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Counting motifs in the human interactome
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Small over-represented motifs in biological networks often form essential functional units of

biological processes. A natural question is to gauge whether a motif occurs abundantly or

rarely in a biological network. Here we develop an accurate method to estimate the occur-

rences of a motif in the entire network from noisy and incomplete data, and apply it to

eukaryotic interactomes and cell-specific transcription factor regulatory networks. The

number of triangles in the human interactome is about 194 times that in the Saccharomyces

cerevisiae interactome. A strong positive linear correlation exists between the numbers of

occurrences of triad and quadriad motifs in human cell-specific transcription factor regulatory

networks. Our findings show that the proposed method is general and powerful for counting

motifs and can be applied to any network regardless of its topological structure.
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T
he increasing availability of genomic and proteomic data
has propelled network biology to the frontier of biomedical
research1–4. Network biology uses a graph to depict

interactions between cellular components (proteins, genes, meta-
bolites and so on), where the nodes are cellular components and
the links represent interactions. Two of the most surprising
discoveries from the genome sequencing projects are that the
human gene repertoire is much smaller than had been expected,
and that there are just over 200 genes unique to human beings5.
As the number of genes alone does not fully characterize the
biological complexity of living organisms, the scale of physio-
logically relevant protein and gene interactions are now being
investigated to understand the basic biological principles of life6–8.
Although the list of known protein–protein interactions (PPIs)
and gene regulatory interactions (GRIs) is expanding at an
ever-increasing pace, the human PPI and GRI networks are far
from being complete and, hence, their dynamics have yet to be
uncovered9–11.

The feed-forward loop (FFL) and several other graphlets (called
motifs) are found to be over-represented in different biological
networks11. Furthermore, over-represented motifs usually
represent functional units of biological processes in cells.
Hence, it is natural to ask whether a motif, such as a triangle,
appears more often in the interactome of humans than in that of
other species, or whether the FFL or the bi-fan appears more
frequently in the human gene regulatory network. As the
biological networks that have been reported are actually the
subnetworks of the true ones and often contain remarkably many
incorrect interactions for eukaryotic species, there are two
approaches to answering these questions. One approach is to
infer spurious and missing links in the entire network12–14, and
then to count motif occurrences. Another approach is to estimate
the number of motif occurrences in the interactome from the
observed subnetwork data using the same method as that for
estimating the size of eukaryotic interactomes9,10,15. If we have
the number of occurrences of a motif or its estimate in a network,
we can determine whether the motif is over-represented or not,
based on how often the motif is seen in a random network with
similar structural parameters11,16,17.

In the present work, we take spurious and missing link errors
into account to develop an unbiased and consistent estimator for
the motif count. The method works for both undirected and
directed networks. We derive explicit mathematical expressions
for the estimators of five commonly studied triad and quadriad
network motifs (Fig. 1). These estimators are further validated
extensively for each of the following four models: Erdös–Renyi
(ER)18, preferential attachment19, duplication20 and the geometric
model21 (Supplementary Note 1). By applying the method to
eukaryotic interactomes, we find that the number of triangles in
the human interactome is about 194 times that of the
Saccharomyces cerevisiae interactome, three times as large as
expected. By applying the method to human cell-specific
transcription factor (TF) regulatory networks22, we discover a
strong positive linear correlation between the counts of widely
studied triads and quadriads. We also notice that the embryonic
stem cell’s TF regulatory network has the smallest number of
occurrences relative to its network size for all the five motifs
under study.

