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Abstract: Food standards and quality control are important means to ensure public health. In the last
decade, melamine has become a rather notorious example of food adulteration: Spiking products
with low-cost melamine in order to feign high amino acid content exploits the lack in specificity of the
established Kjeldahl method for determining organic nitrogen. This work discusses the responses of
a sensor based on quartz crystal microbalances (QCM) coated with molecularly imprinted polymers
(MIP) to detect melamine in real life matrices both in a selective and a sensitive manner. Experiments
in pure milk revealed no significant sensor responses. However, sensor response increased to a
frequency change of −30Hz after diluting the matrix ten times. Systematic evaluation of this effect by
experiments in melamine solutions containing bovine serum albumin (BSA) and casein revealed that
proteins noticeably influence sensor results. The signal of melamine in water (1600 mg/L) decreases to
half of its initial value, if either 1% BSA or casein are present. Higher protein concentrations decrease
sensor responses even further. This suggests significant interaction between the analyte and proteins
in general. Follow-up experiments revealed that centrifugation of tagged serum samples results in
a significant loss of sensor response, thereby further confirming the suspected interaction between
protein and melamine.

Keywords: melamine; protein; bovine serum albumin (BSA); molecularly imprinted polymers (MIP);
quartz crystal microbalances (QCM)

1. Introduction

Melamine is a heterocyclic aromatic compound, which sees widespread use in the production
of synthetic aminoplast resins and foams [1,2]. It has come under scrutiny after a series of scandals
concerning the misuse of melamine in pet food as well as dairy products intended for consumption
by infants [3,4]. The incentive of adding melamine to food products is the fact that it feigns higher
than actual protein amount and thus product quality: Most standards to determine protein content
of foodstuff make use of the Kjeldahl method [5], a quick, yet unspecific way of determining organic
nitrogen, and using this value to assess protein contents. Melamine is nephrotoxic and drastically
promotes the formation of kidney stones, especially in combination with cyanuric acid, its metabolite [6].
Together, they may lead to organ failure or, even worse, death [7]. The consequences of such food
scandals are dramatic: In the US it is speculated that the contamination of pet food may have directly
caused the death of several hundred animals with some sources even claiming figures in the low
thousands [8]. Even worse, in China, roughly 300,000 infants were affected by the consumption
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of contaminated milk products [9]. Approximately 52,000 children had to be hospitalized and six
eventually succumbed to organ failure [10]. According to the WHO, the incident was one of the largest
in recent times [11]. It is, therefore, of fundamental interest to develop a sensor for fast and reliable
detection of melamine in food products in order to guarantee and monitor their safety for consumption.

Current detection methods for melamine commonly rely on high performance liquid
chromatography (HPLC) [12] and gas chromatography (GC) [13], often combined with mass
spectrometry. However, there are only a few sensor systems available for melamine, which is a bit
surprising. Some examples are: Garber et al. [14] assessed commercial enzyme-linked immunosorbent
assays (ELISA) for detecting melamine in a highly sensitive manner. Lu et al. in 2017 compiled
different methods for detecting melamine in food samples [15]. Biomimetic sensor systems proposed
so far to detect melamine in milk and milk powders rely either on electrochemical approaches [16,17],
or fluorescence/luminescence detection [18–20]. Furthermore, Li et al. [21] came up with a continuous
method to use DNA loops for continuously monitoring melamine in flowing milk via electrochemical
techniques. However, most of the electrochemical methods proposed use rather complex electrode
systems; fluorescence techniques usually comprise of adding nanoparticle/nanocomposite solutions to
samples, which makes them discontinuous.

To address such limitations, the work herein proposes a system comprising quartz crystal
microbalances (QCMs) coated with molecularly imprinted polymers (MIP).

The QCM is a mass-sensitive transducer that exploits the piezoelectric effect found amongst
others in quartz [22]. Originally discovered by the Curie brothers, the piezoelectric effect describes the
formation of dipoles within piezoelectrically active materials upon exertion of mechanical stress [23,24].
Summarized over the entirety of the crystal, these dipoles make for a measurable voltage. The effect is
reversible. Hence, the inverse effect may also take place: Applying alternating current results in the
oscillation of a piezoelectric substrate. Given a certain geometry, substrate thickness, and crystal cut,
a quartz substrate will resonate at a given frequency. In the case of mass deposition on the substrate
surface, its effective thickness increases. This, in turn, results in a decrease of its resonance frequency.
As frequencies can be measured with great accuracy, quartz microbalances with f0 = 10 MHz, as used
as part of the research presented, are typically capable of sensing mass differences in the low pg
region [25]. This makes them powerful tools in the field of rapid analysis.

