
INTRODUCTION

Alcoholic liver disease (ALD) is caused by long-term al-
cohol abuse, leading to loss of liver function (Bruha et al., 
2012). The disease mainly includes alcoholic liver steatosis, 
alcoholic hepatitis, alcoholic liver fibrosis, cirrhosis and liver 
cancer (Torruellas et al., 2014; Yang et al., 2016). To date, the 
progression of steatosis to liver fibrosis is still incurable and no 
suitable drug has been reported yet.

Currently, ALD mechanisms have not been completely iden-
tified (Ceni et al., 2014). It is well known that the initial stage 
of liver disease caused by chronic ethanol intake is steatosis. 
Lipid deposition results in steatosis, which is regulated by per-
oxisome proliferator-activated receptor α (PPARα) and sterol 
regulatory element binding protein-1 (SREBP1). Several stud-
ies have reported that AMP-activated protein kinase (AMPK) 
is an important lipid metabolism-regulating kinase and plays 
an important regulatory role in the pathogenesis of ALD (Lee 

et al., 2014; Mandal et al., 2014; Jiang et al., 2017a). Liver 
kinase 1 (LKB1), an upstream kinase of AMPK, promotes the 
phosphorylation of AMPK and the enhances phosphorylation 
of AMPK to accelerate fatty acid oxidation (Xiao et al., 2013). 
Phosphorylation of AMPK inactivates acetyl-CoA carboxylase 
(ACC). Herein, ethanol intake results in decrease of AMPK 
activity and increased of ACC activity and consequently, exac-
erbates the imbalance of lipid metabolism. Therefore, inhibit-
ing lipid accumulation or promoting lipolysis may prevent liver 
steatosis from further developing into liver fibrosis.

The progression from steatosis to fibrosis is character-
ized by the activation of hepatic stellate cells (HSCs) and in-
creased extracellular matrix (ECM) secretion (Pellicoro et al., 
2014; Zhang et al., 2016). Hepatic stellate cells (HSCs) in the 
liver play a key role in the development of liver fibrosis (Wu 
and Zern, 2000). In addition, liver fibrosis is caused by chronic 
liver disease. Static HSCs are enriched for vitamin A. Once 
the liver stimulated by external factors, such as ethanol and 
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viruses, HSCs lose vitamin A and are activated (Ezhilarasan et 
al., 2016). Activated HSCs secret large amounts of liver fibro-
sis markers, including extracellular matrix (ECM) components 
such as collagen I, smooth muscle alpha-actin (α-SMA) and 
transforming growth factor-β (TGF-β). Thus, controlling the 
activation of HSCs is an essential strategy for reversing liver 
fibrosis.

Gentiana manshurica Kitagawa (GM), which belongs to the 
gentian family, mainly is distributed in Northeastern China and 
is commonly used to treat jaundice and hepatitis (Lian et al., 
2010b; Liu et al., 2016; Chen et al., 2018b). Gentiopicroside 
(GPS), found in the roots of GM, has hepatoprotective capaci-
ties against various liver injuries (Lian et al., 2010a, 2010b, 
2018). Although we previously reported that GPS-containing 
GM or GPS could ameliorate hepatic steatosis induced by 
acute and subacute alcohol feeding (Lian et al., 2010b; Li 
et al., 2018), the possibility of GPS-induced improvement of 
chronic alcohol consumption-caused liver fibrosis remains 
unknown. Because long-term and repetitive damages to he-
patocytes induced by ethanol exposure contributes to ac-
celerating the development of fatty liver to liver fibrosis, we 
are interested in whether GPS could reverse hepatic fibrosis 
caused by chronic alcohol consumption. The current research 
was designed to investigate whether and how GPS could hold 
back the progression from liver steatosis to liver fibrosis during 
chronic ethanol consumption in the mice that suffered from al-
coholic steatosis and confirmed the inhibitory capacity of HSC 
activation by GPS in a human HSC cell line, LX-2, and the 
amelioration of lipid accumulation in a mouse hepatocytes cell 
line, AML12. Our results indicated that GPS inhibited steatosis 
and blocked the development to mild liver fibrosis induced by 
chronic alcohol intake. 

