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Abstract

Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly 

understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, 

in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types 

including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-

type specific mRNA processing and characterize genetic access to these transcriptomic types by 

many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display 

specific and differential electrophysiological and axon projection properties, thereby confirming 

that the single cell transcriptomic signatures can be associated with specific cellular properties.

INTRODUCTION

The mammalian brain is likely the most complex animal organ due to the variety and scope 

of functions it controls, the diversity of cells it comprises, and the number of genes it 

expresses1, 2. Within the mammalian brain, the neocortex plays essential roles in sensory, 

motor, and cognitive behaviors. Although different cortical areas have dedicated roles in 

information processing, they exhibit a similar layered structure, with each layer harboring 

distinct neuronal populations3. In the adult cortex, many types of neurons have been 

identified through characterization of their molecular, morphological, connectional, 

physiological and functional properties4–8. Despite much effort, objective classification 
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based on quantitative features has been challenging, and our understanding of the extent of 

cell type diversity remains incomplete4, 9, 10.

Cell types can be preferentially associated with molecular markers that underlie their unique 

structural, physiological and functional properties, and these markers have been used for cell 

classification. Transcriptomic profiling of small cell populations from fine dissections2, 11, 

based on cell surface12, 13 or transgenic markers5 has been informative; however, any 

population-level profiling obscures potential heterogeneity within collected cells. Recently, 

robust and scalable transcriptomic single cell profiling has emerged as a powerful approach 

to characterization and classification of single cells including neurons14–17. Here, we use 

single cell RNA-seq to characterize and classify more than 1,600 cells from the primary 

visual cortex in adult male mice. The annotated dataset and a single cell gene expression 

visualization tool are freely accessible via the Allen Brain Atlas data portal (http://

casestudies.brain-map.org/celltax).

RESULTS

Cell type identification

To minimize the potential variability in cell types due to differences in cortical region, age 

and sex, we focused on a single cortical area in adult (8-week old) male mice. We selected 

the primary visual cortex (VISp or V1), which processes and transforms visual sensory 

information, and is one of the main models for understanding cortical computation and 

function18. To access both abundant and rare cell types in VISp, we selected a set of 

transgenic mouse lines in which Cre recombinase is expressed in specific subsets of cortical 

cells19 (Supplementary Table 1). Each Cre line was crossed to the Ai14 Cre reporter line, 

which expresses the fluorescent protein tdTomato (tdT) after Cre-mediated recombination 

(Supplementary Fig. 1a, Supplementary Table 2, Methods). To label more specific cell 

populations, Cre lines were combined with Dre or Flp recombinase lines and intersectional 

reporter lines (Ai65 or Ai66, Supplementary Fig. 1a, Supplementary Table 2, Methods). To 

isolate individual cells for transcriptional profiling, we sectioned fresh brains from adult 

transgenic male mice, microdissected the full cortical depth, combinations of sequential 

layers or individual layers (L1, 2/3, 4, 5, and 6) of VISp, and generated single-cell 

suspensions using a previously published procedure5 with some modifications (Fig. 1a, 

Supplementary Fig. 1b, Methods). We developed a robust procedure for isolating individual 

adult live cells from the suspension by fluorescence activated cell sorting (FACS), reverse 

transcribed and amplified full-length poly(A)-RNA with the SMARTer protocol, converted 

the cDNA into sequencing libraries by tagmentation (Nextera XT), and sequenced them by 

next generation sequencing (Fig. 1a, Supplementary Fig. 1b, Methods). We established 

quality control (QC) criteria to monitor the experimental process (Supplementary Fig. 2) and 

data quality (Supplementary Fig. 3b,4,5,6,7, Methods). Our final QC-qualified dataset 

contains 1679 cells, with more than 98% of cells sequenced to a depth of at least 5 million 

total reads (median ~8.7 million, range ~3.8–84.3 million, Supplementary Table 3).

To identify cell types, we developed a classification approach that takes into account all 

expressed genes and is agnostic as to the origin of cells (Fig. 1b, Supplementary Fig. 3, 

Methods). Briefly, we applied two parallel and iterative approaches for dimensionality 
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reduction and clustering, iterative Principal Component Analysis (PCA) and iterative 

Weighted Gene Coexpression Network Analysis (WGCNA), and validated the cluster 

membership from each approach using a non-deterministic machine learning method 

(random forest). The results from these two parallel cluster identification approaches were 

intersected (Supplementary Fig. 8) and subjected to another round of cluster membership 

validation. This step assessed the consistency of individual cell classification: we name the 

1424 cells that are consistently classified into the same cluster as “core” cells, in contrast to 

255 “intermediate” cells, which we define as cells that are classified into more than one 

cluster by the random forest approach (Fig. 1b, Supplementary Fig. 3, Methods).

This analysis segregated cells into 49 distinct core clusters (Fig. 1c). Based on known 

markers for major cell classes, we identified 23 GABAergic neuronal clusters (Snap25+, 

Slc17a7−, Gad1+), 19 glutamatergic neuronal clusters (Snap25+, Slc17a7+, Gad1−), and 

seven non-neuronal clusters (Snap25−, Slc17a7−, Gad1−) (Fig. 1c). We assigned location and 

identity to cell types within VISp based on three complementary lines of evidence: layer-

enriching dissections from specific Cre lines (Fig. 2); expression of previously reported 

and/or newly discovered marker genes in our RNA-seq data (Fig. 3a–c); and localized 

expression patterns of marker genes determined by RNA in situ hybridization (ISH) 

(Supplementary Fig. 9, 10).

As expected, most layer-specific Cre lines label specific types of glutamatergic neurons (Fig. 

2a,b; Supplementary Table 4). Some GABAergic types also display laminar enrichment that 

was uncovered by dissections containing one or several layers (usually upper (L1–4) or 

lower (L5–6) layers combined, Fig. 2a,b, Supplementary Table 5). Cells within the seven 

non-neuronal types were mostly isolated as tdT− cells from layer-specific Cre lines (Fig. 2b).

Our single cell analysis detects most previously known marker genes and identifies many 

new differentially expressed genes. For each type, if available, we define “unique markers”, 

which are genes expressed only in that type among all cells sampled. We also identify 

“combinatorial markers”, which are differentially expressed genes not restricted to a single 

cell type. Together, these genes produce a unique pattern of expression among all cells 

sampled (Fig. 3, Methods). For a select set of markers, we employed single and double label 

RNA ISH (Supplementary Fig. 9, 10) and quantitative RT-PCR (Supplementary Fig. 11) to 

confirm predicted specificity of marker expression or confirm cell location obtained from 

layer-enriching dissections.

Our Cre-line based approach also enabled the characterization of specificity of these lines, 

thereby informing their proper use for labeling and perturbing specific cellular 

populations19–22. In general, we find that the examined Cre lines mostly label expected cell 

types based on promoters and other genetic elements that control Cre recombinase 

expression in each line (Fig. 2a,b, Methods: Supplementary Note 1)19. However, all but one 

Cre line (Chat-IRES-Cre) label more than one transcriptomic cell type.

Cortical cell types: markers and relationships

To provide an overall view of the transcriptomic cell types identified, we integrated our data 

into constellation diagrams that summarize the identity, select marker genes and putative 

Tasic et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



location of these types along the pia-to-white matter axis (Fig. 4a–c). Within these diagrams, 

each transcriptomic cell type is represented by a disc, whose surface area corresponds to the 

number of core cells in our dataset belonging to that type. Intermediate cells are represented 

by lines connecting the discs; the line thickness is proportional to the number of 

intermediate cells. We separately present GABAergic, glutamatergic and non-neuronal 

constellations as we detect only a single intermediate cell between these major classes. This 

mode of presentation paints the overall phenotypic landscape of cortical cell types as a 

combination of continuity and discreteness: presence of a large number of intermediate cells 

between a particular pair of core types suggests a phenotypic continuum, while lack of 

intermediate cells connecting one type to others suggests its more discrete character (Fig. 

4a–c). We represent the overall similarity of gene expression between the transcriptomic cell 

types by hierarchical clustering of groups of their core cells based on all genes expressed 

above a variance threshold (Fig. 4d). These two views of transcriptomic cell types are 

complementary, one shows the extent of intermediate phenotypes, while the other, the 

overall similarity in gene expression between cluster cores. We summarize expression of 

select marker genes in Supplementary Table 6 and Supplementary Fig. 12.

Our analysis identifies 18 transcriptomic cell types belonging to three previously described 

major classes of GABAergic cells named after the corresponding markers Vip (vasoactive 

intestinal peptide), Pvalb (parvalbumin), and Sst (somatostatin)6, 23, 24. In a substantial 

portion of these cells, we detect more than one of these markers, but our method, which 

takes into account genome-wide gene expression, usually classifies these double-expressing 

cells into the major type corresponding to the most highly expressed major marker in that 

cell (Methods: Supplementary Note 2).

We identify five additional GABAergic types. In agreement with a previous report25, we 

detect Tnfaip8l3 and Sema3c in these types. We name two of them based on a gene for a 

putative neuropeptide, neuron-derived neurotrophic factor (Ndnf), and we provide evidence 

that they correspond to neurogliaform cells (see below). We name the three other types 

according to markers they express: synuclein gamma (Sncg), interferon gamma induced 

GTPase (Igtp), and SMAD family member 3 (Smad3).

Beyond the major types, correspondence of our transcriptomic types to those previously 

described in the literature is not straightforward and relies on the existence of a “rosetta 

stone”: a shared reagent, feature, or molecular marker with unambiguous translational 

power. Potential inferences on correspondence to previously proposed types are further 

complicated by previous studies’ employment of a variety of animal models, at varying ages, 

and with focus on different cortical areas. Moreover, most studies have relied on a small set 

of molecular markers (e.g., Calb1 (calbindin), Calb2 (calretinin), Cck, Crh, Htr3a, Nos1, 
Npy, Reln)4, 6. We describe the comparison with the existing literature below, and 

summarize it in Supplementary Table 7.

We find only one Sst type (Sst-Cbln4) that is prevalent in upper cortical layers, while all 

other Sst types appear enriched in lower layers (Fig. 2b, 4a). Based on the upper layer-

enrichment and Calb2 expression of the Sst-Cbln4 type, we propose that it likely 

corresponds to previously characterized Calb2-positive Martinotti cells that are enriched in 
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the upper cortical layers26, and are fluorescently labeled in transgenic “GIN” mice27. Our 

analysis reveals only one additional Calb2-positive Sst type, which we name Sst-Chodl (Fig. 