Molecular imprinting is a concept aimed at creating fully synthetic, high-affinity receptors
featuring spatially organized functional groups [26–31]. By polymerizing monomers in the presence of
a template, cavities of a specific shape & form are generated which act as selective binding sites for the
template. The working principle of molecular imprinting is thus similar to the key & lock principle
found in enzyme–substrate interactions: Both lead to combined chemical and steric selectivity [32].
Molecularly imprinted materials see widespread use in preparative chemistry as well as in the
role of robust, cost-efficient stand-ins for enzymes while gaining more and more importance in the
development of cheap, dependable, and sensitive sensors [33,34].

2. Experimental Section

2.1. Materials and Samples

Sodium peroxodisulfate (NaPS), N,N′-(1,2-Dihydroxyethylene)bisacrylamide (DHEBA),
and melamine were bought from Alfa Aesar, Methacrylic acid (MAA), BSA and casein from VWR
and Merck, respectively. All chemicals were at least of analytical grade, deionized water was
used throughout experiments. Milk (0.5 % fat) and natural whey (0.1 % fat) were purchased at a
local supermarket.

2.2. Preparation of the MIP/NIP—QCM Sensors

For preparing MIP, 1.5 mg melamine–the template, 8 µL MAA, as well as 17 mg DHEBA were
dissolved in 400 µL water by heating to 60 ◦C and sonicating the mixture. We chose MAA as a
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functional monomer because of its acidic functional group, which can interact with melamine through
hydrogen bonding. In the next step, we added 5 mg NaPS, a water-soluble radical initiator, followed by
keeping the mixture at a temperature of T = 60 ◦C in order to start polymerization. After approximately
15 min, the solution became slightly turbid, which indicated that it had reached the gel point. At that
point, the oligomer is ready to be spin-coated onto a quartz crystal microbalance. NIP synthesis is
the same as for the MIP, but without adding melamine. QCM substrates were generally coated at
2000 rpm using a commercial spin coater (“Spincoat G3P-8” by Specialty Coating Systems) and left
to dry and harden at room temperature overnight. To remove the template, we flushed the sensors
with distilled water for one hour. This is based on fluorescence experiments (excitation wavelength
λex = 260 nm, emission wavelength λem = 365 m, measured on PerkinElmer LS50B). After 30 min of
washing, we could no longer detect melamine in the respective washing solutions.

2.3. Experimental Setup

The measurement setup used in the experiments consisted of the following elements:
A custom-made oscillating circuit connected to a power supply, a frequency counter, and a measuring
cell, as well as a personal computer with custom-made software for data readout and recording.
We delivered all samples with a peristaltic pump (Ismatec MCP Process IP-65) at 1 mL/min. Each
measurement comprised of first mounting the corresponding sensor in the measuring cell (see Figure 1
for the setup). Then, we equilibrated it in the respective matrix solutions (water, whey, or (skimmed)
milk), either in stopped flow (milk and diluted milk), or at 1 mL/min (water and whey) until reaching
stable baseline signal, as indicated by constant frequency readings. After reaching a stable frequency,
we replaced the background solution by the respective sample. Depending on the sample matrix,
experiments took place in stopped flow or at flow conditions as indicated before.
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Figure 1. Left: Quartz crystal microbalances (QCM) positioned on the copper electrode wires.
Right: Placement of the lid with inlet and outlet on top of the sensor.

QCM sensors used herein rely on 10 MHz AT-cut quartz crystals (13.8 mm diameter, 168 µm
thickness, purchased from Great Microtama Industries, Surabaya, Indonesia). We screen-printed the
respective electrode structures (sample side: Two electrodes, 5 mm diameter, connected to each other
and to the electrical ground, opposite side: Two electrodes, 4 mm, connected to the phase of the
respective oscillator circuit) using brilliant gold paste (Heraeus GGP-2093, 12% gold). One electrode
of each pair served as the measuring electrode comprising the MIP, while the other held the NIP.
This reference electrode helped us compensate for unspecific effects of temperature, density, and ionic
strength when measuring in the liquid phase.

3. Results and Discussion

Several melamine MIPs have already been described in the literature. Hence, we decided to use
an MIP which had previously been developed for use in chromatographic separation but changed
morphology from bulk particles to thin film [35]. Before applying a sensor to real-life matrices, one,
of course, needs to characterize it to make sure that it indeed interacts with the analyte and yields
useful signals. Figure 2 shows typical characterization measurements of melamine MIP-QCM sensor,
namely both a sensor response pattern (A), and the corresponding sensor characteristic (B).
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Figure 2. Sensor characterization of a melamine-imprinted sensor. (A) Sensor response pattern of
dual-electrode QCM coated with MIP and NIP, respectively, when subjected to a number of different
analyte concentrations ranging from 2–3200 mg/mL; (B) Corresponding sensor characteristic.