MATERIALS AND METHODS 

Materials
GPS was purchased from the National Institute for the 

Control of Pharmaceutical and Biological Products (>99% pu-
rity; Beijing, China). Anti-phospho-AMPKα, anti-AMPKα, anti-
phospho-LKB1, anti-LKB-1, and anti-P-ACC antibodies were 
purchase from Cell Signaling Technology (Beverly, MA, USA). 
Anti-SREBP1, anti-TIMP-1, anti-MMP13, anti-collagen I, anti-
PPARα, anti-β-actin, anti-α-SMA and anti-GAPDH antibodies 
were purchased from Abcam (Cambridge, MA, USA). 

Animal experiment 
Male C57BL/6 mice (8-10 weeks, 20-22 g) were obtained 

from the Changchun Yisi Laboratory Animal Technology Co., 
Ltd (Jilin, China). Before experiments, five mice per cage were 
housed in a temperature/humidity-controlled environment with 
a 12-h light/dark cycle under specific-pathogen free condi-
tions and provided free access to chow and water. All animal 
care and experimental procedures were carried out strictly ac-
cording to the criteria of the “Guide for the Care and Use of 
Laboratory Animals” published by the US National Institutes 
of Health (National Research Council, 1996) and approved 
by the Ethics Committee on Animal Experiments of Yanbian 
University. All efforts were made to minimize suffering, and the 
number of animals used was minimized by the experimental 
design. After one-week of acclimatization maintained on a nor-
mal chow diet, mice were randomly divided into three groups: 

the pair-fed group, ethanol-fed group, and ethanol-fed group 
pretreated with GPS (40 mg/kg, body weight). Each group had 
6 mice. Because we reported in in previous study that GPS 
alone at 40 mg/kg for 10 days showed no toxicity in the liver 
including liver injury and steatosis (Li et al., 2018), we omitted 
investigation of the effect of GPS alone on liver steatosis in the 
current research. The ethanol group was fed a Lieber-DeCarli 
diet (TROPHIC Animal Feed High-tech Co., Ltd, Nantong, Ji-
angsu, China) with the concentration of ethanol gradually in-
creased from 1% to 4% (vol/vol) every two days, followed by 
a continuous 5% (vol/vol) ethanol-containing Lieber-DeCarli 
diet for 28 days as described previously (Cai et al., 2016). The 
mice in the pair-fed group were fed Lieber-DeCarli liquid diets 
containing isocaloric maltose dextrin. Mice were gavaged with 
GPS (40 mg/kg) every morning for 28 days. Nine hours after 
the last feeding, all mice were anesthetized in a closed cham-
ber flushed with isoflurane (1%) in mixed air for 2-5 min until 
immobile, blood was collected by cardiac puncture, and then, 
the liver was removed and rapidly frozen in liquid nitrogen. 
Whole blood was allowed to clot at room temperature for 30 
min and the serum was separated by centrifugation at 1,800× 
g for 30 min. Mouse livers and serum samples were stored at 
–80°C for further analysis.

Serum aminotransferase and triglyceride measurement
Serum levels of alanine aminotransferase (ALT), aspartate 

aminotransferase (AST) and triglyceride (TG) were measured 
using an Autodry Chemistry Analyzer (SPOTCHEM SP4410, 
Arkray, Kyoto, Japan). 

ELISA
Blood were determined using murine IL-1α or IL-1β Stan-

dard ABTS ELISA Development Kit (PeproTech, Rock Hill, NJ, 
USA) according to the manufacturer’s instruction.

Cell culture 
The human hepatic stellate cell line LX-2 was cultured in 

DMEM containing 10% fetal bovine serum (FBS), 100 U/mL 
penicillin and 100 mg/mL streptomycin at 37°C adding 5% 
CO2-95% air. Phosphate-buffered saline (PBS) was used to 
wash the cells. Cells were passaged by trypsinization every 
two or three days. AML12, an immortalized mouse hepatocyte 
cell line, was incubated in DMEM/F12 supplemented with 10% 
FBS, 100 U/mL penicillin, 100 mg/mL streptomycin, 10 µg/mL 
insulin, 5.5 µg/mL transferrin, 6.7 ng/mL selenium and 40 ng/
mL dexamethasone at 37°C under 5% CO2.