2b). Based on the expression of tachykinin-receptor 1 (Tacr1), neuropeptide Y (Npy), high 

levels of nitric oxide synthase (Nos1) and absence of Calb1 (Fig. 3a, Supplementary Fig. 9), 

this type most likely corresponds to Nos1 Type I neurons28, which are enriched in L5 and 6 

(ref. 29), and are likely long-range projecting30, sleep-active neurons31.

The Pvalb types are highly interconnected in the constellation diagrams (Fig. 4a). Using 

layer-enriching dissections (Fig. 2b), we find that some types are preferentially present in 

upper (Pvalb-Tpbg, Pvalb-Tacr3, Pvalb-Cpne5) or lower layers (Pvalb-Gpx3 and Pvalb-

Rspo2). To relate our transcriptomic types to previously described Pvalb types, we isolated 

cells from the upper layers of the Nkx2.1-CreERT2 line, which, when induced with 

tamoxifen perinatally, labels a subset of neocortical interneurons including chandelier 

cells32. Our analysis classifies cells from this line within all three upper layer-enriched Pvalb 

types (Fig. 4a). We suggest that Pvalb-Cpne5 corresponds to chandelier cells because it is 

most transcriptionally distinct among Pvalb types, it is enriched in upper layers, and it does 

not express Etv1 (also known as Er81) as previously shown for chandelier cells33 

(Supplementary Fig. 12).

The Vip major type can be divided into several transcriptomic cell types, all of which appear 

enriched in upper cortical layers, except the Vip-Gpc3 type (Fig. 4a). In agreement with 

previous reports23, 34, our Vip-Chat transcriptomic type is located in upper cortical layers 

(Fig 2a), and it displays unique expression of choline acetyltransferase (Chat) in Vip-positive 

cells. These cells were reported to either express34 or not express Calb2 at the protein 

level23; we find that they robustly express Calb2 mRNA.

For glutamatergic cells, we identify six major classes of transcriptomic types – L2/3, L4, 

L5a, L5b, L6a, and L6b – based on the layer-specific expression of marker genes and layer-

enriching dissections; this is in agreement with many previous studies1, 7, 8, 35. In this study, 

we discover subdivisions among all of these layer-specific major types. Within L2/3, we 

identify two major types, one of which (L2-Ngb) appears to be located more superficially 

based on marker gene expression (e.g., Ngb, Fst, Syt17, and Cdh13, Fig. 3, Supplementary 

Fig. 9). Within L4, we identify three types (L4-Ctxn3, L4-Scnn1a and L4-Arf5) with high 

gene expression similarity (Fig. 4d) and a large number of intermediate cells (Fig. 4b). We 

identify eight different transcriptomic types within L5. Four of these types express the L5a 

marker Deptor (L5a-Hsd11b1, L5a-Tcerg1l, L5a-Batf3, and L5a-Pde1c), while three express 

the L5b marker Bcl6 (L5b-Cdh13, L5b-Tph2, and L5b-Chrna6, Fig 3b). One of those L5b 

types (L5b-Chrna6), together with the L5-Ucma type, appear most distinct among L5 types, 

both based on gene expression and the small number of intermediate cells between them and 

other L5 types (Fig. 4b). We identify six transcriptomic cell types within L6: four L6a types, 

and two L6b types. Among L6a types, two highly related types (L6a-Sla, and L6a-Mgp) 

express the marker Foxp2 (refs. 7, 35, 36), and were primarily derived from the Ntsr1-Cre 
line (Fig 2b), while the other two (L6a-Syt17 and L6a-Car12) do not express Foxp2, and 

were isolated as tdT− cells from L6 of the same Cre line. For the latter two types, we 

discover several new markers that can be used to identify them (Car12, Prss22, Syt17 and 
Penk, Fig 3b, Supplementary Fig. 9b, 10j–k). The two L6b types (L6b-Serpinb11 and L6b-
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Rgs12) express the known L6b marker Ctgf 7, 35, 36, and several other previously identified 

L6b markers (e.g., Trh, Tnmd, Mup5, Fig. 3b; Supplementary Fig. 9b)7.

Despite the neuronal focus of this study, our sampling strategy captured enough cells to 

identify the major non-neuronal classes as well. We find seven non-neuronal types: 

astrocytes, microglia, oligodendrocyte precursor cells (OPCs), two types of 

oligodendrocytes, endothelial cells and smooth muscle cells. In agreement with previous 

population-level studies12, 13, these types can be distinguished by many combinatorial and 

unique markers (Fig. 4c, Supplementary Fig. 12, Methods: Supplementary Note 2).

Comparative analysis of cell types

After defining cell types, we examined additional cellular properties that can be extracted 

from our dataset. We show that neurons contain more total RNA than non-neuronal cells 

(median 11.5 vs. 2.5 pg) and express more genes when sequenced to the same depth (mean 

7278 vs. 4274) (Supplementary Fig. 13a,c). We estimate that some neuronal types can have 

>20-fold higher RNA content than some glial types (e.g., L5b-Tph2 ~37.0 pg/cell vs. 

microglia ~1.6 pg/cell, Supplementary Fig. 13b). We also find differences in the distribution 

of gene abundances among cell types: overall, neurons express more genes at low/

intermediate levels than non-neuronal cells, while non-neuronal cells express more genes at 

high levels (Supplementary Fig. 13e,f). Together, the number of genes and the gene 

distributions suggest larger variety or complexity of neuronal compared to non-neuronal 

functions.

Our approach for RNA-seq, which is based on full-length cDNAs, enabled examination of 

alternative promoter use, polyadenylation and splicing between cell types. We find a total of 

567 exons within 320 genes that display differential pre-mRNA processing in a cell type-

specific manner at various levels of cellular taxonomy (Fig. 5a, Supplementary Table 8). 

Several examples are shown in Fig. 5b–e: mRNAs for pyruvate kinase (Pkm), syntaxin 

binding protein 1 (Stxbp1), and subunits of the AMPA receptors, Gria1 and Gria2. The last 

two display highly cell-type specific alternative splicing for two consecutive exons 

(previously named “flip” and “flop”)37, of which only a single one is included in each 

mature mRNA. Each exon encodes a small segment of the predicted fourth transmembrane 

region, which imparts different electrophysiological properties to the receptors37. In 

agreement with relatively low-resolution RNA ISH data37, we find that L2-Ngb and L2/3-

Ptgs2 types preferentially use the flip exons, L4 types use the flop exons, while L6a types 

utilize both (Fig. 5d–e). Moreover, our single cell analysis and data-driven aggregation of 

cells into types enabled examination of differential exon use in less abundant cell types and 

at a higher resolution, revealing additional differential splicing between GABAergic, L5, and 

L6 types. Many of these differences in mRNA processing would not be apparent if 

populations containing a mixture of transcriptomic cell types were profiled. Our approach 

thus allowed cells belonging to the same cell type to be analyzed together to discover robust 

cell type-specific signatures of RNA processing.

Within this genome-wide dataset, we also explored the expression of genes particularly 

relevant for neuronal development and function. Examination of transcription factors reveals 

a number of genes that have been previously shown to be involved in specification of 
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neuronal types (Supplementary Fig. 12). As expected, many more ion channel genes are 

expressed in neurons than glia, and many are differentially expressed but rarely unique for 

specific cell types (Supplementary Fig. 14). We observe widespread neuronal expression of 

many glutamate and GABA receptors, including both ionotropic and metabotropic types, 

while the receptors for other, mostly modulatory neurotransmitters, are generally expressed 

at lower levels, and more selectively in certain cell types (Supplementary Fig. 15). 

Neuropeptide genes are usually selectively expressed in one or a few GABAergic cell types, 

while the receptors for these neuropeptides can be specific for other cell types, suggesting 

specific cell-cell interactions (Supplementary Fig. 16).

Transcriptomic cell types and neuronal properties

To inquire if the transcriptomic cell types defined here display specific anatomical and 

physiological properties, we analyzed axonal projections and electrophysiology for a subset 

of transcriptomic types.

To assess the correspondence between the transcriptomic cell types and axonal projection 

patterns, we combined single cell RNA-sequencing with viral retrograde tracing using 

canine adenovirus expressing Cre recombinase (CAVCre) in the Cre-reporter Ai14 mice 

(Fig. 6a).We then classified the individual retrogradely labeled cells using a genome-wide 

gene expression classifier (Supplementary Fig. 3c, Methods). Cells labeled retrogradely 

from the ipsilateral visual thalamus were classified into L5b-Tph2, L5b-Cdh13, L5-Chrna6, 

L6a-Mgp and L6a-Sla types. In contrast, cells labeled retrogradely from the contralateral 

VISp were classified into L5a-Batf3, L6a-Car12 and L6a-Syt17 cell types (Fig. 6).

These results are in excellent agreement with previous reports that have correlated specific 

molecular markers or Cre-dependent labeling with neuronal projection patterns. L5a 

neurons, which express Deptor, have been shown to have intra-telencephalic projections and 

have been designated as cortico-cortical and cortico-striatal projection neurons7, 35. In 

contrast, L5b neurons, which express Bcl6, have been shown to project subcortically and 

have been designated as cortico-fugal projection neurons7, 35. Accordingly, our cells labeled 

from contralateral VISp and ipsilateral thalamus are classified respectively into 

transcriptomic L5a and L5b types (Fig. 6). The retrograde labeling of L6a types is also in 

agreement with the previous literature. Among the L6a projection neurons, corticothalamic 

(CT) projecting cells have been shown to express Foxp2 (ref. 7), and are labeled by Ntsr1-
Cre in VISp38, 39, which in our dataset correspond to L6a-Mgp and L6a-Sla types (Fig. 2b). 

In comparison, the Ntsr1-Cre-negative cells (which correspond to L6a-Car12 and L6a-Syt17 

types, Fig. 2b) have been shown to be corticocortical (CC) projecting cells that do not 

project to the thalamus38, 39.

To examine the correspondence of electrophysiological features with genome-wide 

expression signatures and our cell type classification, we focused on the Ndnf types, which, 

based on their superficial location and expression of Reln (Fig. 3a), may correspond to 

neurogliaform cells6. We used the Ndnf gene to generate a Cre line that should enable 

specific access to these cells (Methods). Indeed, in agreement with the Ndnf mRNA ISH 

data (Supplementary Fig. 9a, 10h, 10l), we find that this Cre line labels neurons that are 

Tasic et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highly enriched in L1 (Fig. 7a–d), and that the neurons profiled transcriptomically from L1 

of this Cre line were classified into the two Ndnf types (Fig. 2b).