Results
Estimating motif occurrences. In this study, we shall consider
PPIs and gene regulatory networks. The former are undirected,
whereas the latter are directed networks. Consider a directed or
undirected network G(V, E), where V is the set of nodes and E is
the set of links. For simplicity, we assume that G has n nodes and

V¼ {1,2,3,y,n}. Let Gobs(Vobs, Eobs) be an observed subnetwork
of G. Following (ref. 9), we model an observed subnetwork as the
outcome of a uniform node sampling process in the following
sense. Let Xi be independent and identically distributed Bernoulli
random variables with the parameter pA(0,1] for i¼ 1,2,y,n. We
use Xi¼ 1 and Xi¼ 0 to denote the events that node i is sampled
and not sampled, respectively. Then Vobs is the set of nodes i with
Xi¼ 1, and Eobs is induced from E by Vobs. For clarity of
presentation, we first introduce our method for the case when the
observed subnetwork is free from experimental errors, and then
generalize it to handle noisy observed subnetwork data.

Consider a motif M. We use NM and Nobs
M to denote the

number of occurrences of M in G and Gobs, respectively. We
assume that the number of nodes, n, is known, but only links in
Gobs are known. We are interested in estimating NM from the
observed subnetwork Gobs. As Gobs is assumed to be free from
experimental errors, we can obtain Nobs

M simply by enumeration.
Let us define the following:

bNM¼
n
m

� �
nobs

m

� �Nobs
M ; ð1Þ

where m and nobs are the number of nodes in M and Gobs,
respectively.

Let A¼ [aij]1ri, jrn denote the adjacency matrix of G, where
aij¼ 1 if there is a link from i to j, and aij¼ 0 otherwise.
Furthermore, for a subset JD{1,2,y,n}, A[J] denotes the
submatrix consisting of entries in the rows and columns indexed
by J. We write NM as a function of A and Nobs

M as a function of A
and the random variables Xi. We also assume the following:

NM¼
X

i1 o i2 o ���o im

fMðA½i1; i2; :::; im�Þ; ð2Þ

Nobs
M ¼

X
i1 o i2 o ���o im

fMðA½i1; i2; :::; im�ÞXi1 Xi2 :::Xim ; ð3Þ

where fM() is a function chosen to decide whether M occurs
among nodes i1,i2,y,im or not. For the motifs listed in Table 1,
their corresponding functions fM() are given in Supplementary
Table S1.

Triangle

Feedback loop Feed-forward loop

Bi-fan Biparallel

Figure 1 | Network motifs found in biological networks. The feed-forward

loop, bi-fan and biparallel are over-represented, whereas feedback loop

is under-represented in gene regulatory networks and neuronal connectivity

networks11.
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From equations (1) and (3), we have

EðbNMÞ¼ n
m

� � X
1�i1 o i2 o :::o im�n

fMðA½i1; i2; :::; im�Þ�E
Xi1 Xi2 � � �Xim

nobs

m

� �
0BB@

1CCA;

where nobs is a random variable such that

nobs¼X1þX2þ � � � þXn: ð4Þ

As the random variables Xi are independent and identically
distributed, for any 1ri1oi2oyoimrn, we also have

E
Xi1 Xi2 � � �Xim

nobs

m

� �
0BB@

1CCA¼ E
X1X2 � � �Xm

nobs

m

� �
0BB@

1CCA:

Hence, by equation (2),

EðbNMÞ¼ n
m

� �
NME

X1X2 � � �Xm

nobs

m

� �
0BB@

1CCA

¼ nðn� 1Þ � � � ðn�mþ 1ÞNM

�E
X1X2 � � � Xm

nobsðnobs� 1Þ � � � ðnobs�mþ 1Þ

� �
:

By conditioning on the event that X1¼X2¼ � � � ¼Xm¼ 1, we
rewrite equation (4) as

nobs¼Zþm;

Table 1 | Bias-corrected estimators for 14 motifs.