Western blotting
Equal amounts of protein extracted from cells and mouse 

livers were resolved by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred to PVDF 
membranes. The membranes were blocked in 5% skim milk 
in PBST (PBS containing 0.05% Tween 20) for 1 h at room 
temperature and probed with specific primary antibodies at 
4°C overnight. The membranes were washed and incubated 
with appropriate horseradish peroxidase (HRP)-conjugated 
secondary antibodies. Finally, the proteins were visualized us-
ing Clarity™ Western ECL Substrate (Bio-Rad, Hercules, CA, 
USA). The density of each band was analyzed by Bio-Rad 
Quantity One software (Bio-Rad). 
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RT-PCR analyses
Total RNA was extracted using the SV Total RNA Isolation 

System (Promega, Madison, WI, USA). The cDNA was prepared 
by using 500 ng of total RNA and RT-PCR was performed as 
described previously (Jiang et al., 2017b). The following primers 
were used for analyses of gene expression in LX-2 cells: hC-
OL1A1-forward, 5′-CAAGACGAAGACATCCCAC-3′; hCOL1A1-
reverse, 5′-CGGTTGATTTCTCATCATAGC-3′; hACTA2-forward, 
5′-TATGCCTCTGGACGCACAAC-3′; hACTA2-reverse, 5′-CAC-
GCTCAGCAGTAGTAACG-3′; hGAPDH-forward, 5′-GGCTCTC-
CAGAACATCATC-3′; hGAPDH-reverse, 5′-CTCTTCCTCTTGT-
GCTCTTG-3′.

Liver histological analysis and immunohistochemistry
Liver tissues were fixed in 10% neutral buffered forma-

lin and embedded in paraffin, cut into 5-µm-thick sections 
and stained with hematoxylin and eosin (H&E) or Masson-
trichrome (Fuzhou Maixin Biotechnology Development Co. 
Ltd., Fuzhou, China). Five-micrometer-thick cryosections of 
liver were stained with oil red O, and then counterstained with 
hematoxylin as described previously (Li et al., 2018). Five-
micrometer-thick paraffin sections were generated for im-
munocytochemistry staining using mouse anti-SREBP1 and 
anti-α-SMA antibodies as described previously (Zhang et al., 
2018). 

Nile Red staining and cytoimmunofluorescence staining
AML12 cells were grown on coverslips in 6-well plates and 

then treated appropriately. AML12 cells were fixed with 4% 

paraformaldehyde and permeabilized in 0.1% TritonX-100. 
AML12 cells were then stained with 1 µg/mL Nile red (Sigma-
Aldrich, St. Louis, MO, USA), an excellent vital stain for the 
detection of intracellular lipid droplets, and incubated for 15 
minutes at 37°C. Alternatively, fixed and permeabilized AML12 
cells were blocked with 2% bovine serum albumin for 1 h at 
room temperature, followed by incubation with SREBP1 anti-
body as previously described in detail (Li et al., 2018). Images 
of immunostained slides or coverslips were acquired by mi-
croscopy (Nikon TI-E, Nikon, Tokyo, Japan).

Statistical analysis
Statistical analysis was performed using the GraphPad Prism 

program (GraphPad Software, Inc., San Diego, USA) and the 
experimental results were expressed as the mean ± SD. Com-
parison of results was performed using one-way ANOVA and 
Tukey’s multiple comparison tests. The level of statistical sig-
nificance (p value) was less than 0.05. 

RESULTS 

GPS inhibited chronic alcohol intake-induced liver 
steatosis

Chronic ethanol challenge for 4 weeks induced a significant 
increase in serum ALT and AST levels (Fig. 1B, 1C). Histo-
logical analysis showed that chronic ethanol feeding resulted 
in serious steatosis and inflammatory infiltration (Fig. 1F). 
The accumulation of hepatic lipid droplets was decreased in 
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the liver tissues from GPS pretreatment mice compared with 
chronic ethanol-fed mice, indicating the protective effect of 
GPS on chronic alcoholic hepatic steatosis. In addition, IL-
1α and IL-1β were increased in the ethanol-fed group, while 
GPS pretreatment suppressed the production of proinflamma-
tory cytokines (Fig. 1D, 1F). These results indicated that GPS 
treatment could suppress liver steatosis caused by chronic 
alcohol intake and decrease inflammatory cytokine secretion.

GPS regulated lipid metabolism in chronic alcohol 
intake-induced mouse steatotic liver and ethanol-treated 
hepatocytes