Previously reported physiological characteristics of neurogliaform cells include a 

depolarizing ramp voltage near threshold, late spiking40, 41, accelerating spike frequency42, 

gap junctional coupling43, 44, and slow GABA-mediated synaptic transmission43, 45. Some 

neurogliaform cells have been shown to exhibit one or two action potentials at the onset of 

the long current pulse near threshold40, 41. Neurogliaform cells can also form GABA-

mediated autaptic synapses45.

Based on whole cell current clamp recordings of tdT+ cells from Ndnf-IRES2-dgCre;Ai14 
mice in L1 of VISp, we grouped cells into two categories: late-spiking (LS), and non-late-

spiking (NLS). LS neurons showed depolarizing ramp voltage near threshold, late spiking, 

and accelerating spike frequency (Fig. 7e,g). NLS neurons displayed the initial depolarizing 

response that was sufficient to induce an action potential at the onset of the current step in 

some trials (Fig. 7f,g). The NLS neurons, to differing degrees, exhibited an initial 

depolarizing response that sagged (Fig. 7f, top, inset, 7g). At slightly higher current 

intensities, all NLS neurons initiated a bout of late spiking after a period of quiescence (Fig. 

7f, bottom). In multi-patch recordings, we observed frequent electrical coupling (Fig. 7h) 

and autaptic and synaptic transmission between tdT+ neurons that was blocked by the 

GABAA receptor antagonist SR95531 (Fig. 7i). Reconstruction of two biocytin-filled, tdT+ 

neurons revealed one of them to have the tight, dense axonal arbor with small, bouton-like 

structures, and a relatively small dendritic tree that is typical of neurogliaform cells46. The 

other neuron displayed axonal and dendritic arbors more similar to the recently described 

neurogliaform sparse-axon cells (Fig. 7j)47. Together, molecular, physiological and 

morphological analyses of L1 neurons labeled by the Ndnf-IRES2-dgCre line show that they 

correspond to neurogliaform cells.

DISCUSSION

The adult mouse visual cortex contains about one million cells, of which about half are 

neurons48 that can be divided into glutamatergic (80%) and GABAergic cells (20%)49. We 

define cell types within the primary visual cortex based on thousands of genes with single-

cell resolution. Our description of the 49 transcriptomic cortical cell types includes all the 

major types reported in the literature, some additional new types, as well as subdivisions 

among the major types (Supplementary Table 7). Our approach also provides an 

experimental and computational workflow to systematically catalogue cell types in any 

region of the mouse brain and relate them to the tools used to examine those cell types (Cre 

lines and viruses). The discovery of new marker genes (Fig. 3) enables generation of new 

specific Cre lines (Fig. 7) and provides guidance for intersectional transgenic strategies (like 

the one in Supplementary Fig. 1a) to enable specific access to cortical cell types that do not 

express unique marker genes.

Our method relies on dissociation and FACS-isolation of single cells, thereby exposing them 

to stress that might lead to changes in gene expression. However, in our dataset, the majority 

of marker genes show excellent correspondence to RNA ISH data from the Allen Brain 
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Atlas1 (~72% out of N = 228 examined genes, Supplementary Table 9), suggesting that our 

procedure does not dramatically alter the transcriptional signatures of cell types. Most of the 

other examined transcripts within this set (Supplementary Table 9), which appear to be very 

specific markers based on RNA-seq and qRT-PCR (e.g., Chodl), are not detected by the 

Allen Brain Atlas in VISp. This discrepancy is probably a consequence of low sensitivity for 

a subset of ISH probes.

To classify cells based on their transcriptomes, we employed two iterative clustering 

methods and one machine learning-based validation method. The latter assessed the 

robustness of cluster membership for each cell and suggested the existence of cells with 

intermediate transcriptomic phenotypes. Previous studies either excluded intermediate cells 

explicitly17 or allowed cells to have only a single identity14–16. We chose to develop a data 

analysis approach that accommodates these intermediate cells as they may be a reflection of 

actual phenotypic continua. However, as in any approach, both biological and technical 

aspects contribute to our datasets. For example, similarly to a previous single-cell 

transcriptomic study16, we estimate that we detect only ~23% of mRNA molecules present 

in a cell (Supplementary Fig. 4). Employment of a highly efficient transcriptomic method 

that samples the cells in their native environment and in proportion to their abundance, 

would provide a more complete and accurate description of the transcriptomic cell type 

landscapes. Inclusion of additional cells, even with the current method, is likely to segregate 

some of the types we define here into additional subtypes. This is already apparent in our 

dataset, as we observe more subtypes if we decrease the threshold for the minimal number of 

core cells required to define a type (Methods: Supplementary Note 2). In contrast, additional 

cell sampling may also reveal previously undetected intermediate cells that would define 

new continua between discrete types. Finally, although we attempted to cover all major types 

by choosing a variety of Cre lines including pan-glutamatergic and pan-GABAergic lines, it 

is still possible we did not sample some rare types.

We employed substantially deeper sequencing per cell than several other studies14, 17, 50. 

One of the main advantages of low-depth sequencing is reduction of experimental cost. 

However, we note that if we downsample our data from full depth to 1 million or 100,000 

mapped reads per cell, we lose the power to detect many types (Supplementary Table 10). 

Thus, when subsampling to 100,000 reads, we only find 35 instead of 49 types. This 

decrease in resolution could be compensated for by sampling many more cells, but the 

appropriate balance between the sequencing depth and cell number depends on a variety of 

factors including the selected RNA-seq method, informative transcript abundance, tissue and 

cell type abundance/accessibility and desired resolution between cell types.

Our study, with its focus on profiling neurons in adult mice from a single cortical region 

using Cre lines, complements a recent transcriptomic study of single cells from 

somatosensory cortex and hippocampus in P21–31 mice16. Based on the expression of key 

marker genes, we find both commonalities and differences in the cell types identified in 

these two studies (Supplementary Fig. 17). For neuronal cells, we identify more 

transcriptomic glutamatergic (19 vs. seven) and GABAergic Sst (six vs. three), Pvalb (seven 

vs. one), and Vip (five vs. three) types, but fewer other GABAergic types (five vs. nine) 

(Supplementary Fig. 17). For non-neuronal cortical cells, Zeisel et al.16 defined many more 
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types that mostly correspond to subdivisions of our non-neuronal types, with the exception 

of oligodendrocyte precursor cells (OPCs), which are only present in our study. It is 

important to note that the two studies differ in a number of experimental and data analysis 

parameters. For example, due to different sampling strategies (Cre line-based versus mostly 

unbiased), we analyzed more neocortical neurons (1525 vs. 563); due to the differences in 

RNA-seq procedures (SMARTer vs. 5’-end focused STRT) and sequencing depths, we 

detect more genes in these neurons (~7200 vs. ~4500) (Supplementary Fig. 17). Our studies 

also differ in the genetic background (mostly C57BL/6J versus CD-1) and age of analyzed 

mice, as well as the cell isolation procedures (FACS vs. mostly Fluidigm C1 microfluidics). 

Overall, the two studies overlap in their identification of some transcriptomic types, but 

differ in their focus: Zeisel et al.16 offer deeper insight into non-neuronal transcriptomic 

types, hippocampal excitatory cells and cells from brain ventricles, while our study provides 

a more comprehensive classification of adult neocortical neurons.

Our study suggests many new directions for further investigation. At the forefront is the 

question of the correspondence and potential causal relationships between transcriptomic 

signatures and specific morphological, physiological and functional properties. For example, 

do the two transcriptomic Ndnf subtypes and the two detected electrophysiological 

phenotypes (late and non-late spiking) correspond to each other, and which genes are 

responsible for these physiological differences? Do the two corticothalamic L6a subtypes 

(L6a-Sla and L6a-Mgp) correspond to two previously described morphological classes, 

which terminate their apical dendrites in L1 or L4 (ref. 21)? Are certain transcriptomic 

differences representative of cell state or activity, rather than cell type? In fact, is there a 

clear distinction between the state and the type? For example, recent evidence suggests that 

Pvalb basket cells acquire specific firing properties in an activity-dependent manner that 

may result in a continuum of basket cell phenotypes33, perhaps mirroring the large numbers 

of intermediate cells we find for upper layer Etv1(Er81)-positive Pvalb cells (Fig. 3a). While 

these questions await further studies, the approach detailed here provides an overview of 

adult cell types within a well-defined cortical area based on a highly multidimensional 

dataset, and is an essential step towards understanding the most complex animal organ, the 

mammalian brain.

METHODS

Methods and any associated references are available in the online version of the paper.

Data, reagent, and code availability

Next generation sequencing data have been deposited to the Gene Expression Omnibus, 

under accession number GSE71585. Accession numbers for individual cells characterized in 

this study can be found in Supplementary Table 3. To explore the annotated data set, an 

online interactive scientific vignette application has been developed and can be viewed 

through the Allen Brain Atlas data portal (http://www.brain-map.org) or directly at http://

casestudies.brain-map.org/celltax. Note the change in cell type nomenclature in the paper 

compared to the original version of the online vignette (Supplemental Table 6). The newly 

generated mouse lines are in the process of being deposited to the Jackson Laboratory. 
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Supplementary Software contains the code for an iteration of the PCA and WGCNA-based 

clustering methods, the cluster membership validation algorithm, as well as the differential 

gene expression algorithm.

METHODS

Mouse breeding and husbandry

All procedures were carried out in accordance with IACUC protocols 0703 and 1208 at the 

Allen Institute for Brain Science. Animals were provided food and water ad libitum and 

were maintained on a regular 12 h day/night cycle at no more than 5 adult animals per cage. 

Animals were maintained on the C57BL/6J background. Newly received or generated 

transgenic lines were also backcrossed to C57BL/6J as much as possible, such that all 

animals used in this study had ≥ 75% of C57BL/6J background and on average 96% of 

C57BL/6J background (Supplementary Table 11). For the full list of recombinase and 

reporter lines see Supplementary Table 119, 20, 32, 52–60 and Supplementary Table 256, 58, 

respectively. All experimental animals were heterozygous for the recombinase transgenes 

and the reporter transgenes. Tamoxifen treatment for CreER lines was performed with a 

single dose of tamoxifen (40 µl of 50 mg/ml) dissolved in corn oil and administered via oral 

gavage at postnatal day (P)10–14. Tamoxifen treatment for Nkx2.1-CreERT2 was performed 

at embryonic day (E)17 (oral gavage of the dam at 1 mg/10 g of body weight), pups were 

delivered by cesarean section at E19 and then fostered. Trimethoprim was administered to 

animals containing Ctgf-2A-dgCre by oral gavage at postnatal day 35 ± 5 for three 

consecutive days (0.015 ml/g of body weight using 20 mg/ml trimethoprim solution). We 

excluded any animals with anophthalmia or microphthalmia for downstream experiments.