Motif Bias-corrected estimator

1 eN1 ¼ 1
r
bN1�

n
2

� �
rþ

� �
2 eN2 ¼ 1

r2
bN2 � 2ðn� 2Þrþ reN1� 3

n
3

� �
r2
þ

� �
3 eN3 ¼ 1

r3
bN3� rþ r2eN2�ðn� 2Þr2

þ reN1�
n
3

� �
r3
þ

� �
4 eN4 ¼ 1

r
bN4� 2

n
2

� �
rþ

� �
5 eN5 ¼ 1

r2
bN5 � 2ðn� 2Þrþ reN4� 6

n
3

� �
r2
þ

� �
6 eN6 ¼ 1

r2
bN6�ðn� 2Þrþ reN4� 3

n
3

� �
r2
þ

� �
7 eN7 ¼ 1

r2
bN7 �ðn� 2Þrþ reN4� 3

n
3

� �
r2
þ

� �
8 eN8 ¼ 1

r3
bN8� rþ r2eN5 �ðn� 2Þr2

þ reN4 � 2
n
3

� �
r3
þ

� �
9 eN9 ¼ 1

r3
bN9� rþ r2ðeN5 þf2N6 þ 2eN7Þ� 3ðn� 2Þr2

þ reN4� 6
n
3

� �
r3
þ

� �
10 eN10 ¼ 1

r3
bN10� 2rþ r2

eN4

2

� �
þðn� 3ÞðeN6þ eN7Þ

� �
� 6

n� 2
2

� �
r2
þ reN4 � 24

n
2

� �
r3
þ

� �

11 eN11 ¼ 1
r4
bN11� rþ r3eN10 � r2

þ r2
eN4

2

� �
þðn� 3ÞðeN6 þ eN7Þ

� �
� 2

n� 2
2

� �
r3
þ reN4� 6

n
4

� �
r4
þ

� �

12 eN12 ¼ 1
r3
bN12� rþ r2 2

eN4

2

� �
þðn� 3ÞðeN5þ 2eN7Þ

� �
� 6

n� 2
2

� �
r2
þ reN4 � 24

n
4

� �
r3
þ

� �

13 eN13 ¼ 1
r3
bN13� rþ r2 2

eN4

2

� �
þðn� 3ÞðeN5þ 2eN6Þ

� �
� 6

n� 2
2

� �
r2
þ reN4 � 24

n
4

� �
r3
þ

� �
14 eN14 ¼ 1

r4
bN14� rþ r3ðeN12þ eN13Þ� r2

þ r2 2
eN4

2

� �
þðn� 3ÞðeN5þ eN6þ eN7Þ

� �
�4

n� 2
2

� �
r3
þ reN4� 12

n
4

� �
r4
þ

� �
n nobs
� 	

, the number of nodes in the entire network (respectively, the observed subnetwork).
mi, the number of nodes in motifs of type-i.
Nobs

i , the number of occurrences of motifs of type-i observed in the subnetwork data.
r¼ 1� r� � rþ.

bNi ¼
n

mi

� �
Nobs

i =
nobs

mi

� �
, 1pip14.
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where ZBBinomial(n�m,p), and hence

E
bNM
NM

 !
¼ nðn� 1Þ � � � ðn�mþ 1Þpm

�E
1

ðZþmÞðZþm� 1Þ � � � ðZþ 1Þ

� �
:

As

E
1

ðZþmÞðZþm� 1Þ � � � ðZþ 1Þ

� �

¼ E
Z 1

0

ð1� uÞm� 1

ðm� 1Þ ! uZdu

� �

¼
Z 1

0

ð1� uÞm� 1

ðm� 1Þ ! EðuZÞdu;

we have

E
bNM

NM

 !
¼ 1�

Xm� 1

j¼ 0

n
j

� �
pjqn� j ð5Þ

by applying integration by parts and simplification. Therefore, we
have obtained the following theorem.

Theorem 1: Let G be a network of n nodes. Assume Gobs is a
subnetwork of G obtained by a uniform node sampling process
that selects a node with probability p. For any motif M of m
nodes, the estimator bNM defined in equation (1) satisfies
equation (5). Therefore, bNM is an asymptotically unbiased
estimator for NM in the sense that EðbNM=NMÞ ! 1 as n goes
to infinity. Moreover, the convergence is exponentially fast in n.