Chronic ethanol-fed mice exhibited increased hepatic and 
serum TG levels compared with those of the pair-fed group, 
while GPS administration reduced hepatic and serum TG 
levels after ethanol exposure (Fig. 2A, 2B). Lipid droplets 
in mouse liver exposed to ethanol were notably red-stained 
with oil red O, while positive oil red O staining was decreased 
with GPS pretreatment in mice suffering from alcoholic ste-

atosis (Fig. 2C). Confirmed by immunohistochemical staining 
for SREBP1, chronic ethanol feeding significantly increased 
the expression of SREBP1 compared with that in the pair-fed 
group, while SREBP1 expression in mouse liver significantly 
declined with GPS pretreatment (Fig. 2D). Moreover, we de-
termined proteins that were closely related to lipid anabolism, 
such as AMPK, PPARα, ACC and SREBP1 by western blot. 
The expression of phosphorylated-ACC and PPARα in mouse 
livers of the chronic ethanol-fed group was significantly de-
creased (Fig. 2G). After pretreatment with GPS, the expres-
sion of total- and phosphorylated-AMPK, PPARα, and phos-
phorylated-ACC was significantly increased compared with 
that in the chronic alcohol-fed group, while SREBP1 expres-
sion was downregulated with GPS pretreatment. As expected, 
GPS ameliorated these lipid metabolism-related factors to 
normal levels (Fig. 2G, 2H). As shown in Fig 3A-3G, we also 
observed that GPS reversed ethanol-induced lipid accumula-
tion by inhibiting lipid synthesis and promoting lipid oxidation 
in AML12 mouse hepatocyte cell line via LKB1-AMPK, which 
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is consistent with previous work performed in HepG2 cells 
and primary mouse hepatocytes (Li et al., 2018). Our in vitro 
data related to ethanol-treated steatotic AML12 cells was also 
in line with previously published literature (Gao et al., 2018). 
These data hinted that GPS protected against liver steatosis 
induced by chronic ethanol consumption.

GPS reversed ECM deposition in chronic alcohol intake-
induced liver fibrosis

Long-term administration of excessive ethanol promoted 
hepatic steatosis developing into hepatic fibrosis. Although ad 
libitum oral feeding with a Lieber-DeCarli ethanol liquid diet 
could not induce obvious liver fibrosis (Bertola et al., 2013), 
some literature reported that in the mice fed a Lieber-DeCarli 
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diet containing 5% (v/v) alcohol, proteins related to liver fibro-
sis were upregulated (Chang et al., 2017). Masson trichrome 
staining data of mouse livers showed that mice exposed to 
chronic and excessive alcohol exhibited increased collagen 
deposition, indicating that excessive alcohol consumption 
might induce a mild fibrosis in mouse livers (Fig. 4A, 4C). GPS 
administration reduced the positive staining of collagen de-
position. Similar to previously reported research (Wu et al., 
2016), after chronic alcohol intake, overexpression of α-SMA 
was observed in alcohol-exposed mouse livers as confirmed 
by immunohistochemistry staining and western blot analysis, 
but GPS pretreatment downregulated this protein expressions 

(Fig. 4B, 4D-4F). Additionally, GPS suppressed the protein 
expression of tissue inhibitor of metal protease 1 (TIMP-1), 
which was increased by alcohol exposure. From the α-SMA 
immunohistochemical staining results, the chronic alcohol 
group showed significant positive expression around the cen-
tral vein. These results suggested GPS could decelerate the 
progression from hepatic steatosis to mild hepatic fibrosis in 
the early stage of liver fibrosis.

Activation of hepatic stellate cells is the cellular basis of 
hepatic fibrosis. A immortal human stellate cell line, LX-2, 
demonstrates a sensitive response to TGF-β, resembling a 
myofibroblast-like phenotype of activated HSCs (Herrmann 
et al., 2007). We reported previously upregulated protein and 
mRNA expression of α-SMA and collagen I in LX-2 cells (Yang 
et al., 2016). GPS pretreatment at concentrations of 25, 50 
and 100 µM notably inhibited protein and mRNA expression of 
α-SMA and collagen I in TGF-β-activated LX-2 cells (Fig. 5).  