Generation of transgenic mice (Ndnf-IRES2-dgCre and Ctgf-2A-dgCre)

Targeting constructs were generated using a combination of molecular cloning, gene 

synthesis (GenScript, Piscataway, US) and Red/ET recombineering (Gene Bridges, 

Heidelberg, DE). The 129S6/B6 F1 ES cell line, G4, was used to generate all transgenic 

mice by homologous recombination. Modified ES cell clones were injected into blastocysts 

to obtain germline transmission. Resulting mice were crossed to the Rosa26-PhiC31o mice 

(JAX Stock # 007743)51 to delete the selection marker cassette, then backcrossed to 

C57BL/6J mice and maintained in the C57BL/6J background. The Ndnf-IRES2-dgCre 
contains an IRES2 sequence and a destabilized EGFP-Cre fusion protein (dgCre) inserted 

downstream of the Ndnf translational stop codon. The ecDHFR (R12Y/Y100I) domain of 

dgCre directs the proteosomal degradation of the entire EGFP/Cre fusion protein while 

administration of the DHFR inhibitor trimethoprim (TMP) via either intraperitoneal 

injection or oral gavage prevents degradation of the Cre fusion protein61. The Ctgf-2A-
dgCre targeted transgene contains a viral 2A peptide (modified T2A, 5’-

gagggcagaggaagtcttctaacatgcggtgacgtggaggagaatcccggccct-3’) and dgCre inserted in-frame 

and downstream of the coding sequence of the Ctgf gene. For the Ndnf-IRES2-dgCre, the 

baseline dgCre activity (without TMP induction) was sufficient to label the cells with the 

Ai14 and Snap25-LSL-2A-GFP reporters.
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Retrograde labeling

We injected canine adenovirus expressing Cre recombinase (CAVCre, gift of Miguel Chillon 

Rodrigues, Universitat Autònoma de Barcelona, Spain)62 into brains of heterozygous Ai14 
mice using a previously described procedure with modifications63. Briefly, mice were 

anesthetized with 5% isoflurane and then placed into a stereotaxic alignment instrument 

(Kopf, model 1900). Anesthesia was maintained for the duration of the surgery by 

administering isoflurane at 1–2% through a nose cone. The skin along the midline of the 

skull was opened using a scalpel, and a surgical drill was used to create a small hole in the 

skull. A pulled glass pipette prefilled with CAVCre solution was lowered into the brain, and 

165–500 nl of the virus solution was delivered to the targeted brain area using a pressure 

injection system (NanoJect II, Drummond Scientific Company, Catalog# 3-000-204). 

Stereotaxic coordinates were obtained from Paxinos adult mouse brain atlas64 for visual 

thalamus (area LP, AP −2.30, ML 2.00, DV 2.60) and visual cortex (VISp/V1, −4.16, ML 

−3.00, DV 0.50). After the delivery of virus solution into the brain, the glass pipette was 

retracted and the incision in the scalp was closed using sutures. The animal was removed 

from the stereotaxic frame and allowed to recover from anesthesia. Mice were sacrificed 7–

14 days after surgery for single cell isolation. TdT+ single cells were isolated from the 

ipsilateral VISp for thalamic injections (42 cells) or contralateral VISp for VISp injections 

(5 cells).

Single cell isolation

We adapted a previously described procedure to isolate fluorescently labeled neurons from 

the mouse brain5, 65. Individual adult male mice (P56 ± 3) were anesthetized in an isoflurane 

chamber, decapitated, and the brain was immediately removed and submerged in fresh ice-

cold artificial cerebrospinal fluid (ACSF) containing NaCl (126 mM), NaHCO3 (20 mM), 

dextrose (20 mM), KCl (3 mM), NaH2PO4 (1.25 mM), CaCl2 (2 mM), MgCl2 (2 mM), DL-

AP5 sodium salt (50 µM), DNQX (20 µM), and tetrodotoxin (0.1 µM), bubbled with a 

carbogen gas (95% O2 and 5% CO2). The brain was sectioned on a vibratome (Leica 

VT1000S) on ice, and each slice (300–400 µm) was immediately transferred to an ACSF 

bath at room temperature. After the brain slicing was complete (not more than 15 minutes), 

individual slices of interest were transferred to a small Petri dish containing bubbled room 

temperature ACSF. The regions of interest (all layers of VISp or specific layers of VISp) 

were microdissected under a fluorescence dissecting microscope, and the slices before and 

after dissection were imaged to later examine the location of the microdissected tissue and 

confirm its location within VISp. The dissected tissue pieces were transferred to a 

microcentrifuge tube and treated with 1 mg/ml pronase (Sigma, Cat#P6911-1G) in 

carbogen-bubbled ACSF for 70 minutes at room temperature without mixing in a closed 

tube. After incubation, with the tissue pieces sitting at the bottom of the tube, the pronase 

solution was pipetted out of the tube and exchanged with cold ACSF containing 1% fetal 

bovine serum. The tissue pieces were dissociated into single cells by gentle trituration 

through Pasteur pipettes with polished tip openings of 600-µm, 300-µm, and 150-µm 

diameter37.

Single cells were isolated by FACS into individual wells of 96-well plates or 8-well PCR 

strips containing 2.275 µl of Dilution Buffer (SMARTer Ultra Low RNA Kit for Illumina 
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Sequencing, Clontech Cat#634936), 0.125 µl RNase inhibitor (SMARTer kit), and 0.1 µl of 

1:1,000,000 diluted RNA spike-in RNAs (ERCC RNA Spike-In Mix 1, Life Technologies 

Cat#4456740). Sorting was performed on a BD FACSAriaII SORP using a 130 µm nozzle, a 

sheath pressure of 10 psi, and in the single cell sorting mode. To exclude dead cells, DAPI 

(DAPI*2HCl, Life Technologies Cat#D1306) was added to the single cell suspension to the 

final concentration of 2 ng/ml. FACS populations were chosen to select cells with low DAPI 

and high tdT fluorescence. Accuracy of single cell sorting was evaluated as described in 

Supplementary Fig. 2a, and confirmed post-hoc by observing dramatically higher expression 

of tdT mRNA in tdT+ than in tdT− cells (Supplementary Fig. 2c). In some cases, we also 

selected cells that have low DAPI and low tdT fluorescence, in order to capture tdT− cells 

from a sample. To collect all cells in an unbiased manner, we selected all cells with low 

DAPI fluorescence, regardless of their tdT fluorescence level. Sorted cells were frozen 

immediately on dry ice and stored at −80 °C.

In total we used 72 animals, with at least two animals per Cre line in most cases. One animal 

each was used for the Chat-IRES-Cre, Tac1-IRES2-Cre, Gad2-IRES-Cre, and Slc17a6-
IRES-Cre lines. The 72 animals were used for 55 specific dissection conditions (unique 

combination of Cre, layer dissection, and tdT labeling, Supplementary Table 3), with 34 

conditions corresponding to one animal each, 13 conditions corresponding to two animals, 

and five conditions corresponding to three animals, two conditions corresponding to four 

animals, and one condition corresponding to five animals.

cDNA amplification and library construction

We used the SMARTer kit (SMARTer Ultra Low RNA Kit for Illumina Sequencing, 

Clontech Cat#634936) to reverse transcribe polyA-RNA and amplify cDNA14, 66–68. To 

stabilize the RNA after quickly thawing the plates or tubes containing cells on ice, we 

immediately added to each sample an additional 0.125 µl of RNase inhibitor mixed with 

SMART CDS Primer II A. All steps downstream were carried out according to the 

manufacturer’s instructions. We performed reverse transcription and cDNA amplification for 

19 PCR cycles in 96-well plates or 0.2 ml strip-tubes. Each amplification experiment 

included a set of controls: 10 pg cortex RNA (isolated from Rbp4-Cre;Ai14, P57 male) as 

positive control for amplification, ERCC-only control to demonstrate the absence of RNases 

throughout the sorting process, and water-only control, to control for specificity of 

amplification/absence of contamination. cDNA concentration was quantified using Agilent 

Bioanalyzer High Sensitivity DNA chips. For most samples, 1 ng of amplified cDNA was 

used as input to make sequencing libraries with the Nextera XT DNA kit (Illumina 

Cat#FC-131-1096). For smaller cells (e.g., glia), which did not consistently produce more 

than 1 ng cDNA, we used 0.5–1 ng cDNA as input. We stopped the procedure after PCR 

clean-up and did not perform library normalization or library pooling. Individual libraries 

were quantified using Agilent Bioanalyzer DNA 7500 chips. In order to assess sample 

quality and adjust the concentrations of libraries for multiplexing on HiSeq, all libraries 

were sequenced first on Illumina MiSeq to obtain approximately 100,000 reads per library, 

and then on Illumina HiSeq 2000 or 2500 to generate 100 bp reads.
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Sequencing data processing and QC

100 base-pair single-end reads were aligned to GRCm38 (mm10) using the RefSeq 

annotation gff file downloaded on 6/1/2013. Transcriptome alignment was performed using 

RSEM69, and unmapped reads were then aligned to the ERCC and tdT sequences using 

Bowtie70. The remaining unmapped reads were aligned to the mm10 genome. Genome-

mapped reads were not used further in the analysis. Iterative PCA clustering was performed 

using RPKM (reads per kilobase per million mapped reads) values, while iterative WGCNA 

clustering used TPM (transcripts per million) values. Differential expression analyses with 

DESeq271 and DESeq72 both use raw read counts. After the alignment, we performed QC 

(Supplementary Fig. 3b) to exclude 60 out of 1739 cells.

Clustering

We used two independent clustering methods to identify a set of clusters, which were the 

input into the subsequent validation stage to assess robustness of cluster membership. The 

first method, Iterative Principal Component Analysis, iteratively identifies groups of cells in 

principal component space, subdividing cells into two groups until a set of termination 

criteria are met (see below), indicating lack of further structured subdivision. At each 

iteration, the following steps are carried out, using only data from those cells under 

consideration at the specific iteration:

1. Identify genes with more variance than technical noise, as determined by 

ERCCs71. Four sets of genes were selected, corresponding to % CVs 

greater than 0%, 25%, 50%, and 100% above the technical noise fit based 

on ERCCs. At each iteration, the percentage threshold that generated the 

best separation (as determined by the sigClust p-value, described below) 

was selected. In general, when multiple thresholds yielded significant p-

values for segregation, they resulted in identical clustering.

