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The identification of gene fusions from RNA sequencing data is a routine task in cancer research and precision oncology.

However, despite the availability of many computational tools, fusion detection remains challenging. Existing methods suf-

fer from poor prediction accuracy and are computationally demanding. We developed Arriba, a novel fusion detection

algorithmwith high sensitivity and short runtime.When applied to a large collection of published pancreatic cancer samples

(n=803), Arriba identified a variety of driver fusions, many of which affected druggable proteins, including ALK, BRAF,

FGFR2, NRG1, NTRK1, NTRK3, RET, and ROS1. The fusions were significantly associated with KRAS wild-type tumors and

involved proteins stimulating the MAPK signaling pathway, suggesting that they substitute for activating mutations in KRAS.

In addition, we confirmed the transforming potential of two novel fusions, RRBP1-RAF1 and RASGRP1-ATP1A1, in cellular assays.

These results show Arriba’s utility in both basic cancer research and clinical translation.

[Supplemental material is available for this article.]

Gene fusions play amajor role as oncogenic drivers inmany cancer
types. This insight has immediate consequences for the treatment
of patients, becausemany gene fusions can be addressed therapeu-
tically with targeted drugs (Schram et al. 2017). The most promi-
nent examples are fusions between BCR and ABL1 in chronic
myeloid leukemia and acute lymphoblastic leukemia, which can
be treated effectively using imatinib and related drugs (An et al.
2010). More recently, the U.S. Food and Drug Administration
(FDA) granted accelerated approval for the treatment of solid tu-
mors harboring NTRK fusions with larotrectinib after showing an-
titumor activity in three multicenter trials (Drilon et al. 2018). For
this reason, a routine task in genomics-guided precision oncology
is to search for evidence of gene fusions in RNA sequencing (RNA-
seq) data.

Although a variety of computational tools for the detection of
gene fusions have been developed over the years, there is still no
gold standard. The reliable prediction of gene fusions from short-
read RNA-seq has proven to be difficult owing to a myriad of arti-
facts being introduced during library preparation and sequence
alignment. To keep the number of false-positive predictions low,
the algorithms implement stringent filters, with the undesired
side effect that occasionally driver fusions are discarded and events

with subtle evidence in RNA-seq data are lost entirely. The current
practice is to apply at least two tools and use the union or intersec-
tion of their predictions. This approach is computationally expen-
sive, because each tool on its own typically takes many hours or
even days to run. With high-throughput sequencing (HTS) tech-
nology becomingmore common in clinical practice to identify tar-
getable alterations, the demand for algorithms that are both
accurate and efficient grows. Inaccurate predictions complicate
the interpretation of HTS-based results, and the time-critical oper-
ation of a precision oncology trial does not tolerate slow computa-
tional pipelines, because the overall workflow allocates only a few
days for bioinformatics processing (Roychowdhury et al. 2011;
Worst et al. 2016).

We developed Arriba, a fusion detection algorithm specifi-
cally designed to meet the demanding requirements of HTS-assis-
ted precision oncology. Owing to a highly optimized workflow, it
can process contemporary RNA-seq samples in less than an hour.
Sophisticated filters detect fusions even under unfavorable condi-
tions, such as low sample purity. In addition, Arriba is capable of
detecting aberrant transcripts that are not called by most fusion
detectionmethods butmay be clinically relevant. This includes tu-
mor suppressor genes that are occasionally inactivated by rear-
rangements within the gene or by translocations to introns or
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intergenic regions. Even though the same technical approach can
be applied to detect such transcripts, most available fusion detec-
tion tools do not report them. As a consequence, clinically relevant
aberrations may be overlooked. Arriba improves over existing
methods in that it can find intragenic inversions/duplications
and translocations to introns/intergenic regions.

Based on novel gene fusions involvingNRG1 that we recently
discovered in a series of patients with KRAS wild-type pancreatic
tumors (Heining et al. 2018) in the context of NCT/DKTK
MASTER (Horak et al. 2017), a HTS-guided precision oncology pro-
gram,we applied Arriba to further explore the relevance of gene fu-
sions in pancreatic cancer. In particular, we investigated the
prevalence of druggable fusions, because there are few targeted
treatment options for pancreatic cancer patients, and despite
recent improvements in conventional and targeted therapies
(Conroy et al. 2018; Golan et al. 2019), the 5-yr overall survival
rate is <10%.

Results

We compared the performance of Arriba v1.0.0 against six com-
monly used fusion detection algorithms (defuse v0.8.1 [McPher-
son et al. 2011], FusionCatcher v1.00 [Nicorici et al. 2014],
InFusion v0.8 [Okonechnikov et al. 2016], PRADA v1.2 [Torres-
García et al. 2014], SOAPfuse v1.27 [Jia et al. 2013], STAR-Fusion
v1.4.0 [Haas et al. 2019]) with respect to speed and accuracy.

Accuracy benchmarks

To show Arriba’s robust performance across diverse types of input
data, we assessed its accuracy on four types of peer-reviewed
benchmark data sets (Supplemental Tables S1, S2):

We used in silico–generated fusion transcripts from Jia et al.
(2013), who simulated 150 fusion transcripts and merged them
into an RNA-seq sample frombenign tissue (H1human embryonic
stem cells), serving as background expression. To measure the sen-
sitivity of amethod as a function of the expression level of a fusion
transcript, nine different expression levels were simulated, ranging
from five- to 200-fold.

Next, we took RNA-seq samples from Tembe et al. (2014),
who used a semisynthetic approach to benchmark fusion detec-
tion algorithms. The investigators spiked in synthetic RNA mole-
cules into RNA libraries of the melanoma cell line COLO-829.
The synthetic RNA molecules mimic the transcript sequences of
nine oncogenic fusions found in a variety of cancer types. They
were spiked into 20 replicates of RNA libraries at 10 different con-
centrations ranging from 10−8.57 pMol to 10−3.47 pMol. In addi-
tion, one endogenous fusion of the COLO-829 cell line was
confirmed via orthogonal validation.

To measure the performance on real data, we ran the tools on
eight samples from four cell lines (Edgren et al. 2011; The ENCODE
Project Consortium 2012; Lin et al. 2015), including the breast
cancer cell lineMCF-7, a well-studied cancer cell line with a highly
rearranged genome and many gene fusions validated via orthogo-
nal methods. We used the list of validated fusions compiled
by Davidson et al. (2015), which comprises 69 distinct pairs of fu-
sion genes. Because this list is biased toward fusions that were de-
tected by previous methods and potentially lacks events that can
be detected by newer, more sensitive methods, we also considered
a prediction to be true if its breakpoints were close to the break-
points of a structural variant identified in a whole-genome se-
quencing (WGS) sample of the MCF-7 cell line (Li et al. 2016).

Furthermore, we subjected the top predictions of each tool to ex-
perimental validation if they were confirmed neither by previous
validation tests nor by structural variants (Supplemental Table S3).