When the estimator (1) is applied to estimate the number of
links in an undirected network G, the variance has the following
closed-form expression:

Var
bN1

N1

 !
¼ 2qN2

pN2
1
þ 1� p2

p2N1

� �
ð1þOðn� 1ÞÞþOðn� 1Þ;

where N1 and N2 are, respectively, the number of links and three-
node paths in G (Supplementary Methods). This leads to our next
theorem.

Theorem 2: When G is generated from one of the ER, preferential
attachment, duplication or geometric models, VarðbN1=N1Þ ! 0 as
n goes to infinity.

Theorem 2 says that bN1 is consistent. For an arbitrary motif,
it is much more complicated to derive the variance of the
estimator (1). Nevertheless, our simulation shows that for all the
motifs in Fig. 1, the variance of the estimator converges to zero as
n goes to infinity and, hence, it is consistent (Fig. 2 and
Supplementary Figs S1–S8). We wish to point out that the
notions ‘asymptotically unbiased’ and ‘consistent’ are not used in
the usual statistical sense where the population is fixed and the
number of observations increases to infinity.

For realistic estimation, one has to take error rates into
account, as detecting PPIs or GRIs is error prone to some degree.
PPIs or gene regulatory networks have spurious interactions (that
is, false positives) and missing interactions (that is, false negatives).
We define the false-positive rate rþ to be the probability that a
non-existing link is incorrectly reported, and the false-negative
rate r� to be the probability that a link is not observed. Using the
independent random variables F þi1i2

� Bernoulliðrþ Þ and F �i1i2
�

Bernoulliðr� Þ to model spurious and missing interactions in
the observed subnetwork Gobs, we can represent the effect of

experimental errors on an ordered pair of nodes (i1,i2) aseai1i2 ¼ ai1i2ð1� F �i1i2
Þþ ð1� ai1i2ÞF þi1i2

: ð6Þ
In other words, for any two nodes i1,i2AVobs, a link (i1,i2) is
observed in the subnetwork Gobs (that is, eai1i2 ¼ 1) if (i) there is a
link (i1,i2) in the real network G (that is, ai1,i2

¼ 1) and there is no
false negative (that is, F �i1i2

¼ 0) or (ii) the link (i1,i2) does not exist
in the real network G (that is, ai1,i2

¼ 0) but a false positive occurs
(that is, F þi1i2

¼ 1).
To take error rates into account, we simply replace each entry

ai1,i2 in the adjacency matrix A with eai1i2 to obtain a new matrix,eA, and then replace A with eA in equation (3). For any motifM in
Table 1, the expectation of the estimator bNM in equation (1) can
be expressed as (Supplementary Methods)

EðbNMÞ¼ 1�
Xm� 1

j¼ 0

n
j

� �
pjqn� j

 !
�½ð1� rþ � r� ÞsNMþWM�;

where s is the number of links thatM has and WM is a function
of n, r� , rþ , and NM0 for all proper submotifs M0 of M
(Supplementary Table S2). Thus, to correct the bias caused by
link errors, we derive eWM from WM by replacing NM0

with eNM0 for all submotifs ofM, and use the following formula
to estimate NM:

eNM¼ 1
ð1� rþ � r� Þs

ðbNM� eWMÞ: ð7Þ

For the motifs listed in Fig. 1, the corresponding bias-corrected
estimators are given in Table 1.