2. Perform PCA on the log-transformed z-scored data matrix and identify the 

number of relevant PCs by looking for the shoulder in the eigenvalue 

spectrum. Initially, the number of relevant PCs was selected by shuffling 

the data matrix 100 times and calculating the mean and SD of each 

eigenvalue, and selecting those PCs whose eigenvalue was greater than the 

mean + 2 SDs. However, it was quickly apparent that this method yielded 

the same results as simply visually inspecting the eigenvalue scree plot for 

the existence of a shoulder in the spectrum, a standard procedure for this 

type of application.

3. After selecting the number of relevant PCs, generate a cell-cell distance 

matrix by calculating the Euclidean distance between cells in PC space, 

weighting each PC dimension by the corresponding eigenvalue.

4. Cluster cells using Ward’s method using the distance matrix generated in 

step 3 and split cells into two groups based on the top branch of this tree.

Tasic et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Assess the significance of the binary split using the sigClust package in R, 

which generates a p-value for the null hypothesis that the data points are 

drawn from a single multivariate Gaussian, as opposed to two Gaussians.

6. Since steps 1–5 are carried out for four different technical noise 

thresholds, select the one that provides the best separation of cells into two 

groups, based on the PC spectrum and sigClust p-value.

The first iteration of this procedure begins with all cells, and then proceeds subsequently for 

the groups of cells generated at each binary split. A given branch in this iterative tree ends 

when any of the following termination criteria are met:

1. There are no cellular genes with variance greater than technical noise.

2. There is no significant shoulder in the PC spectrum.

3. sigClust does not return a p-value < 0.01.

This procedure results in a final set of PCA-defined clusters.

We also developed an alternative clustering approach which iteratively applies Weighted 

Gene Coexpression Network Analysis (WGCNA)73 to the data set, similar to the iterative 

PCA approach. At each iteration, the following steps are carried out:

1. Identify genes with more variance than technical noise, as determined by 

ERCCs71, with an adjusted p-value threshold varying from 0.001 at the top 

level to 0.5 at bottom level to select genes above the technical noise fit 

curve.

2. Run standard WGCNA with the soft thresholding power set to 4, and 

minimal gene cluster size at 10.

3. For each WGCNA gene module, cluster the cells based on the member 

genes into two clusters. If one cluster contains fewer than 4 cells, remove 

the gene module, which likely marks potential outliers. Then identify the 

differentially expressed (DE) genes between the two clusters, and compute 

the DE score as the sum of -log10(adjusted p-value) of all DE genes. 

Select only the modules with DE score of at least 60.

4. Take the genes from all remaining gene modules and perform hierarchical 

clustering with using Ward’s method. Select the optimal number of 

clusters by maximizing the sum of DE scores for all pairwise comparisons 

between clusters.

5. From this initial clustering, sharpen the boundaries of the groups by 

identifying DE genes among all pairs of clusters (using the limma package 

in R)74, and reclustering using this set of DE genes.

For iterative WGCNA, the clustering terminates if there are no significant gene modules at 

the given DE score threshold. The threshold is chosen based on performing the same 

analysis on the shuffled data matrix.
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Validation of cluster membership

Once cluster identities have been determined, we ran a standard machine learning-based 

cross-validation approach that consisted of the following steps:

1. Remove 20% of the cells and extract differentially expressed genes among 

all pairs of clusters (using the remaining 80% of the cells) using the limma 

package in R74.

2. Train a random forest classification scheme (with 1000 trees) on every pair 

of groups within the 80% of cells using the differentially expressed genes 

from step 1 for each pair of groups.

3. Run the classifier on the 20% of cells that were removed. For every pair of 

cell clusters, run the appropriate classifier form step 2, and determine 

which of the two groups the cell belongs to.

4. Repeat steps 1–3 five times with mutually exclusive groups of cells 

forming the 20%, such that each cell is classified once among every pair of 

clusters.

5. Repeat steps 1–4 ten times, such that every cell is classified ten times 

among every pair of clusters.

6. For each cell, tabulate the number of times that cell was classified into 

each cluster. For each pair of clusters, identify whether one cluster 

dominates the other for that given cell (the cell is classified 10 out of 10 

times into one of the clusters), and retain only the set of non-dominated 

clusters. These non-dominated clusters are identified as those where the 

cell is always classified at least 1 time, in all pairwise comparisons with 

other clusters. Cells that were classified into a single non-dominated 

cluster 10/10 times are labeled “Core” cells, and the remainder – for which 

more than one non-dominated cluster remains – are labeled “Intermediate 

Cells”. For every cell, its membership score to each cluster is calculated as 

the proportion of times it was classified into each non-dominated cluster.

This cross-validation was run on the terminal PCA clusters and the terminal WGCNA 

clusters separately, and all clusters with fewer than 4 core cells were removed. The 

remaining clusters were then intersected to define a consensus set of clusters (see below). 

The cross-validation was then run on this consensus set of clusters, and any clusters with 

fewer than 4 cells were removed.

Once an ultimate set of consensus clusters was obtained, the results of this cross-validation 

technique were used to label all of the original cells as either “Core” or “Intermediate”, 

using the same criteria specified in cross-validation step 6, above.

There are two tunable parameters in this cross-validation algorithm: 1) the number of 

differentially expressed genes used to distinguish pairs of transcriptomic types from each 

other (20 genes, for the cross-validation in the paper), and 2) the p-value threshold for 

selecting differentially expressed genes (p < 0.05, for the cross-validation in the paper). To 
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assess the impact of the two parameters described above, we ran the cross-validation 

algorithm multiple times to assess how cell assignments change based on these parameters. 

For the “default” values presented in the paper (20 genes per pair of transcriptomic types, 

genes selected at p < 0.05), we obtained 1424 core and 255 intermediate cells. For 20 genes 

and p < 0.01, we obtained 1413 core and 266 intermediate cells. Restricting the number of 

genes to 10 does not have a major effect: we obtained 1423 core/256 intermediate cells using 

a differential expression p < 0.05 and 1418 core/261 intermediate cells at p < 0.01. 

Increasing the number of genes to 50 per pair of transcriptomic types, however, results in 

more cells being classified as intermediate: 1369 core/310 intermediate cells using p < 0.05 

and 1383 core/296 intermediate cells. The full assignments of each cell for each of these 

conditions is provided in Supplementary Table 12. In summary, although the changes in the 

two parameters affect classification for some of the cells, the number and identity of core 

clusters is maintained despite the variation in the parameters.

Note on minimal cluster core size

When minimal size of cluster core was set to 3, additional clusters were detected by the 

iterative PCA and WGCNA approaches. Examination of some of these small clusters 

suggests that they probably represent genuine cell types that will become more apparent 

with additional cell sampling:

1. A subset of 4 cells within the SMC-Myl9 type (Ct1988_V, Ct1994_V, 

Ct1986_V and Nd1968n_V1), which do not express Myl9 and Flt1, but 

express Lum, Dcn, Col1a1, and Aox3. Although iterative PCA segregated 

this set of 4 cells initially as a separate cluster, one cell from this cluster 

showed similarity to the rest of the SMC-Myl9 cells, and was thus 

classified as an intermediate cell. The remaining cluster then contained 

only 3 core cells, and so did not pass the 4-cell minimum requirement; this 

cluster was re-merged with the SMC-Myl9 cluster for subsequent 

analyses.

2. Subsets of cells within the Sst-Th type with mutually exclusive expression 

of Th and Spp1.

3. A subset of 3 cells (D1217_V, D1222_V, H1418_V6b) that express Krt73 
and Cyb5r2 but not Vip within the Sncg type.

It is important to note that the minimum cluster size (4 cells) is the lowest possible number 

for the cross-validation algorithm above, because variance estimates for gene expression 

require at least 3 cells within a group (and one cell will be removed from the group during 

the membership assessment approach). These gene expression variance estimates are 

necessary to identify differentially expressed genes between groups, a crucial step in cluster 

membership assessment. As a result, minimum cluster size is not a parameter that can be 

decreased when employing our cross-validation algorithm.

Cluster intersection

Both clustering methods (iterative PCA and iterative WGCNA) yield a set of terminal 

clusters. For each of the two methods, we identified clusters containing ≥ 4 “core” cells (as 
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explained above). We then assessed the overlap of these clusters obtained from the two 

clustering methods. Whereas the majority of clusters obtained by both methods overlap, 

there were eight cases where one method subdivided a set of cells differently from the other 

(Supplementary Fig. 8). In these cases, we generated a set of clusters based on the finest set 

of subdivisions, taken as the intersection of partitions from both methods.

Mapping CAVCre-labeled cells to RNA-seq clusters

In order to map the CAV projection-labeled cells to the final set of clusters, a technique very 

similar to the cross-validation step was performed, except that none of the original (non-

projection-labeled) cells were removed when training the random forest classifier, and the 

classifier was used only on the projection-labeled cells.

Identifying discriminatory genes and marker gene sets

To identify key discriminatory genes, we first assembled lists of all differentially expressed 

genes among all pairs of types within the glutamatergic, GABAergic, and non-neuronal 

major categories. We also identified differentially expressed genes between all neurons and 

all non-neuronal cells, as well as between all glutamatergic and all GABAergic neurons. In 

all cases, differential expression was calculated using the DESeq package for R 72. After 

assembling lists of significant (adjusted p-value < 0.01) differentially expressed genes, we 

then selected a subset of them using the following criteria:

1. For a given pair of cell types, select only those genes whose 20th 

percentile expression in type 1 is greater than the 80th percentile 

expression in type 2. This ensures a good separation of distributions.

2. For a given pair of cell types, the 80th percentile expression for a given 

gene must be < 1 RPKM for one of the types. This ensures close to zero 

expression for the lower group, helping to generate an approximate on-off 

separation among the two groups.

Additional marker genes were identified based on the percentage of cells in each cell type in 

which each differentially expressed gene was detected (> 0 RPKM). This was done in using 

a pairwise comparison method to identify genes expressed specifically in individual or few 

cell types:

1. For each cell type, each gene was analyzed to determine if its expression 

was biased significantly towards the selected cell type compared to each 

other cell type (>95% of cells in the selected type, and < 5% in the other).

2. Each gene was scored based on the number of clusters for which the gene 

was associated with the selected cell type. Genes were ranked according to 

this score, and the top genes were selected.