Lastly, we applied the tools to patient data from the ICGC
early-onset prostate cancer cohort (ICGC-EOPC) and the TCGA
diffuse large B-cell lymphoma cohort (TCGA-DLBC). Early-onset
prostate cancer is characterized by a high prevalence of
TMPRSS2-ERG fusions (Gerhauser et al. 2018). Fusions involving
the immunoglobulin (IG) loci and one of BCL2, BCL6, or MYC
are hallmark aberrations of diffuse large B-cell lymphoma (Schmitz
et al. 2018) and are hard to detect owing to the poormappability of
the IG loci. Wemeasured the recall rate of these diagnostically rel-
evant fusions to get an impression of how well each fusion detec-
tion tool would be suited for a clinically oriented setting.

Figure 1A uses receiver operating characteristic (ROC)–like
curves to visualize the enrichment of validated predictions versus
nonvalidated predictions as a function of the rank of a prediction
in the output file of a tool. Arriba’s superior performance becomes
particularly evident when fusion transcripts are supported by few
reads. The figure shows the accuracy of the evaluated methods on
the samples with the lowest concentrations of fusion transcripts
(fivefold for simulated fusions, 10−8.57 pMol for spike-in fusions).
At higher concentrations, all methods achieve similar accuracy
(Supplemental Figs. S1, S2; Supplemental Table S4). For a fair com-
parison, Figure 1A only considers gene-to-gene fusions, because
not all tools are able to identify fusions with intergenic break-
points. Supplemental Figure S3 considers only fusions with inter-
genic breakpoints and compares the performance of those
methods that are capable of detecting such rearrangements. In
both cases, Arriba showed favorable accuracy:

In all four types of benchmark data sets, Arriba showed the
highest sensitivity: It rediscovered 88 of the 150 simulated fusions
at the fivefold expression level, all of the synthetic fusions, 78 fu-
sions in the MCF-7 cell line that had been validated or were con-
firmed by a structural variant, 55 TMPRSS2-ERG fusions in the
ICGC-EOPC cohort (Fig. 2A; Supplemental Table S2A), and eight
IG-BCL2/BCL6/MYC translocations in the TGCA-DLBC cohort
(Fig. 2B; Supplemental Table S2B). This corresponds to a surplus
in sensitivity of 57%, 25%, 13%, 6%, and 60%, respectively,
compared with the next best method (SOAPfuse, FusionCatcher/
SOAPfuse, deFuse, FusionCatcher, and InFusion, respectively).
The most frequent reason that Arriba failed to report an expected
event was an insufficient number of supporting reads; that is,
STAR aligned between zero and two chimeric reads, which is be-
low/at the detection limit of Arriba. Only three of the simulated fu-
sions were erroneously classified as alignment artifacts.

If desired, Arriba and FusionCatcher can be run with a list of
expected/known fusions. The tools then apply sensitive parame-
ters for the listed fusion candidates, which is usefulwhenhigh sen-
sitivity is desirable, such as in a clinical setting. We processed the
ICGC-EOPC and TCGA-DLBC cohorts anew with Arriba and
FusionCatcher, this time supported by a list of known fusions.
Arriba did not detect any additional TMPRSS2-ERG fusions in the
ICGC-EOPC cohort; FusionCatcher detected two more ones but
even then, in total, still fewer than Arriba. In the TCGA-DLBC co-
hort, Arriba identified one additional IG-BCL2 fusion, thus ex-
panding its sensitivity advantage over the second-best method to
80%, whereas FusionCatcher’s sensitivity remained unchanged.
Another common approach to improve sensitivity in a clinically
oriented workflow is to runmultiple complementary fusion detec-
tion tools. Even when all alternative methods were combined, the
detection rate improved only marginally over that of standalone
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Arriba: Apart from a single TMPRSS2-ERG fusion in patient
ICGC_PCA032, Arriba subsumed all patients reported as fusion-
positive by alternative methods (Supplemental Table S2).

In terms of specificity, Arriba can compete with state-of-the-
art methods. Of the 98 events predicted from the data set simulat-
ing fusions at fivefold expression, only 10 were false positives,
which is the smallest fraction of incorrect predictions among all
tested methods. At higher simulated expression levels, Arriba
achieves average specificity. The number of false-positive predic-
tions from the COLO-829 and MCF-7 samples cannot be deter-
mined precisely, because not all endogenous fusions are known.
However, qualitative conclusions on the specificity of the evaluat-
ed tools can be derived from the rankings of their predictions. An
enrichment of validated events among the top-ranking predic-
tions indicates that a tool is of high practical utility, because vali-
dating predictions in this order results in a high fraction of
successful validations per spent budget. Even at the lowest concen-
tration of spike-in fusion transcripts, Arriba’s top-ranking predic-
tions were near-optimally enriched for true positives. Other tools
achieved the same level of enrichment only at higher concentra-
tions. The MCF-7 data set contains a mixture of high- and low-ex-
pressed fusions. All methods showed strong enrichment among
the top-ranking predictions, which mostly consist of highly ex-

pressed fusions supported by many chimeric reads in the RNA-
seq data. The specificities of the methods diverged for borderline
detectable events, which are reported toward the end of the output
files. Here, Arriba outperformed all other methods.

Arriba assigns one of three confidence classes to its predic-
tions: low,medium, andhigh.Users can choose their preferred bal-
ance between sensitivity and specificity by selecting for events
above a certain confidence class. Fifty-six of 85 (66%) of the
high-confidence predictions, 13 of 25 (52%) of themedium-confi-
dence predictions, and nine of 34 (26%) of the low-confidence pre-
dictions from the MCF-7 sample were correct. In view of the high
false-positive rate of low-confidence predictions, we recommend
that users treat these predictions with skepticism, unless addition-
al evidence corroborates them, such as a correlating structural var-
iant identified from a matched WGS sample. When searching for
recurrently fused genes in a cohort, it is advisable to only consider
medium- and high-confidence predictions; otherwise, the results
will be enriched with false positives. But in situations in which
sensitivity is crucial, low-confidence predictions can be of high
value. For example, in HTS-based precision oncology, an increased
number of false-positive predictions is acceptable as a trade-off for
higher sensitivity if potentially relevant predictions are validated
via orthogonal methods (Lier et al. 2018).

A

B

C

×

Figure 1. Benchmark of Arriba versus alternative methods. (A) Accuracy benchmarks. The figure shows samples from three types of benchmark data set:
simulated fusions, spike-ins of synthetic fusions, and fusions described in the MCF-7 breast cancer cell line. The sensitivity/specificity trade-off is depicted
using receiver operating characteristic (ROC)–like curves. The vertical axis indicates the number of true positives; the horizontal axis indicates the number of
false positives (simulated data set) or nonvalidated predictions (spike-in and MCF-7 data sets). (B) Runtimes. (C ) Peak memory consumption in gigabytes
(GB). The aligner (STAR) and its index accounted for 31 GB of the memory footprint of Arriba’s workflow. Approximately 7 GB were consumed by Arriba
(Arr.) itself.
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Runtimes and memory consumption

We measured the runtimes of all tools on an AMD Opteron 6376
CPU using eight cores. The test samples comprised between 13
and 360million reads (Supplemental Table S1). Arribawas the fast-
est in terms of both elapsed time (wall clock time) and CPU time,
excelling the second-fastest tool, STAR-Fusion, by a factor of 5.6 on
average (Fig. 1B; Supplemental Fig. S4). Despite having a workflow
architecture similar to STAR-Fusion, Arriba’s turn-around timewas
noticeably shorter, because STAR-Fusion takes longer for filtering
of fusion candidates and aligns in two passes, whereas Arriba
uses only a single pass. Arriba’s workflow spent 91%of the runtime
(95% of the CPU time) in the alignment step using STAR (Dobin
et al. 2013). Because Arriba can extract candidate reads while the
alignment is running, it extends the wall clock time only margin-
ally: The post-alignment runtime was just 6.3 min in the worst
case.