As can be seen in part Figure 2A, the sensors in question exhibit reversible, concentration-dependent
effects for melamine concentrations between 1 mg/mL up to 3200 mg/mL melamine, the latter
corresponding to a saturated aqueous solution. They also show favorable MIP/NIP ratios with the MIP
layers generally displaying signals higher than the respective NIP: Corresponding imprinting factors
are roughly five. The difference signal between MIP and NIP yields monotonous sensor characteristic
in a melamine concentration range spanning from 1 to 3200 mg/L, i.e., until the end of the solubility
range of melamine in water. The respective sensor signals—i.e., the differences between signals on
MIP and NIP channel—went from −15 to −1250 Hz. Figure 2B displays this relation between the
concentration of melamine and its related sensor effect. Considering both the signal drift of the baseline
(roughly 10 Hz during the first five minutes before injecting the lowest sample concentration) and noise
(±1 Hz), one can calculate the smallest discernible sensor effect of ∆f = −14 Hz. This corresponds to the
frequency shift at 1 mG/L melamine (∆f = −15 Hz) and leads to a limit of detection of LoD = 8 µM,
which is a very appreciable value for a QCM sensor. Since MIP and NIP are chemically identical, the
frequency difference can be attributed entirely to successful imprinting of melamine.

Keeping in mind the application, selectivity assessment focused on two compounds, namely
glucose and BSA, the latter seeing widespread use as a model protein in investigations regarding
general protein–polymer interaction [36]. Glucose shows no sensor signal at all, while BSA leads to
frequency shifts that correspond to one-third of those for melamine. This clearly demonstrates that the
sensor is useful to detect melamine in real matrices.

Figure 3 shows the QCM sensor responses obtained when exposing the sensor first to skimmed
milk (0.5% fat) followed by the same milk spiked with 3200 mg/L melamine. Two aspects are
immediately noticed: First, one can see extreme effects and noise during pumping the milk sample
through the system. The exact reason for this is unknown, but has to do with the fact that milk is an
emulsion. Anyway, this problem does no longer occur after stopping the flow. Second, in contrast to
aqueous solutions, there is no sensor response for milk spiked with 3200 mg/L melamine. Only after
diluting melamine-spiked milk with water by a factor of 10 was it possible to obtain a useful signal of
around −20 Hz. This finding suggests that binding of the analyte to certain components of the sample
matrix may significantly reduce the sensor signal.
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Figure 3. QCM measurement of melamine saturated milk (0.5% fat). Because of unknown matrix
effects, there is no significant signal of melamine visible (green boxes). The enormous noise signals are
due to the pumping of milk.

To prove this claim further, we carried out measurements in whey. Compared to milk (0.5% fat,
3.5% protein, and 4.1% sugar), it contains significantly less fat and protein (0.1% fat and 0.6% protein).
Figure 4 shows the corresponding sensor responses:
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Figure 4. Sensor response for melamine measured in whey: ~−330 Hz at 3200 mg/L, ~−35 Hz at
320 mg/L.

Evidently, the sensor responds favorably towards melamine with sensor effects of roughly−330 Hz
and −35 Hz, respectively, for the two concentrations chosen (3200 mg/L and 320 mg/L melamine in
whey). When comparing different media, as showcased in Table 1, the sensor response increases with
decreasing amounts of fat and protein, indicating that melamine is either more soluble in fat or is,
in fact, binding to milk proteins.
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Table 1. Sensor responses in different sample matrices at a constant melamine concentration of
3200 mg/L.

Media % Fat % Protein % Sugar Signal *[Hz]

Water 0 0 0 1150
Whey 1:10 0.01 0.06 0.41 950
Milk 1:10 0.05 0.35 0.49 30
Whey ** 0.1 0.6 4.1 370
Milk ** 0.5 3.5 4.9 0

* 3200 mg melamine, ** values given in (w/w %).

Comparing a 1:10 dilution of milk and undiluted whey seems to contradict this theory at first
glance since milk samples result in lower melamine sensor response compared to whey. However,
one needs to consider that diluted milk in total contains lower overall amounts of fat and protein.
To prove our claim of melamine–protein interaction, we tested the sensor response in whey spiked
with 1600 mg/L melamine and added different concentrations of casein, a family of phosphoproteins
typically found in mammalian milk. As Figure 5 shows, the sensor response decreases significantly
when adding casein to the sample matrix.
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Figure 5. Sensor responses at a constant concentration of 1600 mg/L melamine, but at varying
casein content.