We examined the accuracy of the proposed estimators on
networks generated by a random network model. As these
estimators are asymptotically unbiased, we used the mean square
error (MSE) of the ratios bNM=NM and eNM=NM, defined later in
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Figure 2 | Plots of MSEðbNFFLÞ and MSEðeNFFLÞ for counting the

occurrences of FFL. The random networks of n nodes and edge density r

are generated from the preferential attachment model. Both MSEðbNFFLÞ and

MSEðeNFFLÞ depend on n, r and the node sampling probability p. MSEðeNFFLÞ
also depends on the link error rates r� and rþ. (a) MSEðbNFFLÞ changes with

n and r when p¼0.1. (b) MSEðeNFFLÞ changes with n and r when p¼0.1,

r� ¼0.85 and rþ ¼0.00001. (c) MSEðbNFFLÞ and MSEðeNFFLÞ change with p

when n¼ 5,000, r¼0.1, r� ¼0.85 and rþ ¼0.00001. (d) MSEðeNFFLÞ
changes with rþ and r� when n¼ 5,000, r¼0.1 and p¼0.1.
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equation (9), to measure their accuracy (see Methods section).
Figure 2 summarizes the simulation results for the FFL motif in
random networks generated from the preferential attachment
model19. (The results for other motif network model
combinations are similar and can be found in Supplementary
Figs S1–S8.) First, when the edge density r is fixed, the MSE of
the estimators for FFL decreases and converges to zero as n
increases (Fig. 2a,b). Second, the MSE decreases as the edge
density increases, suggesting that the estimators are even more
accurate when applied to less sparse networks. Third, the MSE of
the estimators decreases as p increases (Fig. 2c). Finally, the MSE
increases with r� and rþ (Fig. 2d). Altogether, our simulation
tests confirm that the proposed estimators are accurate for any
underlying network.

Motif richness in the human interactome. The entire inter-
actomes for eukaryotic model organisms such as S. cerevisiae,
Caenorhabditis elegans, Homo sapiens and Arabidopsis thaliana
are not fully known. We estimated the interactome size (that is,
the number of interactions) and the number of triangles in the
entire PPI network for S. cerevisiae, C. elegans, H. sapiens and
A. thaliana, using the data sets CCSB-YI1 (ref. 23), CCSB-WI-
2007 (ref. 24), CCSB-HI1 (refs 25,26) and CCSB-AI1-Main27.
These data sets were produced from yeast two-hybrid
experiments and their quality parameters are summarized in
Table 2 for convenience.

First, we re-estimated the size of four interactomes using the
bias-corrected estimator eN1 (Table 1). To test all possible
interactions between selected proteins, the sets of bait and prey
proteins should be exchanged in the two rounds of interaction
mating in a high-throughput yeast two-hybrid experiment28.
However, this is only true for the C. elegans and H. sapiens data
sets (CCSB-WI-2007 and CCSB-HI1, respectively). For the
S. cerevisiae and A. thaliana data sets (CCSB-YI1 and CCSB-
AI1-Main, respectively), the set of bait proteins are slightly
different from the set of prey proteins. For these two cases, we
applied our estimator to the subnetwork induced by the
intersection of the bait and prey protein sets.

The following estimator was proposed by Stumpf et al.9 for the
size of an interactome and was later used to estimate the size of
the eukaryotic interactomes23,24,26,27:

ðNo: of observed interactionsÞ�Precision
Completeness�Sensitivity

; ð8Þ

where ‘completeness’ is the fraction of all possible pairwise
protein combinations that have been tested. In our notation,

(No. of observed interactions)¼Nobs
1 ,

Sensitivity¼ 1� r� ,
Precision¼ 1� rd,

Completeness¼ nobs

2

� �

n
2

� �
, where rd is the proportion of

spurious links among detected links and is called the false
discovery rate. (Note that rd was called the false-positive rate in
ref. 9.) Thus, the estimator (8) becomes

1
1� r�

n
2

� �
nobs

2

� �Nobs
1 �

n
2

� �
nobs

2

� � rdNobs
1

0BB@
1CCA:

For PPI data sets, rþ is about 10� 4 and thus 1� r�E
1� r� � rþ . As rd is also small, our estimator eN1 handles errors
differently but is quite close to the estimator (8). In particular,
when the precision is 100% or, equivalently, when rd¼ rþ ¼ 0,
these two estimators are equal (Supplementary Note 2 and
Supplementary Fig. S9). Indeed, our estimates for interactome
size agree well with those obtained from equation (8) (Table 2).
Such an agreement demonstrates again that our estimators for
counting motifs are accurate.