3. If no genes were identified for a given cluster in steps 1–2, the 95% 

threshold for expression was reduced to a minimum of 80%.

4. To detect highly specific but sparsely expressed markers, the upper and 

lower thresholds were adjusted to 30% and 0%, respectively.
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After selecting the genes this way, we also selected genes that distinguished among the 

maximum number of cell type pairs within the following categories: all glutamatergic types, 

all GABAergic types, all non-neuronal types, all Sst types, all Pvalb types, and all Vip or 

Ndnf types. Genes selected by both methods were visually inspected for type or category-

specific expression characteristics by plotting heatmaps of gene expression for all cells in all 

types. These lists were augmented with known markers from the literature, and the results 

are presented in Supplementary Fig. 12 and Supplementary Table 6.

Evaluation of differential exon usage

We used the limma Bioconductor package74 to detect differentially expressed exons between 

every pair of transcriptomic cell types. Input data into limma were log2-transformed read 

counts for each exon that were previously scaled by the total number of reads in each 

sample. We considered significant at least a two-fold change and adjusted p < 0.05. In 

addition, we used a custom code to detect exons associated with alternative processing 

events, defined as those that utilize the same splicing acceptor or donor as another exon 

within the dataset. From these candidates, we selected only the exons that are differentially 

expressed compared to their corresponding gene. We used MISO75 to confirm differential 

exon processing for select examples. The MISO score (Ψ), or “percent spliced-in”, 

represents the relative exon usage of transcript variant b vs. a, for each gene in each cell 

type75. Because MISO does not accommodate replicates, to calculate MISO Ψ, we pooled 

10 randomly selected single cell samples for each cell type (20 for broad glutamatergic, 

GABAergic and non-neuronal types) for each pairwise comparison. The significance in 

pairwise comparisons for all cell types for each alternatively processed RNA was measured 

by the Bayes factor (Bf). Bf corresponds to the odds of differential expression (change in Ψ 
score that is non-zero) over no differential expression (change in Ψ score = zero). Bf > 100 

is considered significant.

Estimation of cellular total RNA content

As stated in the single cell cDNA amplification and library preparation section, we added the 

same amount of synthetic ERCC transcripts to each sample containing a single cell before 

reverse transcription and cDNA amplification. After obtaining and mapping the next 

generation sequencing reads from the samples, we calculated the percentage of ERCC reads 

in each sample. This ratio of ERCC vs. cellular reads was used to estimate the mass of 

mRNA in each cell. To do this, we converted the known numbers of added ERCC molecules 

and their weights to femtograms of RNA, and by simple proportion estimated the mass of 

cellular mRNA in that cell. To estimate the total RNA mass, we assumed that the mRNA to 

total RNA ratio in all cells is the same as in total cortex RNA, and used the samples 

containing 10 pg cortex total RNA to estimate the appropriate amounts of single cell total 

RNA.

RNA double-fluorescence in situ hybridization (DFISH)

We performed RNA DFISH experiments using a previously described protocol76, which was 

based on the Allen Institute’s colorimetric RNA ISH protocol1. Tissue sections (25 µm) 

were collected from fresh frozen brains of P53 male C57BL/6J mice. Riboprobes were 

labeled with digoxigenin (DIG) or dinitrophenyl-11-UTP (DNP, Perkin Elmer) 
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(Supplementary Table 13). Probe pairs were simultaneously hybridized onto the tissue 

sections, and the signal from each probe was sequentially amplified with tyramide (anti-

DIG-HRP and tyramide-biotin, or anti-DNP-HRP and tyramide-DNP). The amplified signal 

was detected by labeling with streptavidin-Alexa-Fluor 488 (Life Technologies) or anti-

DNP-Alexa-Fluor 555 (Life Technologies). The DFISH protocol was carried out on Leica 

autostainers, and images were taken using a 10x objective on a fluorescence microscope 

(VS110 Virtual Slide Microscope, Olympus).

High-throughput qRT-PCR

Assay Selection—PrimeTime qPCR assays (containing forward primer, reverse primer 

and probe), provided by Integrated DNA Technologies (IDT) were selected using the IDT 

Assay Selection Tool on the IDT web site. Primer and probe sequences were compared 

against the mouse UCSC transcripts to identify assays that: 1. Maximize detection of all 

isoforms of a gene; 2. Span large introns to minimize detection of corresponding genomic 

DNA. When a PrimeTime qPCR assay that met our requirements was not available, we used 

the PrimerQuest Custom Design Tool provided by IDT. If a single assay for detection of all 

isoforms could not be designed, multiple assays were ordered and subjected to validation.

Assay Validation—All assays were validated using a dilution series of total RNA (in pg: 

1, 5, 10, 32, 100, 320, 1000, 3200, 10000 and 20000 per reaction) from whole mouse (RNA 

pool from 11 mouse cell lines, Agilent Tech quantitative Mouse Ref RNA, Cat#750600), 

mouse brain (Zyagen MR-201) and mouse cortex (isolated from Rbp4-Cre;Ai14 p57 male 

mouse). All dilutions were run in triplicate. To pass validation, each assay had to show linear 

RNA detection (R2 > 0.85) across a minimum of 5 dilution points in at least one RNA 

background. Each assay also had to show no detection below the limit of detection (LOD) in 

water and 50 pg mouse genomic DNA control wells (LOD was set at 2 standard deviations 

above the mean for all single copy ERCC transcripts detected). To assess the specificity of 

assays, we also tested them against a dilution series of several single cell cDNAs (libraries 

ranged from 10 to 1000 pg) that were previously subjected to RNA-seq and that displayed 

differential expression of genes of interest. Only assays that showed linear RNA detection, 

low background and good specificity were used. The sequences for the final set of validated 

assays are available in Supplementary Table 14.

Single cell qRT-PCR—Experiments were performed using Fluidigm BioMark according 

to manufacturer’s instructions. Single cells were isolated as described above, and deposited 

by FACS into individual wells of 96-well plates containing 5.1 µl of buffer (5 µl of Cells 

Direct 2X Reaction Mix (Thermo Fisher Scientific) and 0.1ul of SUPERase In RNase 

Inhibitor (20 U/µl; Thermo Fisher Scientific)) and frozen at −80°C. Synthetic transcripts 

(ERCC RNA Spike-in Mix1, Life Technologies Cat#4456740, 1 µl of 550,000 x-dilution 

added per sample) were included in all reverse transcription-specific target amplification 

(RT-STA) reactions except the two negative, water-only controls. The RT-STA included 20 

cycles of PCR. Each RT-STA sample was diluted 5-fold and analyzed by 96.96 chip that 

included control assays and RT-STAs. Control assays corresponded to 9 different ERCC 

RNAs (Supplementary Table 14) and 3 housekeeping genes (Ppia, Gapdh, Tfrc). Control 

templates included 8 different whole mouse RNA dilutions (1, 5, 10, 32, 100, 320, 1000 and 
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3200 pg / RT-STA reaction), gDNA (100 pg / RT-STA reaction), water with ERCCs and 

water without ERCCs. The ERCC controls allowed monitoring of the PCR efficiency in 

each sample well (the 9 assayed ERCC transcripts cover a range from 1 to 4100 RNA 

copies). Any sample well that did not display linear ERCC transcript amplification was 

flagged or failed. The bulk RNA dilution series and reference assays allowed us to monitor 

chip to chip variation.

Electrophysiology

Slice preparation—Coronal cortical slices were obtained from P51±10 day old Ndnf-
IRES2-dgCre;Ai14 mice. Mice were anesthetized with 5% isofluorane, perfused 

transcardially with artificial cerebrospinal fluid (aCSF) and decapitated. The brain was then 

removed from the skull and coronal visual cortex slices (300 µm) were prepared using a 

vibratome. Slices were transferred to an incubation chamber (34°C) for 10 minutes and then 

to a holding chamber at room temperature (22°C). For perfusion and slice incubation, aCSF 

contained (in mM): 98 NMDG, 98 HCl, 25 D-glucose, 25 NaHCO3, 17.5 HEPES, 12 N-

acetyl-L-cysteine, 10 MgSO4, 5 Na-(L)-ascorbate, 3 myoinositol, 3 Na-pyruvate, 2.5 KCl, 2 

mM thiourea, 1.25 NaH2PO4, and 0.01 taurine, or 73 Tris-HCl, 30 NaHCO3, 28 Tris Base, 

25 D-Glucose, 20 HEPES, 10 MgSO4, 5 Na-(L)-ascorbate, 3 Na-pyruvate, 2.5 KCl, 2 

thiourea, 1.2 NaH2PO4, and 0.5 CaCl2. The holding chamber solution contained (in mM): 97 

NaCl, 25 NaHCO3, 25 D-glucose, 14 HEPES, 12.3 N-acetyl-L-cysteine, 5 Na-(L)-ascorbate, 

3 myoinositol, 3 Na-pyruvate, 2.5 KCl, 2 CaCl2, 2 MgSO4, 2 thiourea, 1.25 NaH2PO4, and 

0.01 taurine.

Patch-clamp recording—Recordings were performed in aCSF containing (in mM): 126 

NaCl, 26 NaHCO3, 12.5 D-glucose, 2.5 KCl, 2 CaCl2, 1.25 NaH2PO4, and 1 MgSO4. 

Individual slices were held in a small chamber perfused with aCSF at 2.5 mL/min (32–34°C) 

and visualized with an upright, fixed-stage microscope (Scientifica SliceScope) using dodt-

gradient contrast, infrared video microscopy. Fluorescent tdT+ neurons were identified using 

simultaneous epifluorescent imaging. Single to quadruple whole-cell current-clamp 

recordings were made with MultiClamp 700B (Molecular Devices) amplifier(s) and patch 

electrodes with an open tip resistance of 5–7 MΩ. The intracellular solution contained (in 

mM) 126 K-gluconate, 10.0 HEPES, 4 KCl, 4 Mg-ATP, 0.3 EGTA, 0.3 Na-GTP, 10 Na-

phosphocreatine, and 0.5% biocytin. Cells were maintained with bias current over the course 

of the experiment at the resting potential observed 2 minutes after the whole cell 

configuration was achieved, except in synaptic experiments, where cells were held at −65 

mV. Synaptic transmission was blocked in experiments investigating the intrinsic properties 

(Fig. 7e, f and g) of tdT+ neurons with 1 mM kynurenic acid and 0.1 mM picrotoxin. AMPA 

receptors were blocked in using 2 µM NBQX during experiments investigating electrical 

coupling and GABAergic synaptic transmission between tdT+ neurons (Fig. 7h and i).