On average, theworkflow based onArriba consumed 38GB of
memory, which is 5.8 times more than themostmemory-efficient
tool, SOAPfuse (Fig. 1C; Supplemental Fig. S5). Approximately 31
GB of the memory footprint can be attributed to the suffix array
index of STAR. Arriba itself consumed between 6.5 and 6.8 GB.
By running Arriba sequentially rather than in parallel to STAR,
the peakmemory usage can be reduced to the size of STAR’s index,
at the expense of slightly longer runtimes.

Using Arriba in practice

To accelerate routine tasks in gene fusion-related research, Arriba
offers a number of useful features that go beyond mere prediction
of fusion breakpoints. It provides the transcript sequence flanking
the junction site, which helps with the design of primers for vali-
dation via Sanger sequencing. It also computes the peptide se-
quence resulting from the chimeric transcript, which can serve
as a basis for the prediction of fusion-derived neoepitopes.

Furthermore, Arriba provides visualization tools to facilitate
the interpretation of gene fusions. The R script draw_fusions.R
yields publication-quality figures of Arriba’s predictions. The fig-
ures depict the exons retained in the fusion gene as well as a cov-
erage profile to reflect changes in expression of the exons before
and after the breakpoints. Furthermore, the figures show the
Pfam (El-Gebali et al. 2019) protein domains that are retained in
the fusion. Because STAR stores chimeric alignments in SAM for-
mat, the alignments can be loaded into a genome browser, such
as the Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al.

2013), for closer inspection. Exploring the vicinity of the break-
points interactively in a graphical viewer helps identify false-posi-
tive predictions arising from alignment artifacts and can give
further insight into the architecture of complex rearrangements.
Arriba provides a feature track with protein domains, which can
be loaded into IGV alongside with the alignments to assess the
functional implications of a fusion.

In addition to RNA-seq data, clinical research projects occa-
sionally generateWGSdata for each patient. Arriba’s prediction ac-
curacy can further be improved by supplying a list of structural
variants obtained from WGS, which are incorporated into the fil-
tering of equivocal predictions.

Identification of oncogenic gene fusions in pancreatic cancer

The discovery of recurrent fusions involving NRG1 in KRAS wild-
type pancreatic tumors (Heining et al. 2018), as well as case reports
of fusions involving BRAF, PRKACA, NTRK1/3, and RET (The
Cancer Genome Atlas Research Network 2017; Drilon et al.
2018; Gao et al. 2018; Heining et al. 2018), prompted us to system-
atically screen for fusion genes in this cancer entity.

We collected RNA-seq samples from a total of 803 donors
(Supplemental Table S5) across 18 published studies on pancreatic
cancer (Barretina et al. 2012; Carugo et al. 2016; Diaferia et al.
2016; Kirby et al. 2016; Witkiewicz et al. 2016; Bhattacharyya et
al. 2017; Horak et al. 2017; Nicolle et al. 2017; The CancerGenome
Atlas Research Network 2017; Aung et al. 2018; Lomberk et al.
2018; Bryant et al. 2019; Lin et al. 2019; Maurer et al. 2019). For
327 samples, matchedWGS data were available. When Arriba pre-
dicted a gene fusion from the transcriptomic data, we checked for a
correlating structural variant in the WGS data as confirmation for
the validity of the prediction.

We detected 30 potential driver fusions in the RNA-seq data
(Fig. 3; Supplemental Fig. S6)—all of which were confirmed by
structural variants in WGS data when available (Supplemental
Fig. S7)—involving the following oncogenes: BRAF (4×), NRG1
(4×), NTRK3 (4×), PRKACA (4×), RAF1 (4×), FGFR2 (3×), ALK (2×),
RET (2×), NTRK1 (1×), RASGRP1 (1×), and ROS1 (1×). Some of the
affected proteins are direct interaction partners of KRAS (RASGRP1,
BRAF, RAF1), suggesting that the corresponding fusion proteins
might activate the same pathway as oncogenic KRAS. Indeed, a
statistical analysis interrogating if genes of any of the pathways an-
notated in the KEGG database (Kanehisa et al. 2017) were overrep-
resented in the set of 11 oncogenes listed above confirmed a

A B

Figure 2. Recall of hallmark gene fusions in prostate cancer and diffuse large B-cell lymphoma. To measure the performance of Arriba and alternative
methods on real patient data, we counted the number of hallmark gene fusions detected by eachmethod in two cohorts. Fractionsmarkedwith an asterisk
were only detectedwhen a list of known/expected fusions was provided. (A) TMPRSS2-ERG fusions in the ICGC-EOPC cohort. (B) IG-BCL2/BCL6/MYC fusions
in the TCGA-DLBC cohort.
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significant association with the mitogen-activated protein kinase
(MAPK) signaling pathway (KEGG ID hsa04010, overrepresenta-
tion enrichment analysis byWebGestalt [Wang et al. 2017], P-val-
ue = 7.8 ×10−7, Benjamini–Hochberg false-discovery rate = 8.4 ×
10−5). Six of the oncogenes are contained in this pathway; the oth-
ers activate the MAPK signaling via connected pathways (KEGG
IDs hsa04012, hsa04722, hsa05200, hsa05223).

In 105 samples (13%) thatwere included into our analysis, we
did not detect altered KRAS. The oncogenic fusions were signifi-
cantly enriched in these samples (two-sided Fisher’s exact test, P-
value =9.9 ×10−21), with only four fusions (2× FGFR2-COL14A1,
1×DNAJB1-PRKACA, 1× KANK1-NTRK3) being found in KRASmu-
tant tumors (Supplemental Table S5). In 79 tumors, we detected
neither a KRASmutation nor a driving fusion. To rule out the pos-
sibility that we overlooked fusions owing to short-comings of
Arriba, we also ran the other fusion detection tools on the cohort,
but none of them reported driving fusions beyond Arriba’s set. In
fact, Arriba showed the highest sensitivity, detecting between
three and 11 more driving fusions than the other methods, thus
confirming the results of our benchmarks.