We proceed further to estimate the number of triangles in each
of the interactomes using the corresponding bias-corrected
estimator eN3 in Table 1. For each interactome, we estimated
the number of triangles from the observed subnetwork data
directly and from sampling the observed subnetwork repeatedly.
The two estimates agree well (Table 2).

Our estimation shows that although the size of the A. thaliana
interactome is about 1.8 times that of the human interactome, it

Table 2 | The interactome size and the number of triangles in the PPI networks of four species in our study.

S. cerevisiae C. elegans H. sapiens A. thaliana

Total no. of proteins 6,000 20,065 22,500 27,029
No. of proteins screened* 3,676 9,906 7,194 7,108
No. of links detected* 967 1,816 2,754 4,890

Quality parameters*
Precisionw 0.9400 0.8600 0.7940 0.8030
Sensitivity 0.1700 0.0496 0.0950 0.1570
False-negative rate (r� ) 0.8300 0.9504 0.9050 0.8430
False positive rate (rþ ) 0.8� 10� 5 0.5� 10� 5 2� 10� 5 3� 10� 5

Interactome size
CCSB estimate* 18,000±4,500 116,000±26,400 130,000±32,600 299,000±79,200
Our estimatez 14,000 121,000 210,000 377,000
Mean±s.d.y 15,000±2,700 122,000±16,600 214,000±32,200 376,000±45,600
Link density 8� 10�4 6� 10�4 8� 10�4 10� 10�4

No. of triangles
Our estimatez 53,000 6,263,000 10,270,000 10,697,000
Mean±s.d.y 61,000±33,800 5,971,000±3,593,800 11,255,000±4,717,100 10,158,000±4,289,000
Triangle density 1� 10� 6 5� 10� 6 5� 10�6 3� 10�6

CCSB, Center for Cancer Systems Biology; PPI, protein–protein interaction.
*Reported in refs 23–27.
wFalse discovery rate¼ 1� precision.
zEstimates have been calculated from the observed PPI subnetworks.
yMean and s.d. of the estimates have been calculated by sampling 100 sub-data sets from the observed subnetwork data using the node sampling probability 0.1.
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contains fewer triangles than the human interactome does. The
triangle density of the human and C. elegans interactomes are
similar and are 1.7 times that of the A. thaliana and 5 times that
of S. cerevisiae. The size of the human interactome is only
15 times that of the S. cerevisiae interactome, yet the number of
triangles in the former is about 194 times that in the latter,
3 times as large as expected.

Correlation between motif counts in TF regulatory networks.
Recently, the TF regulatory networks of 41 human cell and tissue
types were obtained from genome-wide in vivo DNasel footprints
map22. In these networks, the nodes are 475 TFs and the
regulation of each TF by another is represented by network-
directed links. Motif count analysis showed that the distribution of

the motif count is unimodal, with the peak corresponding to the
mean value for each motif (diagonal panels in Fig. 3). Surprisingly,
there is a very strong linear correlation between the counts in the
TF regulatory networks of different cell types, even for the triad
and quadriad motifs that are topologically very different (Fig. 3).

Given that human has about 2,886 TF proteins29, we further
estimated the number of occurrences of the 5 motifs for each of
the 7 functionally related classes of cells (Fig. 3 and Table 3). This
was achieved by simply setting the false-positive and -negative
rates to 0, as they are currently unknown. The TF regulatory
networks of blood cells have diverse motif counts. Specifically,
for all triad and quadriad motifs, the promyelocytic leukemia cell
TF regulatory network has the largest number of occurrences,
whereas the erythoid cell TF regulatory network has the smallest

Table 3 | The estimated network size and count of triad and quadriad motifs in seven cell classes.