This demonstrates that the sensor response strongly depends on the protein concentration in
solution: A higher amount of protein results in lower overall sensor response and vice versa. One can
explain this by melamine binding to several proteins resulting in the formation of melamine–protein
complexes. The sensor cannot detect these due to the immense size difference between free melamine
and the complex. The latter is also highly soluble in fat, effectively making it inaccessible to the
sensor. Literature commonly refers to centrifugation as a means of preparing a sample and overcoming
the issues associated with the complicated milk matrix [26]. However, if melamine readily binds to
protein, this would result in discarding a significant portion of the analyte with the protein precipitate,
thereby decreasing sensor response, which may, in turn, result in incorrectly calculating the melamine
concentration and limit of detection. To prove that melamine, in fact, binds to protein, we prepared two
different whey samples: One aliquot was spiked with melamine (3200 mg/L) before being subjected to
centrifugation. The other was spiked with the same concentration of melamine just after centrifugation.
Then, we exposed MIP-coated QCM to both solutions. Figure 6 shows the outcome of one such
QCM measurement.
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Figure 6. Centrifugation as a means of sample preparation: Sensor effects of serum aliquots tagged
with melamine before and after centrifugation.

The sensor response in the case of the serum spiked before centrifugation is significantly smaller
than for the serum spiked after centrifugation: The frequency shifts differ by a factor of more than
four. This leads to the conclusion that melamine binds to the protein and is removed from the sample
solution in the course of centrifugation. Therefore, one has to be wary of using centrifugation as a
method of sample preparation when measuring in real milk. Melamine, however, does not only bind
to casein: QCM experiments (see Figure 7) also revealed substantial interaction with BSA, a standard
protein used for testing.
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Figure 7. QCM measurement showing the reduced sensor effect upon injection of melamine (1600 mg/L)
when measuring in a matrix spiked with BSA.

Comparing the sensor response for melamine in the presence of BSA to the one measured in
pure water, it immediately becomes apparent that the latter is much higher (−388 Hz vs. −1345 Hz).
This clearly shows that melamine binds to different proteins. Table 2 summarizes the outcomes of
protein–melamine interaction studies and shows that recorded sensor effects strongly depend on
overall protein concentrations, for both BSA and casein. This is problematic for a range of sample
preparation methods, such as filtration or size exclusion chromatography. In general, one, hence,
has to keep in mind that melamine may be lost during sample preparation, thereby reducing the
corresponding sensor responses and leading to possibly false negative results.
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Table 2. Sensor response dependency on protein concentration at a constant melamine concentration
level of 1600 mg/L.

Protein Concentration [%] BSA/Melamine
[−Hz]

Casein/Melamine
[−Hz]

0.0 970 1345
0.5 880 754
1 640 555

1.75 430 454
2.5 388 407
3.5 239 348

The lower LoD of the MIP-QCM sensor systems proposed herein is two to three orders of
magnitude higher, than those of previously published electrochemical [16,17] and optical [18–20]
systems (low µM range vs. nM/tens of nM). On the other hand, the upper limit of detection is at the
saturation concentration of melamine, i.e., 2.5 mM solution in water, which is much higher than for
previously reported sensors. This makes our system interesting for real-life applications: In the case of
intentional adulteration of dairy, one would not expect very low concentrations, because those would
not be useful to simulate higher protein content during Kjeldahl test. In that sense, a dynamic range
covering the entire concentration window of melamine in water is more interesting than detecting
extremely low concentrations. Second, the MIP-QCM sensor proposed herein is completely label-free
and does not involve complex functionalizing of electrode surfaces, which makes it interesting for
practical applications.

4. Conclusions

Overall, QCM-MIP sensors proved useful for detecting melamine in water in a concentration
range spanning from as little as 1 mg/L up to a saturated solution (3200 mg/L), which in principle covers
the detection range for revealing food adulteration. However, utilizing those sensors in pure milk,
i.e., a realistic real-life matrix, led to no responses. Only results from diluted milk and whey lead to
meaningful sensor signals. Systematic evaluation with two model proteins—BSA and casein—revealed
that melamine readily binds to milk proteins. For food analysis and sensing, these results lead to
two main conclusions: First, one has to be wary, especially when detecting low concentrations of
melamine in food samples, because they may be the result of melamine absorbed to protein, which is,
hence, not accessible to rapid analysis. Second, the sensor is nonetheless useful for direct screening of
liquid samples: If indeed melamine had been added to feign higher protein content, it would lead to
discernible sensor signals: The less protein is present, the higher the signal. Of course, the MIP-QCM
sensor does not allow for quantifying melamine in such cases. It still is a useful tool for first screening
of samples directly in situ: Natural milk and dairy products contain no melamine at all.
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