Some of the identified pancreatic gene fusions have been re-
ported in the context of other cancer types: One case carried a
DNAJB1-PRKACA fusion, which has been described in fibrolamel-
lar hepatocellular carcinoma (Honeyman et al. 2014). Three cases
harbored fusions between EML4 and NTRK3, first observed in in-
fantile fibrosarcoma (Tannenbaum-Dvir et al. 2015). Three cases
were characterized by NCOA4-RET, CCDC6-RET, and SND1-BRAF
fusions, which aremore commonly seen in papillary thyroid carci-
noma (Gao et al. 2018). In a pancreatic cancer cell line, we found a
fusion between EML4 andALK, as known fromnon-small-cell lung
cancer (Gao et al. 2018). TRIM24-BRAF and CUX1-BRAF fusions
have previously been reported in melanoma (Ross et al. 2016). Fu-
sions between KANK1 and NTRK3 have been observed in BRAF

wild-type renal metanephric adenoma (Catic et al. 2017). The oth-
er fusions had not been described before but resembled well-
known oncogenic fusions with regard to their structure (Supple-
mental Fig. S6): The oncogene constituted the 3′ end of the fusion
and comprised the same exons as seen in established oncogenic fu-
sions, but the 5′ gene of the fusion had not been observed as a re-
current partner. For example, we identified a fusion with NTRK1,
which retained the kinase domain of NTRK1, but instead of the
more common fusion partner TPM3 (Drilon et al. 2018), the
gene CEL served as 5′ fusion partner. Two of the rearrangements
affecting RAF1 were structurally similar to RAF1 fusions known
from cutaneous melanoma (Gao et al. 2018). And the fusions in-
volving ALK and ROS1 preserved the tyrosine kinase domains of
these genes as seen in lung adenocarcinoma (Gao et al. 2018).

Functional validation of two novel fusion genes

Finally, we sought to experimentally validate predicted gene
fusions as oncogenic drivers experimentally. We selected
RASGRP1-ATP1A1 and RRBP1-RAF1 (Fig. 4A,B), because RASGRP1
has not been implicated in oncogenic fusions before, and RRBP1
is a novel partner of RAF1 and was fused to near-full-length RAF1
instead of exon 8, as is more common (Gao et al. 2018).

The fusions were introduced by lentiviral transduction into
H6c7 cells, an immortalized human pancreatic duct epithelial
cell line, and into TP53-deficient MCF10A cells, an EGF-depen-
dent, immortalized humanmammary epithelial cell line frequent-
ly used to determine the transforming potential of oncogenes
(Stolze et al. 2015; Ng et al. 2018). Both fusions significantly en-
hanced EGF-independent colony formation relative to empty vec-
tor control (Fig. 4C; Supplemental Figs. S8, S9). Furthermore, the
fusion proteins increased the phosphorylation of MAP2K1/2
(MEK1/2) and MAPK1/3 (ERK2/1) upon EGF withdrawal,

Figure 3. Gene fusions in pancreatic cancer. Overview of proteins in the MAPK signaling pathway found to be fused in pancreatic tumors. Colored pro-
teins were fused to one of the genes listed in the callouts. Proteins shown in gray were not found to be fused. The frequencies of recurrent fusion partners are
indicated in parentheses. The detailed structure of all fusions is depicted in Supplemental Figure S6.
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Figure 4. Structural and functional characteristics of RRBP1-RAF1 and RASGRP1-ATP1A1. (A) Structure of the fusion transcripts. (B) Protein domains re-
tained in the fusion proteins and topology. Near full-length RAF1 was found to be fused to the transmembrane protein RRBP1, presumably tethering
RAF1 to the endoplasmatic reticulum with its kinase domain facing the cytoplasmic space. The oncogene RASGRP1 was predicted to be fused to
ATP1A1, a protein embedded in the plasma membrane. Although oncogenes are more often found to constitute the C terminus of a fusion protein,
RASGRP1 appeared to be fused to the N terminus of ATP1A1, thereby replacing several C-terminal domains of RASGRP1, which normally regulate recruit-
ment to the plasmamembrane, where RASGRP1 activates its target, KRAS (Beaulieu et al. 2007). Presumably, replacement of these regulatory domains by a
membrane-bound protein increased the activity of RASGRP1 by means of warranting proximity to KRAS. (C) MCF10A and H6c7 cells were stably trans-
duced with one of the fusion constructs or empty vector. MCF10A cells were cultured for 8 d without EGF, H6c7 cells were cultured for 7 d with EGF,
and the area covered by cells was measured. Statistical significance was tested using a two-sided Welch t-test (MCF10A RASGRP1-ATP1A1: P-value =
0.023; MCF10A RRBP1-RAF1: P-value = 0.0094; H6c7 RASGRP1-ATP1A1: P-value = 4.1×10−5; H6c7 RRBP1-RAF1: P-value = 0.14). (D) Western blot showing
increased phosphorylation of MAP2K1/2 (MEK1/2) and MAPK1/3 (ERK2/1) in TP53-deficient MCF10A cells stably transduced with one of the fusions as
compared to empty vector.

Arriba: detecting gene fusions from RNA-seq data

Genome Research 453
www.genome.org



indicating constitutive activation of the MAPK pathway (Fig. 4D).
Together, these experiments confirmed the oncogenic activity of
RASGRP1-ATP1A1 and RRBP1-RAF1 and further supported the no-
tion that Arriba predicts oncogenic fusions with high confidence.

To test if the fusions could be addressed therapeutically, we
treated cells with two compounds targeting the MAPK signaling
axis: the RAF1 inhibitor sorafenib and the MAPK (ERK) inhibitor
FR180204. Although the cell cultures responded to all compounds,
fusion-positive cells did not prove to bemore sensitive than empty
vector controls (Supplemental Fig. S10).

Discussion

We introduce Arriba, a novel computational tool for the detection
of gene fusions from RNA-seq data, which delivers results in mark-
edly shorter time than commonly used tools. This improvement in
computational efficiency is even more pronounced when consid-
ering that Arriba’s workflow is the only one to yield reusable align-
ments. All other presentedmethods align reads only for the sake of
fusion detection, in a format that is not suitable for further process-
ing. Although the workflow of STAR-Fusion is similar to that of
Arriba, it requires the alignment parameters of STAR to bemodified
in a way that impairs downstream processing. As explained in the
Methods section, Arriba avoids this requirement by using an extra
extraction step.

At the same time, the benchmarks show that our approach
does not sacrifice accuracy. In fact, Arriba shows extraordinary sen-
sitivity and identifies fusions with subtle evidence in the RNA-seq
data at higher precision than other methods. In addition, Arriba
can detect some types of aberrant transcripts, which have so far
been neglected in the development of most fusion detection algo-
rithms. Intragenic rearrangements and translocations to intronic
or intergenic regions may lead to the loss of function of the affect-
ed genes and thus represent important pieces of evidence in the
characterization of dysfunctional tumor suppressor genes.

From a practical standpoint, it is also worth mentioning that
only Arriba, InFusion, and STAR-Fusion processed all samples dis-
cussed in this work without issues. The other tools failed to process
some samples, because the toolswere either incompatiblewith cer-
tain data types, did not finish after several weeks, or reproducibly
terminated with an error, thus requiring debugging and manual
fixing for the problematic samples to be processed successfully
(see Methods section).