No. of links No. of feedback loop No. of FFL No. of biparallel No. of bi-fan

Epithelia 344±59* 1,896±844 19,901±8,419 1,858,957±1,013,756 3,238,587±1,618,601
Stroma 412±38 2,727±705 29,155±6,290 3,052,803±883,160 5,094,576±1,337,401
Blood 434±97 3,687±1,699 37,884±15,241 4,379,527±2,320,472 7,359,970±3,421,025
Endothelia 447±40 3,160±695 35,314±6,567 3,844,161±948,207 6,877,606±1,540,212
Cancer 380±7 2,378±111 30,122±710 2,862,215±91,628 6,267,987±99,444
Fetal cells 426±70 3,088±998 33,782±9,955 3,660,840±1,500,838 6,498,027±2,284,014
ES cellw 485 2,766 32,400 3,282,473 6,436,708

ES, embryonic stem; FFL, feed-forward loop; TF, transcription factor.
*The motif count for each group is presented in the form mean±s.d., and the numbers are presented in thousands.
wThere is only one ES cell TF regulatory network.
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Figure 3 | Correlation of motif counts in 41 human cell-specific TF regulatory networks. The upper triangular panels are scatter plots of the counts of the
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number of occurrences. The embryonic stem cell TF regulatory
network has the smallest number of occurrences relative to its
network size for all the motifs.

In a random network, the ratio of the FFL count to the
feedback loop count is B3:1. However, in the human cell-specific
TF regulatory networks, the ratio is about 10:1, suggesting FFL is
significantly enriched in these networks. Table 3 also suggests that
the bi-fan motif is relatively abundant in these networks, as the
ratio of the bi-fan count to the biparallel count is roughly 1:2 in a
random network.

Discussion
By taking spurious and missing link rates into account, we have
developed a powerful method for estimating the number of motif
occurrences in the entire network from noisy and incomplete data
for the first time. It extends previous studies on interactome size
estimation9,10,23–27 to motif count estimation in a directed or
undirected network. Such a method is important because exact
motif enumeration is possible only if the network is completely
known, which is often not the case in biology. Our proposed
method has been proven mathematically as being unbiased and
accurate without any assumption at all regarding the topological
structure of the underlying networks. Therefore, our proposed
estimators can be applied to all the widely studied networks in
social, biological and physical sciences.

Interactome size has been estimated from noisy subnetwork
data by using equation (8), where the precision (which is 1� rd) and
sensitivity of the data are taken into account23,24,26,27. This approach
might yield an inaccurate estimate, as the false discovery rate is often
calculated from gold-standard data sets30–33 and can be quite
unreliable, as indicated in ref. 26, in which the false discovery rate
for the data set CCSB-HI1 was adjusted from 87% to 93%, to 20.6%,
after multiple cross-assay validation. By contrast, our proposed
method uses false-positive and false-negative rates for motif count
estimation. As the false-negative rate is equal to 1� sensitivity and
the false-positive rate is only about 10� 4, our method is more
robust than estimations based on the false discovery rate.

Theorems 1 and 2 in the present paper show that motif
counting via sampling and then scaling up in a huge network is
not merely fast but can also give accurate estimate. Take the
triangle motif, for instance. In our validation test, the
equation (1)-based sampling achieved less than 1% deviation
from the actual count by using no more than 50% of the
computing time compared with the naive triangle counting
method (Fig. 4 and Supplementary Note 3). As the obtained
sampling approach takes positive and negative link-error rates
into account, it is a good addition to the methodology for
estimating motif count in networks34,35.

By applying our estimation method to PPI subnetwork data for
four eukaryotic organisms, we found that the numbers of
triangles in a eukaryotic interactome differ considerably. For
example, the triangle motif is exceptionally enriched in the
human interactome. As noted in ref. 9, we have to keep in mind
that the estimates in Table 2 are based on PPIs that are detectable,
given current experimental methods. However, our estimators
will remain correct for any interaction data available in the future.

