthermore, flocculation
by A. niger also played an important role in reducing the settling substance water content
during production due to the solid-liquid separation affected the energy consumptions and
the production costs. FS by A. niger primarily contained proteins and polysaccharides, with
two molecular weight distributions (7.3792 × 106 Da and 1.7741 × 106 Da) and temperature
sensibility. The monosaccharides that comprised the polysaccharides were predominantly
composed of Gal, Glc, Ara, Rha, Gla-UA, Fru, and 72% of the monosaccharides were from
hemicellulose and pectin conversion by A. niger. FS functional groups comprised hydroxyl,
carbonyl, carboxyl groups, and amide groups. FS was negatively charged and connected
with kaolin and Ca2+ by ionic bond and adsorption bridge, supplemented by charge
neutralization to produce flocculation in a kaolin system. Combined with sedimentation
during production, a sweeping effect on reducing COD may occur. The results indicated
that flocculation by A. niger was mainly related to the conversion of proteins, hemicellulose,
and pectin. Further research will examine the energy consumption of the production back-
end unit and reduce the production costs by improving the conversion capacity of A. niger
to proteins, hemicellulose, and pectin by optimizing fermentation to improve flocculation.
In conclusion, a hypothetical model for the flocculation mechanism by A. niger during
industrial reutilization of potato starch by-products is shown in the Figure 12.

Environmental pollution remains a severe problem in the potato starch industry,
however, balancing investment costs and product value from practical biotechnologies
with environmental pollution requires involved solutions. Compared with other potato
starch by-product re-utilization directions, the cost considerations and pollution problems
for practical industrial applications remain. Thus, this strategy of potato starch by-products
merits serious consideration.
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