Shortcomings and future development

The STAR aligner does not report chimeric alignments that map to
multiple loci. This complicates the detection of fusions involving
genes with paralogs. For example, CIC-DUX4 fusions in small
round-cell sarcomas (Kawamura-Saito et al. 2006) are easilymissed
by Arriba owing to the presence of multiple copies of the DUX4
gene in the human genome. For the same reason, the detection
of integrated viral DNA into the host genome is impaired. A com-
mon and straightforward approach to detect viral integration is to
align reads to concatenated genomes of the host and a collection of
viruses. Viral integration can then be identified as reads aligning
partially to both the host genome and a viral genome. Because re-
lated strains of viruses share a substantial fraction of sequence
identity, this approach has a blind spot in regions conserved across
strains. With version 2.6.0a, STAR introduced the ability to align
chimeric reads to multiple loci in the genome, but such align-
ments are currently only reported in STAR’s proprietary data

format (the file Chimeric.out.junction). Once STAR reports
multimapping chimeric alignments in a SAM-compliant format,
Arriba can be enhanced to detect fusions that are supported by
multimapping reads.

Relevance of gene fusions in pancreatic cancer

We combined published data from a wide range of studies, yield-
ing to our knowledge the largest collection of RNA-seq samples
from pancreatic tumors to date. By applying Arriba to this collec-
tion, we discovered gene fusions in a notable fraction of KRAS
wild-type tumors (25%) as well as four KRASmutant cases. The fu-
sions involved a variety of genes that have been shown to contrib-
ute to MAPK signaling, thus likely phenocopying the effect of
activating KRAS point mutations that are present in pancreatic ad-
enocarcinoma in >90% of cases (The Cancer Genome Atlas
Research Network 2017).

Importantly, some of the lesions represent bona fide entry
points for targeted therapeutic approaches, which have been ap-
plied with success in other cancer types. Non-small-cell lung carci-
nomas with ALK or ROS1 fusions are sensitive to treatment with
crizotinib and other, second- and third-generation inhibitors
(Shaw et al. 2014).NTRK-rearranged pancreatic tumors are eligible
for targeted inhibition with larotrectinib in accordance with the
recent approval by the FDA for any solid tumor bearing NTRK fu-
sions regardless of the origin (Drilon et al. 2018). We found three
cases carrying fusions with FGFR2, which might predict response
to ponatinib as previously shown in cholangiocellular carcinoma
(Borad et al. 2015). BLU-667 is a highly specific RET inhibitor de-
veloped for the treatment of tumors with RETmutations and rear-
rangements, including NCOA4-RET and CCDC6-RET fusions, as
observed in two of the analyzed pancreatic tumors. This drug is
currently undergoing a phase 1 clinical trial (Subbiah et al.
2018). Furthermore, gene fusions affecting BRAF or RAF1 are in-
creasingly recognized as potential therapeutic targets for either di-
rect (Ross et al. 2016) or indirect inhibition using MAPK (ERK)
inhibitors (McEvoy et al. 2019), although we could not confirm
the efficacy of such treatment regimens in our cell culture experi-
ments. Together, of the 30 fusions identified by Arriba, 25 in-
volved a fusion partner that is amenable to targeted therapy.

In view of the therapeutic relevance of these fusions and the
overall high incidence of oncogenic fusions in KRAS wild-type
pancreatic tumors, we recommend systematic testing of the
KRAS mutation status and screening for gene fusions in the ab-
sence of KRAS mutations.

Methods

Arriba workflow

Many fusion detection algorithms attempt to boost sensitivity
with the help of elaborate alignmentmethods. Common strategies
use multiple rounds of alignment with iteratively trimmed reads
(Jia et al. 2013), alignment with multiple algorithms (Nicorici
et al. 2014), or alignment against assemblies generated on the fly
(Davidson et al. 2015). Although these techniques improve the dis-
covery of fusion-supporting reads, they come at the expense of
long runtimes. In contrast, Arriba’s workflow is linear with just a
single alignment step followed by a filtering step (Fig. 5).

Extraction of chimeric reads

Arriba builds on the ultrafast STAR RNA-seq aligner (Dobin et al.
2013). When run with the parameter ‐‐chimSegmentMin, STAR
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searches for two types of chimeric alignments: split reads, that is,
reads with two segments aligning in a noncontiguous fashion,
and discordant mates (also referred to as spanning reads or bridge
reads), which are paired-end reads originating from the same
fragment but with the mates aligning in a nonlinear way. The
chimeric alignments are collected in a separate output file named
Chimeric.out.sam or since STAR version 2.5.3a—when the param-
eter ‐‐chimOutType WithinBAM is specified—in the main output
file Aligned.out.bam. Arriba extracts the chimeric alignments
from either of these files and integrates them to identify gene
fusions.

STAR only reports an alignment as chimeric if a noncontigu-
ous segment does not align to a downstream exonwithin a reason-
able distance, as defined by the parameter ‐‐alignIntronMax.
Otherwise, it assumes that the gap in the alignment represents
an intron skip and creates a gapped alignment. Some well-known
oncogenic fusions arise from focal deletions, which pull the 5′ end
of an upstreamgene and the 3′ end of a downstreamgene together.
Prominent examples are fusions between GOPC and ROS1 in lung
adenocarcinoma (Suehara et al. 2012) or between EIF3E and RSPO2
in colon cancer (Seshagiri et al. 2012). Instead of creating chimeric
alignments, STAR aligns reads supporting these fusions as if the
fused genes were joined by splicing, because STAR determines
the type of alignment solely based on the size of the gap rather
than the gene annotation. In addition to extracting chimeric
alignments, Arriba also screens for alignments spanning the
boundaries of annotated genes in order to avoidmissing fusions re-
sulting from focal deletions.

Unlike many other fusion detection pipelines, Arriba can re-
use existing alignments of STAR rather than requiring reads to be
aligned exclusively for the sake of calling gene fusions. STAR-
Fusion is also capable of reusing existing alignments but requires
that the STAR parameter ‐‐alignIntronMax be reduced or else it is
ignorant of fusions arising from focal deletions. However, setting
this parameter smaller than the common intron size impairs the
alignment quality, because many intron-spanning mates will be
flagged as improperly paired. Of all presented methods,
Arriba is the only one that offers a seamless integration into a
standard RNA-seq alignment workflow. Alignments are a prereq-
uisite to various types of analyses, such as the quantification of
gene expression or the identification of allele-specific expression.
Both are routine tasks in clinical research and necessitate the gen-
eration of alignments anyway. The ability to plug in Arriba as an
extension to an existing RNA-seq workflow therefore makes fu-
sion detection highly efficient, because it incurs negligible CPU
time.