We also discovered that there is a very strong positive linear
correlation between triad and quadriad motif occurrences in human
cell-specific TF regulatory networks, and that the TF regulatory
network of embryonic stem cells has the smallest number of
occurrences relative to its network size for each of the common
triad and quadriad motifs. Hence, our study reveals a surprising
feature of the TF regulatory network of embryonic stem cells.

Finally, we remark that the proposed estimators for motif
counting are derived using the assumption that the subnetwork
data is the outcome of a uniform node sampling process. In
practice, however, biologists may select proteins for study
according to their biological importance. The accuracy of our
proposed method was examined for a degree-bias and two other
non-uniform node sampling schemes (Supplementary Note 4 and
Supplementary Figs S10–S12). In the degree-bias sampling
process, a network node is sampled independently with a
probability that is proportional to its degree in the underlying
network. By the nature of this sampling process, it leads to
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Figure 4 | Computational time efficiency of the proposed sampling approach. The simulation test was conducted on a network of 5,000 nodes with the
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used by the direct counting approach, and MSE is defined in equation (9). (a) Computational time efficiency versus the MSE for four values of the node
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overestimation of motif count when our proposed estimator is
used. Our simulation tests indicate that its effect on the
estimation of motif count depends on the scale-free structure of
the underlying network and the proportion of the sampled nodes.
In particular, when more than 60% of nodes in a network are
sampled, the estimate is no more than five times the actual count.
Hence, the triangle counts in the four eukaryotic interactomes are
likely less than the estimates listed in Table 2 by a small constant
factor. How to correct the overestimation caused by a degree-bias
node sampling is challenging and worthy to study in future.

Methods
Interaction data. Human, yeast, worm and A. thaliana PPI data sets were down-
loaded from the Center for Cancer Systems Biology (CCSB) (http://ccsb.dfci.-
harvard.edu): CCSB-YI1 (ref. 23), CCSB-WI-2007 (ref. 24), CCSB-HI1 (refs 25,26
and CCSB-AI1-Main27. TF regulatory interaction data sets were downloaded from
the Supplementary Information of ref. 22 in the Cell journal website.

Simulation validation for motif estimators. We considered four widely used
random graph models: ER18, preferential attachment19, duplication20 and
geometric models21 (Supplementary Note 1). Using each model, we generated
200 random networks by using different combinations of node number
nA{500,1,000,1,500,y,10,000} and edge density rA{0.01,0.02,y,0.1}. Each
generated network was taken as the whole network G, from which 100 subnetworks
were sampled using the node sampling probability pA{0.05,0.1,0.15,y,0.5}. For
each motif M appearing in Fig. 1, we first computed bNM (given in equation (1))
from the motif count in each sampled subnetwork. This was used as an estimate of
the number of occurrences of the motif in the error-free case, NM. Spurious and
missing interactions were then planted in the sampled subnetworks with the chosen
error rates rþ and r� . The bias-corrected estimator eNM (given in Table 1) for NM
was then recalculated. We used the MSE of the ratios bNM=NM and eNM=NM to
measure the consistency (and hence accuracy) of bNM and eNM, respectively.

For the estimator Y of a parameter y, the MSE of Y in estimating y is defined as

MSEðYÞ¼ EððY � yÞ2Þ:
This expression can be used to measure the MSE made in the estimation. In our
validation test, we sampled 100 subnetworks from a network G to evaluate the
consistency of the estimator bNM of a motif M. As EðbNM=NMÞ approaches to 1
when n is large (Theorem 1), the MSEðbNM=NMÞ was approximately computed as

MSE
bNM
NM

 !
¼ 1

100

X
1�i�100

bNM;i

NM
� 1

 !2

; ð9Þ

where bNM;i is the estimate calculated from the ith subnetwork using bNM,
1rir100. Computing MSEðeNM=NMÞ is similar.
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