Data acquisition and analysis—Data were transferred to a computer during 

experiments by an ITC-1600 digital-analog converter (Heka). Igor Pro software 

(Wavemetrics) was used for acquisition and analysis. Electrophysiological records were 

filtered at 10 kHz and digitally sampled at 50, 67, 100, or 200 kHz. Gj = (1/R2) × CC/
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(1−CC) was used to calculate the junctional conductance. CC is the coupling coefficient and 

R2 is the input resistance of the noninjected cell43.

Morphological reconstruction of biocytin-stained neurons—Brain slices 

containing biocytin-filled neurons were fixed with 4% paraformaldehyde and stained using 

ABC-DAB detection kit (Vector Laboratories, Burlingame, CA). Stained slices were post-

fixed with 0.05% OsO4 and mounted with MOWIOL 4–88. Biocytin-filled neurons were 

imaged in 3D with a Zeiss AxioImager (Thornwood, NY) at 63x with 1.4-NA objective. 

Images were then inverted and imported into Vaa3D77 for semi-automated reconstruction 

using the virtual finger tool.

Supplementary Note 1 on Cre transgene expression

Cre transgenes are usually made to mimic the expression of an endogenous gene. However, 

the Cre transgene expression does not necessarily mimic the corresponding endogenous 

gene expression as the transgene may have some of the regulatory elements missing or 

altered, or new regulatory elements present due to position effects. In addition, the 

expression of a Cre transgene is usually monitored by the activation of a Cre-reporter 

transgene, which is expressed from a strong and ubiquitous promoter (as is the case for 

Ai14, which is used throughout this study). This approach has two additional consequences. 

First, the Cre reporter gene expression reflects Cre expression throughout developmental 

history of the cell and any of its progenitors, and second, the Cre transgene expression, 

which is variable and may be low, is converted into very strong and binary Cre-reporter gene 

expression.

We have extensively characterized expression of Cre transgenes and/or Cre-reporter genes 

by RNA ISH or fluorescence as part of the transgenic characterization pipeline at the Allen 

Institute19. In many instances, this type of examination has already revealed that the mRNA 

expression of the endogenous gene does not fully correlate with the corresponding Cre 

transgene or the Cre transgene-dependent reporter expression. It is also important to note 

that the identity of the Cre-dependent reporter matters: some reporters are more susceptible 

to Cre-mediated recombination than others. And finally, additional discrepancies may be 

encountered if endogenous gene expression is examined at the protein level, while Cre 

protein expression may not be under the same regulation. Several examples below illustrate 

the apparent or true discrepancies between transgenic Cre and corresponding endogenous 

gene expression.

Example 1—Ntsr1 and Nr5a1 mRNAs are not detectable in the cortex by RNA ISH in the 

Allen Mouse Brain Atlas, although the Cre-mediated reporter gene expression is detected in 

L6 and L4, respectively. Cre expression in the cortex could therefore be interpreted as an 

artifact of transgenesis. However, by single-cell RNA-seq, we clearly detected Ntsr1 and 

Nr5a1 mRNAs in some L6 and L4 cells. The corresponding mRNAs are present at a low 

level, and not consistently among all tdT+ cells isolated from the Ntsr1-Cre;Ai14 and Nr5a1-
Cre;Ai14 lines, respectively. This shows that the Cre expression in this case does reflect the 

endogenous gene expression, and the fact that tdT expression is broader than endogenous 

gene expression likely reflects points No.1 and/or No.2 above.
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Example 2—Although Calb2-IRES-Cre is a knock-in line, we observe discrepancies in its 

expression compared to endogenous Calb2 expression in adult. First, we observe Cre-

dependent tdT expression (from the Ai14 reporter) in glutamatergic cells. As we do not 

detect expression of Calb2 mRNA by RNA-Seq in glutamatergic cells, this may be due to 

developmental Calb2 expression or a transgenic artefact. Second, based on RNA-Seq, this 

line should label some Sst cells, but Sst-positive cells were not among tdT+ cells collected 

from Calb2-IRES-Cre;Ai14 mice (See Fig. 2b). This could be due to disruption of a 

regulatory element in transgenesis that is responsible for Calb2 expression is Sst cells.

Example 3—As previously reported25, 78, we find that Sst-IRES-Cre does express in a 

small number of cells that we classify into a Pvalb type (Fig. 2b), although at the protein 

level, Sst/Pvalb-double positive cells are virtually absent in VISp24. The labeling of cells 

based on Sst-IRES-Cre most likely reflects the presence of Sst mRNA, and although most of 

those cells are indeed Sst cell types, some Sst mRNA is transcribed, but not translated, in 

Pvalb types.

Supplementary Note 2 on single cell classification

Interneurons—We detect mRNA (RPKM>0) for at least one of the major GABAergic 

markers, Vip, Sst, or Pvalb, in 99.7% (661/663) of cells that classified into one of these 

major types. Although most of them express mRNA for only one of these three genes 

(411/663, and 410 are classified in accordance with the expression of that marker), a 

substantial number of cells (250) express more than one, as previously observed25, 79. Our 

classification procedure, which takes into account genome-wide gene expression, usually 

classifies these double-expressing cells into the major type that corresponds to the highest 

expressed major marker in that cell (64/65 for Vip, 92/104 for Sst, 81/81 for Pvalb).

Non-neuronal cells—We identify astrocytes based on expression of previously reported 

markers Aqp4, F3, and Gfap12. Our Oligo-96*Rik type corresponds to previously described 

newly generated oligodendrocytes based on the unique expression of Enpp6 and 

9630013A20Rik (abbreviated as 96*Rik), while our Oligo-Opalin type corresponds to 

myelinating oligodendrocytes13. Oligo precursor cells (OPC) express Pdgfra and Cspg4 as 

previously reported12, 13. Accordingly, microglial cells express Itgam, Cx3cr1, and C1qb13. 

We identify endothelial cells based on expression of Flt113, and smooth muscle cells (SMC) 

based on the expression of Bgn80.

Cells with unexpected combinations of markers—We note three cells that, although 

they passed our QC criteria (Methods, Supplementary Fig. 3), have unexpected expression 

of marker genes. Cell “H1122_VU” is classified as an intermediate with primary type L6a-

Sla and secondary type Pvalb-Gpx3 (Supplementary Table 3), and it is the only cell that is an 

intermediate between a GABAergic and a glutamatergic type. This cell does not express the 

pan-excitatory marker Slc17a7, any of the L6a markers (Foxp2, Crym), pan-inhibitory 

markers (Gad1, Gad2), nor the marker for its classified secondary type, Pvalb. Another cell 

to note is “A1612_V”, which is classified as an intermediate with primary type L5a-Batf3 

and secondary type L6a-Sla. This cell also does not express the pan-excitatory marker 

Slc17a7, L5a markers (Deptor, Rorb), nor L6a markers (Crym, Foxp2). Finally, we also note 
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cell “G1766_V”, which was isolated from the Pvalb-2A-Flpo;Gad2-IRES-Cre;Ai65D line. It 

is classified into L5b-Tph2 type (Supplementary Table 3), and it expresses a combination of 

markers from many types: the pan-excitatory marker Slc17a7, L5a markers (Deptor, Rorb), 

L5b markers (Bcl6, Qrfpr), astrocyte markers (Gja1, F3), as well as pan-inhibitory markers 

(Gad1, Gad2), and Pvalb.

Statistical analyses and methodology

Blinding—Data collection and analysis were not performed blind to the conditions of the 

experiments. The authors were not blind to the Cre lines used for cell collection, and no 

randomization was used to assign experimental groups.

Sample sizes—The sample sizes are similar to or higher than those generally employed in 

the field.

Parametric tests—To estimate significant differences in the numbers of genes detected 

among broad cell classes (Supplementary Fig. 13c), we used t-tests because the distributions 

are approximately normal. We did not compare variance estimates between groups, although 

variances are represented graphically in the figures. As a result, we used the heteroscedastic 

assumption in the calculation of the p-value when performing parametric tests. The tests 

were two-sided.

Non-parametric tests—For all remaining comparisons, we used the appropriate 

nonparametric test in order to avoid making assumptions of distribution normality. We did 

not explicitly test whether the distributions (and hence variances) were identical, and thus 

the p-values indicate stochastic dominance. The tests were two-sided.

Hypergeometric tests for layer enrichment—For evaluating statistically significant 

enrichment in upper or lower cortical layers for GABAergic cell types (Supplementary Table 

5), we calculated the cumulative hypergeometric probability of sampling M or fewer cells of 

a given type from the upper layer of a Cre line, given N total upper layer and P total lower 

layer cells from that Cre line, and T cells total from that Cre line belonging to the cell type 

of interest. In other words, this is the probability of getting M or fewer red balls in T draws 

from an urn containing N red balls and P non-red balls. For cases where the given cell type 

contained both upper and lower layer-derived cells, the selection criterion was cumulative 

hypergeometric probability (“hypergeometric p value” in Supplementary Table 5) > 0.975 

for enrichment. For corner cases where the given cell type contained only upper or only 

lower layer-derived cells, the selection criterion was cumulative hypergeometric probability 

< 0.025 for the non-enriched case. This criterion is required because the cumulative 

hypergeometric probability for having T or fewer successes in T draws is, by definition, 

equal to 1, so the criterion described above is not informative for significance. Finally, we 

also considered the corner case where the sampling is too sparse to ever obtain a p-value less 

than p<0.025 for either of the extreme cases (all upper layer or all lower layer cells). These 

cases are marked in Supplementary Table 5 as having “too few cells for significance”. Note 

there are no degrees of freedom associated with the hypergeometric test because it is an 

exact test. The tests were two-sided.
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Other tests—For the differential gene expression tests, we used the DESeq and DESeq2 

packages, both of which derive estimates for the underlying distributions (in the form of 

negative binomial distribution) for the read counts.

Corrections for multiple comparisons—We used Benjamini-Hochberg correction for 

FDRs and Bonferroni correction for p-value-based tests.

A Supplementary Methods Checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow overview
(a) Experimental workflow starts with the isolation, sectioning and micro-dissection of the 

primary visual cortex from a transgenic mouse. The tissue samples are converted into a 

single-cell suspension, single cells are isolated by FACS, poly(A)-RNA from each cell is 

reverse transcribed (RT), cDNA is amplified and fragmented, and sequenced on a next-

generation sequencing (NGS) platform. (b) Analysis workflow starts with the definition of 

high variance genes and iterative clustering based on two different methods, PCA (shown 

here) and WGCNA, and cluster membership validation using a random forest classifier. 
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Cells that are classified consistently into one cluster are called ‘core’ cells (N = 1424), while 

cells that are mapped to more than one cluster are labeled ‘intermediate cells’ (N = 255). 