Filtering of artifacts

Once all candidate alignments have been collected, Arriba applies
a set of filters to remove artifacts and to enrich for high-confidence
predictions. There are negatively and positively selecting filters.
Negatively selecting filters discard candidates deemed to be arti-
facts, such as candidates supported by reads with homopolymers,
tandem repeats, or an excessive amount of mismatches; candi-
dates between homologous genes; alignments with short anchors;
and candidates with few supporting reads relative to the total
number of candidates in the fusion partners. Moreover, a posi-
tion-specific blacklist is applied to remove recurrent artifacts
and transcripts observed in benign tissue. The blacklist was
trained on RNA-seq samples from the Human Protein Atlas (Uhlen
et al. 2015), the IlluminaHuman BodyMap2 (NCBI Sequence Read
Archive [SRA; https://www.ncbi.nlm.nih.gov/sra] accession
ERP000546), the ENCODE Project (The ENCODE Project Consor-
tium 2012), the Roadmap Epigenomics Project (Roadmap Epige-
nomics Consortium et al. 2015), and the NCT/DKTK MASTER
cohort (Horak et al. 2017). Positively selecting filters rescue candi-
dates discarded by negatively selecting filters, provided that there
is strong evidence that a candidate was discarded erroneously,
such as candidates with breakpoints at annotated splice sites, a
user-defined whitelist of known/highly recurrent fusions, or a cor-
relating structural variant detected via WGS.

Positively selecting filters and the statistical model used to
filter candidates by their number of supporting reads are the
key features which accomplish Arriba’s high sensitivity. Arriba as-
sumes a polynomial relationship between the number of support-
ing reads and the level of background noise. Only candidates
with more supporting reads than the estimated level of back-
ground noise are reported (Fig. 6A). In addition, the model incor-
porates several covariates that correlate with the level of
background noise, including the sequencing depth, the break-
point distance (Fig. 6B), the library preparation protocol (strand-
ed vs. nonstranded) (Fig. 6C), and the location of the breakpoints
(intron vs. exon vs. splice site). Based on the number of reads sup-
porting a candidate, the expected level of background noise (e-
value) is calculated using Equation 1. In the following, lowercase
components of the equations represent dynamically calculated
variables; uppercase components are empirically determined con-
stants, which were trained on RNA-seq samples from the NCT/
DKTK MASTER cohort and proved to be reasonably stable across
different data sets.

e-value = base level bg noise∗depth penalty

∗distance penalty∗ inv to dup ratio ∗ intron to exon ratio
(1)

The base level of background noise is computed for each
gene individually. It increases linearly with the total number of
candidates in a gene and decreases in a polynomial manner as
a function of the number of supporting reads:

base level bg noise = total candidates of gene
sum of exon lengths of gene

∗ (supporting reads− SHIFTnoise)
SLOPEnoise ∗ INTERCEPTnoise

with SHIFTnoise = −0.73 and SLOPEnoise = −2.28 and

INTERCEPTnoise = 10−1.75

(2)

The depth penalty increases linearly with the total number of
mapped reads. The slope of the linear function decreases with

Figure 5. Arriba workflow. Arriba is an extension of a standard align-
ment workflow based on STAR. In legacy mode, STAR writes chimeric
alignments to the file Chimeric.out.sam. In newer versions, STAR writes
them to the main output file Aligned.out.bam. Arriba can take either file
as input to search for gene fusions.
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increasing number of supporting reads:

depth penalty = SLOPEdepth ∗ (SLOPE MODIFIER)supporting reads

∗mapped reads

with SLOPEdepth = 2 ∗10−11 and SLOPE MODIFIER = 0.02

(3)

The distance penalty is applied to breakpoints <400 kb apart. It
increases polynomially with decreasing distance of the break-
points. Two different model fits are used depending on whether
the breakpoints are closer or further apart than 400 bp:

distance penalty= (distance)SLOPEdistance ∗INTERCEPTdistance

with
SLOPEdistance =−4.58 and INTERCEPTdistance =8.27∗1010, if distance,400 bp

SLOPEdistance =−1.53 and INTERCEPTdistance =3.73∗108, if distance≥400 bp

{

(4)

Arriba calculates the ratio of inversions to duplications, which is
influenced by the library preparation protocol. For example, some
stranded libraries are prone to induce artifacts resembling dupli-
cations. Duplications and inversions are therefore penalized in
proportion to their relative frequency:

inv to dup ratio=
1

total candidates
∗ total inversions, if event type is inversion

total duplications, if event type is duplication

{
(5)

Likewise, candidates are penalized based on where the break-
points are located and the relative frequencies of candidates
with breakpoints in introns, in exons, or at splice sites:

intron to exon ratio=

1
total candidates

∗
total intronic candidates, if breakpoint is intronic

total exonic candidates, if breakpoint is exonic

total spliced candidates, if breakpoint is spliced

⎧⎪⎨
⎪⎩

(6)

Arriba’s sensitivity is boosted further by two positively selecting
filters, which recover candidates discarded owing to an insuffi-

cient number of supporting reads: One
filter selects candidates having both
breakpoints at splice sites; another filter
selects fusions between genes linked by
at least four distinct fusion transcripts
as evidenced by four or more break-
points coinciding with a splice site in
one of the genes (but not necessarily in
both).

Benchmarking

All fusion detection tools were run with
default parameters with the following ex-
ceptions: The parameter -junL of PRADA
has no default value and was set to 80%
of the read length as recommended by
the developers. For benchmarks regard-
ing the detection of fusions with inter-
genic breakpoints, InFusion was
executed with the parameters ‐‐allow-
intronic, ‐‐allow-intergenic, and ‐‐allow-
non-coding. Otherwise, InFusion does
not call this type of events. By default,
FusionCatcher uses an internal list of
known oncogenic fusions to improve

sensitivity. For an unbiased benchmark that is more reflective of
FusionCatcher’s sensitivity for de novo fusion discovery, we
disabled this list by calling FusionCatcher with the parameter
‐‐skip-known-fusions. In addition, the default value of the parame-
ter ‐‐allowed-labels of the script extract_fusion_genes.py had to be
emptied for the parameter ‐‐skip-known-fusions to take effect.

Wall clock time, CPU time, and memory consumption were
measured by the GNU time utility.

We considered a prediction to be a true positive if the fusion
partners matched a list of validated fusions or if the breakpoints
were within a distance of 100 kb from a structural variant detected
in a matched WGS sample. The orientation of the genomic break-
points was not required to match the orientation of the transcrip-
tomic breakpoints, because FusionCatcher does not report this
information.Whether orientation was considered or not hadmar-
ginal effect on the results, however. The predicted breakpoints of
all tools were reannotated with the GENCODE v19 gene model
to harmonize the gene names. If a tool reported multiple alterna-
tively spliced transcript variants involving the same pair of genes
and thus arising from the same genomic rearrangement, only
one of the transcripts was counted. Similarly, if a pair of break-
points overlapped with multiple genes and was reported more
than once with different gene names, only one of the instances
was counted. PRADA and SOAPfuse do not sort their output by
confidence. The predictions of these tools were therefore ranked
by the number of supporting reads in decreasing order. The predic-
tions of deFuse were sorted by the column probability.