DISCUSSION

GM is an herbal medicine for chronic hepatitis, which has 

Fig. 4. GPS reversed ECM deposition in chronic alcohol intake-
induced liver fibrosis (A) Masson’s trichrome staining. (B) Immu-
nohistochemical analysis of α-SMA. Representative images were 
captured with 200× magnification. The averaged percentages of 
positive staining areas for Masson (C) and α-SMA (D) were ana-
lyzed with Image Pro-Plus 6.0 software (Media Cybernetics, Inc.). 
(E) Western blot analysis of α-SMA, TIMP-1 and GAPDH (load-
ing control). (F) Densitometric tracing analysis was done for each 
western blot band normalized to GAPDH. Data represent the mean 
± SD of three independent experiment. ###p<0.001, significantly 
different from the pair-fed group; *p<0.05, **p<0.01, ***p<0.001, 
significantly different from the ethanol-fed group. Representative 
images are shown. All histograms represent the mean ± SD of at 
least three independent assays.
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been used from ancient times in China. GPS, a water-soluble 
ingredient in GM has anti-inflammatory and hepatoprotective 
effects (Mirzaee et al., 2017; Wu et al., 2017). Previously, we 
reported GPS could reverse ethanol-induced liver steatosis 
and drug-induced liver injury (Lian et al., 2010b; Wang et al., 
2010). In addition, it was reported that GPS can ameliorate 
pulmonary fibrosis (Chen et al., 2018a). However, whether 
and how GPS could prevent the progression from liver steato-
sis to liver fibrosis during chronic ethanol consumption is still 
elusive. Our current research is distinguished from the above 
studies: Herein we elucidated that GPS could prevent chronic 
alcohol consumption-induced liver steatosis and effectively in-
hibited the development to a mild status of fibrosis.

Alcohol exposure directly or indirectly regulates lipid me-
tabolism-related transcription factors and nuclear hormone 
receptors, such as SREBP1 and PPARα (Li et al., 2016; Car-
neiro et al., 2017). Chronic ethanol intake increased the ex-
pression of SREBP1 and reduced the expression of PPARα 
and phosphorylated-ACC in liver (Fig. 2D, 2G). Long term 
and excessive ethanol consumption can inhibit AMPK phos-
phorylation by affecting the upstream kinase LKB1 (Jiang et 
al., 2015). AMPK is linked to lipid hemostasis by regulating 
ACC activity through phosphorylation. AMPK stimulates fatty 
acid oxidation through suppressing ACC activity (Minokoshi et 
al., 2002). GPS administration can reverse chronic ethanol-
induced fatty liver, characterized by the inhibition of hepatic 
lipid accumulation with decreased SREBP1 and increased 
AMPKα, PPARα and phosphorylated-ACC in mouse liver, as 
well as in hepatocytes. The inhibition capacity of GPS in lipid 
accumulation confirmed that GPS also reversed chronic alco-
holic liver steatosis by promoting lipid oxidation and inhibiting 
lipid synthesis. 

Chronic inflammation and continuous damage to hepato-
cytes caused by long-term and excessive alcohol intake initi-
ates hepatic fibrosis, accompanied by the production of ECM 
over hepatocyte regeneration and recruitment of immune cells 
to sites of inflammation. Accumulated immune cells release 
a variety of pro-inflammatory cytokines upon encountering 
stimuli derived from damaged hepatocytes. This may be due 
to the reduction of hepatic steatosis leading to a decrease in 
cytokines. Fed with a Lieber-DeCarli ethanol liquid diet, pro-
inflammatory cytokines in mouse serum including IL-1β and 
IL-1α, were remarkably increased (Fig. 1D, 1E). Along with 
the promoted inflammatory response, the levels of liver fibro-
sis markers, such as α-SMA, collagens and TIMP-1, were 
elevated in alcohol-fed mice. In addition, with increasing col-
lagen deposition, our data indicated that mild liver fibrosis 
might have occurred in mice fed with a Lieber-DeCarli ethanol 
liquid diet for 4 weeks, which was similar to a previous report 
(Chang et al., 2017). With GPS administration, those liver fi-
brosis marker levels were restored to normal levels, suggest-
ing GPS might possess the ability to restrain the progression 
from alcoholic hepatic steatosis to hepatic fibrosis. In addition, 
due the pivotal pathogenic role of HSCs in liver fibrosis, we 
examined whether GPS targeted the activation of HSCs to 
prohibit the transformation of those quiescent HSCs to a myo-
fibroblast response to TGF-β. Activation of LX-2, an immortal-
ized human hepatic stellate cell, with TGF-β is used to mimic 
myofibroblast-like HSCs (Xu et al., 2005). As expected, GPS 
pretreatment decreased collagen I and α-SMA was upregu-
lated by TGF-β in LX-2 cells (Fig. 5A). This indicated that GPS 
could reverse the initiation of hepatic fibrosis during chronic 

alcoholic liver disease. 
In summary, GPS could prevent the development of hepatic 

steatosis to fibrosis caused by chronic alcohol exposure, tar-
geting HSC activation through AMPK, which suggested GPS 
might be a promising therapy for the treatment of alcoholic 
liver diseases. We hopefully provide the promising clinical ap-
plication of GPS for treating the development of hepatic ste-
atosis to fibrosis.  
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