After the termination criteria are met, clusters from the two methods are intersected, and 

iteratively validated until all core clusters contain at least 4 cells. (Supplementary Fig. 3, 

Methods). (c) The final 49 clusters were assigned an identity based on cell location (Fig. 2) 

and marker genes (Fig. 3). Each type is represented by a color bar with the name and 

number of core cells representing that type. The violin plots represent distribution of mRNA 

expression on a linear scale, adjusted for each gene (max. RPKM on the right), for major 

known marker genes: Snap25 (pan-neuronal); Gad1 (pan-GABAergic); Vip, Sst and Pvalb 
(GABAergic); Slc17a7 (pan-glutamatergic); Rorb (mostly L4 and L5a); Foxp2 (L6); Aqp4 
(astrocytes); Pdgfra (oligodendrocyte precursor cells, OPCs); Mog (oligodendrocytes); 

Itgam (microglia); Flt1 (endothelial cells) and Bgn (smooth muscle cells, SMC).
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Figure 2. Cell types: Genetic access and laminar distribution
(a) Characterization of Cre lines by RNA ISH detection of tdT mRNA from the Ai14 
transgene. Representative images of VISp were obtained from the Allen Connectivity Atlas, 

Transgenic Characterization19. Sections are coronal except when indicated by asterisks 

(sagittal); images are representative of at least two brain-wide experiments, except for 

Scnn1a-Tg3-Cre, which is represented by one experiment (average of ~2.9 experiments per 

Cre line). Transgenic characterization data for Pvalb-2A-FlpO;Gad2-IRES-Cre;Ai65 and 

Nkx2.1-CreERT2;Ai14 (corresponding to our induction criteria, Methods) are not available. 
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Scale bar in the last panel applies to all. (b) Cre line specificity characterized by 

transcriptomic cell types (N = 1424 core cells, 255 intermediate cells). The size of each 

black disk represents the proportion of cells classified as core in each transcriptomic type 

isolated from a particular Cre line and microdissection combination (rows). Pink disks 

correspond to the proportion of cells that were classified as intermediate. “Upper” dissection 

corresponds to layers 1–4, and “lower” to layers 5–6 of VISp. The number of cells from 

each Cre line and microdissection combination for core cells (black) and intermediate cells 

(pink) is indicated on the right; the number of core cells for each core type is indicated on 

top. Note that the relative proportions of cell types obtained in these experiments are not 

representative of the ones in the intact brain because of the targeted sampling approach using 

Cre lines and possible cell type-specific differences in survival during the isolation 

procedure. Cell numbers and percentages represented in (b) are available in Supplementary 

Table 4.
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Figure 3. Cortical cell types and corresponding marker genes
(a–c) Gene expression (rows) in individual cells (columns) arranged according to the cell 

type (top bar) and grouped according to major classes: GABAergic neurons (a), 

glutamatergic neurons (b), and non-neuronal cells (c). The scale is linear and adjusted to the 

maximum for each gene within each panel (max. RPKM on the right). Only core cells are 

represented (N = 1424); for numbers of core cells per type see Fig. 2b, top. Tacr1 encodes 

neurokinin-1 receptor or substance P receptor; 96*Rik is 9630013A20Rik. Unique marker 

genes are in red.
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Figure 4. Cell types summary and relationships
(a–c) Constellation diagrams showing core and intermediate cells for all cell types. Core 

cells (N = 1424 total, 664 GABAergic, 609 glutamatergic, 151 non-neuronal) are 

represented by colored discs with area corresponding to the number of core cells for each 

cluster. Linked tags include cell type names based on marker genes/layers; unique markers 

are in pink. Intermediate cells (N = 255 total, 97 GABAergic, 155 glutamatergic, 3 non-

neuronal) are represented by lines connecting discs; line thickness corresponds to the 

number of such cells. (a) GABAergic neuron types are grouped according to major classes 
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and arranged by their preferential location (enrichment) in upper vs. lower cortical layers. 

Up/down arrows within discs represent statistically significant enrichment determined by 

layer-enriching dissections (Supplementary Table 5). Locations for other clusters are 

estimates that combine marker gene expression or Cre line expression based on ISH. The 

position at the border of upper and lower layers represents lack of evidence for location 

preference. (b) Glutamatergic types are arranged according to cortical layer. (c) Non-

neuronal types share few intermediate cells among one another. 96*Rik, 9630013A20Rik. 

(d) Dendrogram depicting relatedness of the mean gene expression pattern for all cell types 

based on core cells (N = 1424) and genes (N = 13,878) with standard deviation for 

expression > 1 across all types. The distance metric is Pearson’s correlation coefficient over 

the genes in the log10(RPKM+1) space. The tree was generated by standard hierarchical 

clustering with average linkage.
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Figure 5. Cell-type specific mRNA processing
(a) Heat map showing the number of differentially processed exons (N = 567 out of 256,430 

examined) for each pairwise comparison of transcriptomic cell types (Methods). (b–e) 

Confirmation of differential exon processing for four gene examples from (a) using MISO 

(Methods). Schematic of each gene (top) and corresponding quantitation (bottom).The 

MISO score (Ψ), or “percent spliced-in”, represents the relative exon usage of transcript 

variant b vs. a, for each gene in each cell type. The significance in pairwise comparisons for 

all cell types for each alternatively processed exon was measured by the Bayes factor (Bf); 

Bf > 100 is considered significant. Bf for each alternatively processed mRNA is presented as 

the heat map to the right; yellow represents strongest statistical significance of Bf = 1012. (b) 

In agreement with a population-level transcriptome profiling study13, pyruvate kinase (Pkm) 

mRNAs display differential exon usage among neurons and non-neuronal cells. (c) Syntaxin 

binding protein 1 (Stxbp1) mRNAs show differential processing among broad neuronal 

types, but also specific Vip types. (d,e) mRNAs for AMPA receptor genes, Gria1 and Gria2, 

both display mutually exclusively spliced “flip” and “flop” exons. The two Gria genes show 

similar alternative exon usage within same cell types, suggesting a shared mechanism for 

alternative splicing. For simplicity, all genes are shown in the same orientation.
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Figure 6. Transcriptomic signatures and axonal projections
(a) Schematic of experimental approach shows that canine adenovirus expressing Cre 

recombinase (CAVCre) was injected into two different VISp projection areas in Ai14 mice: 

ipsilateral visual thalamus (LGd/LP) or contralateral visual cortex (VISp). TdT+ single cells 

were isolated from VISp by microdissection and FACS. Examples of fresh brain slices from 

injected animals are presented below. Inj, injection site; IT, injection tract; D, 

microdissected tissue used for preparation of single cell suspension and FACS. Single cell 

transcriptomes were obtained and use to classify the corresponding cells by the random 
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forest approach (Methods) to our previously determined transcriptomic cell types. (b) 

Heatmap panels show gene expression in individual projection-labeled cells classified into 

one of 9 (out of 49) previously determined transcriptomic types. Median gene expression in 

each type is shown to the left of each heatmap panel. Black dots indicate cells that are 

classified as intermediate, but are primarily associated with the indicated cell types. The 

asterisk indicates an unexpected L2/3-Ptgs2 cell, which may have been labeled through the 

virus injection tract (IT). Note that these projection-labeled cells were not used in the 

original classification scheme to identify transcriptomic cell types. The number of cells 

obtained for each type is labeled on top. Total cells: n = 43 for two thalamus injection 

experiments; n = 5 for one contralateral VISp injection experiment.
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Figure 7. Ndnf interneurons: genetic access and physiological properties
(a) Violin plot for Ndnf mRNA expression in cell types containing one or more cells with 

Ndnf RPKM ≥ 1. (b) Characterization of the Ndnf-IRES2-dgCre;Ai14 transgenic mouse by 

RNA ISH detection of tdT mRNA in VISp. Inset focuses on upper layers. The image is from 

a representative section from one brain-wide experiment. (c) Same as (b), but showing tdT 

protein fluorescence. (d) The endothelial cells can be avoided if pan-neuronal Cre reporter 

(Snap25-LSL-2A-GFP) is used instead of Ai14 (Methods). Insets: putative neurogliaform 

cells. The images in (c) and (d) are each representative of two independent experiments. (e) 
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Intrinsic properties of tdT+ neurons in L1 of VISp in Ndnf-IRES2-dgCre;Ai14. Sub- (red) 

and supra- (black) threshold responses to a 3-s square-pulse current injection of 

representative LS neuron (left) and NLS neuron (right). Top left inset: magnified view of the 

subthreshold depolarizing ramp. Bottom left: With larger current injection, the same LS 

neuron spikes earlier. Top right inset: magnified view of subthreshold initial response sag. 

The same neuron (bottom right) displays additional late spiking in response to a larger 

current pulse. (f) Resting membrane potential, input resistance, sag and ramp slope for cells 

in (e) represented as averages ± SEM. LS neurons display significantly less sag (p = 

4.31×10−4, Mann-Whitney test with 16 degrees of freedom), and significantly steeper 

depolarizing ramp than NLS neurons (p = 6.52×10−3, Mann-Whitney test with 16 degrees of 

freedom). (g) Recording of electrically coupled tdT+ cells. Hyperpolarizing current injection 

(top) into either tdT+ cell was transmitted to the other cell (bottom). 77% of cells were 

electrically coupled at an average intersomatic distance of 110 ± 11 µm and mean junctional 

conductance of 181 ± 41 pS, n = 14. Errors represent SEM. (h) Recording of a synaptically 

connected pair of tdT+ cells. Action potential (middle, truncated) induced by a brief (3 ms) 

current injection (top) caused IPSPs in both neurons that were blocked by SR 95531 (5 µM). 

IPSP mean 10–90% rise time = 7.4 ± 0.5 ms; IPSP mean tau decay = 35.3 ± 7.6 ms, n = 12. 

Errors represent SEM. (i) 3-D reconstructions of two biocytin-filled tdT+ neurons (LS on the 

left, and NLS on the right) with cell bodies at the border between L1 and L2/3. Axons are 

red, dendrites and soma are blue. Scale bar, 50 µm. Insets: magnified views of bouton-like 

structures from original images. Morphological reconstruction of additional cells would be 

needed to assess if the ones presented here on the left and right are generally representative 

of the LS or NLS spiking cells, respectively.
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