Validation of fusion predictions from the MCF-7 cell line

For each fusion detectionmethod, we subjected the top predictions
from theMCF-7 cell line to experimental validationusing Sanger se-
quencing if the prediction had not been validated in a previous
study (Davidson et al. 2015) or confirmed by a structural variant
(Li et al. 2016). We selected fusion predictions that were made in
at least two independent batches of the MCF-7 cell line to avoid se-
lecting batch-specific fusions (Supplemental Table S3). The fusion-
specific primers were designed using Primer3 (Untergasser et al.
2012). One microgram of MCF-7 RNA was transcribed into cDNA

A B C

Figure 6. Covariates used to estimate the level of background noise. One of Arriba’s artifact filters re-
moves candidateswith fewer supporting reads than the estimated level of background noise. For this pur-
pose, Arriba calculates several covariates that correlate with the level of background noise. (A) Arriba
assumes a polynomial relationship between the noise level (unfiltered candidates) and their number of
supporting reads. The data shown here are based on the highly expressed housekeeping gene GAPDH
in the MCF-7 cell line (SRA accession ERR358487). (B) The figure shows the number of unfiltered candi-
dates as a function of the breakpoint distance averaged over all genes in theMCF-7 cell line. Artifacts tend
to have breakpoints in close proximity as evidenced by a sharp increase in the number of candidates with
decreasing distance. Arriba fits two models depending on whether the breakpoints are closer or further
apart than 400 bp (red and blue lines, respectively). (C) The library preparation method can affect the
proportions of artifacts. For example, the samples from Heining et al. (2018) are a mixture of stranded
and nonstranded libraries. The stranded libraries are enriched for duplications compared with the non-
stranded libraries (two-sided Wilcoxon rank-sum test, P-value = 0.0044).
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using SuperScript III (Invitrogen) reverse transcriptase according to
the manufacturer’s instructions and used as template for polymer-
ase chain reactions (PCRs). PCRswere performedwithTaqPCRmas-
termix (2×; Roboklon) according to themanufacturer’s instructions
and the following PCR conditions: initial denaturation of 5min; 35
cycles or denaturation of 1min at 95°C, annealing of 1min at 60°C,
and elongation of 1min at 72°C; and final elongation of 2min. The
PCR products were separated electrophoretically in 2% agarose gels
and visualized. Bands at the expected height were cut out and
purified for sequencing. The sequencing was performed on a 3500
capillary sequencer (Applied Biosystems) according to the manu-
facturer’s instructions.

Sample collection

The sample collection procedures and ethics approvals can be
found in the respective publications of the samples that were
analyzed in this study (Barretina et al. 2012; Carugo et al. 2016;
Diaferia et al. 2016; Kirby et al. 2016; Witkiewicz et al. 2016; Bhat-
tacharyya et al. 2017; Horak et al. 2017; Nicolle et al. 2017; The
Cancer Genome Atlas Research Network 2017; Aung et al. 2018;
Heining et al. 2018; Lomberk et al. 2018; Bryant et al. 2019; Lin
et al. 2019; Maurer et al. 2019). In addition to the published sam-
ples, we included samples from one KRAS wild-type pancreatic
cancer patient that was recruited in the NCT/DKTK MASTER co-
hort and had not been published yet. The samples from this pa-
tient were collected and prepared as previously described
(Heining et al. 2018). The patient gave written informed consent
in accordance with protocol S-206/2011 approved by the Ethics
Committee of the University of Heidelberg. Permission to publish
the results presented in this study is covered by the written in-
formed consent given by the patients.

The raw sequencing data supporting the findings of this study
were obtained from the NCBI Sequence Read Archive (SRA; https
://www.ncbi.nlm.nih.gov/sra) using the accession numbers
ERP107752, SRP102440, SRP051606, SRP072492, SRP072493,
ERP022034, ERP023824, ERP015474, SRP077921, SRP161484,
SRP096338, and SRP158639; from the Genomics Data Commons
Portal (GDC; https://portal.gdc.cancer.gov/) using the accession
numbers CCLE-PAAD and TCGA-PAAD; and from the European
Genome-Phenome Archive (EGA; https://ega-archive.org/) using
the accession numbers EGAD00001003584, EGAD00001003582,
EGAD00001003410, EGAD00001003945, EGAD00001003972,
EGAD00001004068, and EGAD00001005069.

Identification of fusions from pancreatic cancer samples

We ran STAR version 2.5.3a with the following parameters to align
RNA-seq reads: ‐‐outFilterMultimapNmax1 ‐‐outFilterMismatch
Nmax3 ‐‐outFilterMismatchNoverLmax0.3 ‐‐alignIntronMax500000
‐‐alignMatesGapMax500000 ‐‐chimSegmentMin 10 ‐‐chimJunc
tionOverhangMin 10 ‐‐chimScoreMin 1 ‐‐chimScoreDropMax30
‐‐chimScoreJunctionNonGTAG 0 ‐‐chimScoreSeparation 1 ‐‐align
SJstitchMismatchNmax5 -1 5 5 ‐‐chimSegmentReadGapMax3
‐‐chimMainSegmentMultNmax10. The STAR index was created us-
ing the GENCODE gene model (v19 for human, vM12 for mouse)
and the parameter ‐‐sjdbOverhang 200. Reads were aligned against
concatenated assemblies of the 1000Genomes Phase II human ref-
erence genome (hs37d5) and the PhiX genome (NC_001422.1).
Samples from patient-derived xenograft mouse models
were aligned against concatenated assemblies of the human
(hs37d5+PhiX) and murine (mm10) reference genomes.

Gene fusion tools were run with the same parameters as for
the benchmark. For some tools, manual intervention was required
to make the pipelines complete successfully on a small subset of

the samples: FusionCatcher sometimes failed to parse the read
identifiers, which could be solved by reformatting the identifiers
of the offending samples. The java virtual machine launched by
PRADA’s script fromfq.pbs occasionally ran out of memory and
had to be increased to 64 GB (from 8 GB) using the parameters
-Xmx64g and -XX:+UseSerialGC. Moreover, PRADA uses the IS lin-
ear-time algorithm for construction of BWA indices by default.
This algorithm is not suitable for indices >2 GB in size and thus
had to be changed to the BWT-SW algorithm by calling BWA
with the parameter -a bwtsw in the script prada-fusion for larger
samples. Occasionally, deFuse terminated with an error, because
the executable calccov reported the text nan instead of numeric val-
ues for a small set of genome coordinates. The pipeline completed
when the illegal values were replaced by zeros. SOAPfuse and
deFuse ran for >4 wk on some samples and were terminated
prematurely.

When a matched WGS sample was available, we expected a
fusion prediction to be confirmed by a nearby structural
variant. Only structural variants within a distance of 100 kbp
and matching orientation were recognized as correlating events.
DNA-seq samples from Heining et al. (2018) and from this study
were aligned as previously described (Heining et al. 2018); all other
DNA-seq samples were aligned using the PanCancer BWA-
MEM alignment workflow (https://github.com/ICGC-TCGA-Pan
Cancer/Seqware-BWA-Workflow). We used our previously report-
ed pipeline SOPHIA version 35 (https://bitbucket.org/utoprak/
sophia/src) to call structural variants (Heining et al. 2018).

We used the mpileup, call, and filter modules of BCFtools (Li
2011) version 1.6 in conjunction with Annovar (Wang et al.
2010) version 2016-02-01 to identify KRAS mutations. BCFtools
was configured to report all reference mismatches supported by
at least two reads and ≥10% allele fraction. In addition, mutations
at codons other than 11, 12, 13, and 61 were manually curated by
inspecting the supporting reads in IGV. When no KRAS missense
mutation was found in the RNA-seq data, the mutation status of
KRAS was taken from the respective study, whenever available
(Barretina et al. 2012; Witkiewicz et al. 2016; Horak et al. 2017;
Nicolle et al. 2017; The Cancer Genome Atlas Research Network
2017; Aung et al. 2018).

To identify replicates within and across the collected cohorts,
we compared the genotype of all samples at 1000 commonSNPpo-
sitions. Samples that grouped together using Euclidean distance-
based hierarchical clustering were considered to be replicates and
were either merged or kept from only one cohort.

We inferred from a combination of features whether a gene
fusion should be considered a (putative) driver, including the ex-
pression level, Arriba’s confidence score, preservation of the read-
ing frame, retention of essential domains for oncogenic activity,
and whether the genes had previously been described to be in-
volved in oncogenic fusions in pancreatic cancer or other entities.
Pfam protein domains were mapped from protein coordinates to
genomic coordinates using the R/Bioconductor package PBase.
Genomic coordinates of transmembrane domains were obtained
from UniProt (The UniProt Consortium 2018). The most promis-
ing fusion candidates were visually inspected in IGV to identify
potential alignment artifacts. Patient PCSI_0326 from the PACA-
CA cohort carried aTRIM24-BRAF fusion. Arriba only reported a fu-
sion transcript with a predicted frame shift. Closer inspection of
soft-clipped reads in BRAF suggested that some reads linked exon
nine of TRIM24 to exon eight of BRAF, as revealed by the built-in
BLAT utility of IGV. Presumably, STAR failed to align these reads
because they included 20 bases from intron seven of BRAF (Chr
7: 140,498,293–140,498,312), which cannot be mapped uniquely
to the human genome. These bases correct the reading frame to
yield an in-frame fusion transcript.
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The analysis of overrepresented genes by pathway was per-
formed with the help of WebGestalt (Wang et al. 2017). We used
all human protein-coding genes as background and pathways of
the KEGG database (Kanehisa et al. 2017) as gene sets to be tested
for overrepresentation.

Lentiviral transduction

The MCF10A cell line was obtained from the American Type
Culture Collection and cultured with DMEM medium supple-
mented with 5% horse serum, 0.5 mg/mL hydrocortisone, 100
ng/mL cholera toxin, 10 µg/mL insulin, and 20 ng/mL EGF.
TP53 knockout was performed by CRISPR-Cas9-mediated gene ed-
iting, and nine cloneswith confirmedhomozygous knockoutwere
pooled to obtain the TP53-deficient MCF10A cell line. The H6c7
cell line was obtained from Kerafast and cultured with
Keratinocyte serum-free medium supplemented with 50 ng/mL
bovine pituitary extract and 5 ng/mL EGF.

The fusion genes were synthesized by Trenzyme GmbH and
cloned into the lentiviral expression vector pLenti6.2/V5-DEST
(Invitrogen). Production of lentiviral particles and transduction
of MCF10A and H6c7 cells was performed as previously described
(Stolze et al. 2015). Transduced cells were selected with 10 µg/mL
blasticidin to obtain cell lines with stable expression of the fusion
genes or empty vector control.

Quantitative RT-PCR

Total RNAwas isolated using the RNeasy mini kit (Qiagen) and re-
verse-transcribed using TaqMan reverse transcription reagents
(Applied Biosystems), and the expression of the fusion transcripts
was measured by quantitative RT-PCR (Supplemental Fig. S11) us-
ing the following primers: RRBP1-RAF1 forward (5′-CACCGGGAC
ATGAAGTCCAA-3′), RRBP1-RAF1 reverse (5′-GATCCTGTAGGCT
GCTCGAC-3′), RASGRP1-ATP1A1 forward (5′-CTATCTGGAACT
CGGCGGAC-3′), RASGRP1-ATP1A1 reverse (5′-ACGAAGCACAG
GTTGTCGAT-3′). Fusion gene expression was calculated relative
to endogenous peptidylprolyl isomerase B (PPIB) using the primers
PPIB forward (5′-GAGGAAAGAGCATCTACGGTG-3′) and PPIB re-
verse (5′-GCTTCTCCACCTCGATCTTG-3′).

Colony formation assays

For measurement of colony formation, 500 MCF10A cells were
seeded in six-well plates in growth medium without EGF and cul-
tured for 8 d, and 5000 H6c7 cells were cultured for 7 d in growth
mediumwith EGF. Cells were subsequently fixedwith 100%meth-
anol and stained with 2.5% crystal violet solution. Quantification
was performed using ImageJ/Fiji by determining the area covered
by cells (Guzmán et al. 2014).

Western blotting

Cell pellets were lysed with RIPA buffer (50 mM Tris-HCl, 150 mM
NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100,
Halt protease and phosphatase inhibitor cocktail [1:100]).
Protein extracts (50 μg) were subjected to SDS-PAGE and trans-
ferred to nitrocellulose membranes using the trans-blot turbo
transfer system (Bio-Rad). Membranes were blocked with 5% dry
milk in TBST, followed by incubation with primary and fluores-
cence-labeled secondary antibodies. Fluorescence signals were im-
aged using the Odyssey CLx western blot detection system (LI-
COR). The following antibodies were used: anti-phospho-MEK1/
2 (Cell Signaling Technology 9121), anti-MEK1/2 (Cell Signaling
Technology 4694), anti-phospho-p44/42 MAPK (ERK1/2;
Thr202/Tyr204; Cell Signaling Technology 4376), anti-p44/42

MAPK (ERK1/2; Cell Signaling Technology 4696), anti-HSP90
(Santa Cruz sc-7947), goat anti-rabbit IgG DyLight 680
Conjugate (Cell Signaling Technology 5366S), and anti-mouse
IgG DyLight 800 4x PEG Conjugate (Cell Signaling Technology
5257S).

Drug sensitivity

For dose-response curves, 2000 MCF10A cells were seeded in 96-
well plates and treated with the indicated concentrations of the
MAPK (ERK) inhibitor FR180204 (Hölzel Diagnostika) or the
RAF1 inhibitor sorafenib (TargetMol) in EGF-depleted medium,
and viability was assessed by CellTiter 96 Aqueous One Solution
Cell Proliferation Assay (Promega) MTS assay after 48 h.

Software availability

Arriba was written in C++ and R (R Core Team 2017). The most re-
cent source code and precompiled binaries are available for the
Linux operating system under the MIT and GPLv3 licenses at
GitHub (https://github.com/suhrig/arriba). The Arriba version
used in this work (1.0.0) is also available in Supplemental Code S1.

Data access

All raw and processed sequencing data generated in this studyhave
been submitted to the EuropeanGenome-phenome Archive (EGA;
https://ega-archive.org/) under Study ID EGAS00001003554
(Dataset ID: EGAD00001005069).
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