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Abstract 

N 

6 -Methyladenosine (m 

6 A) is the most abundant internal modification in mRNAs. Despite accumulating e vidence f or the prof ound impact of 
m 

6 A on cancer biology, there are conflicting reports that alterations in genes encoding the m 

6 A machinery proteins can either promote or 
suppress cancer, e v en in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer in v estigation of 15 
m 

6 A core factors in nearly 10 0 0 0 samples from 31 tumor types to re v eal underlying cross-tumor patterns. Altered expression, largely driv en b y 
cop y number v ariations at the chromosome arm le v el, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, 
YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to 
the expression pattern of the m 

6 A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free 
survival. On the contrary, METTL3, the most intensively studied m 

6 A factor as a cancer target, shows much lower levels of alteration and no 
predictiv e po w er f or patient surviv al. T heref ore, w e propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the 
role of m 

6 A in cancer and as priority cancer targets. 
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Introduction 

N 

6 -Methyladenosine (m 

6 A) is the most prevalent internal
modification in mRNAs and long non-coding RNAs (lncR-
NAs) ( 1 ). It is enriched at stop codons and in 3 

′ untranslated
regions (3 

′ UTR), with a well conserved DRACH (D = A, G,
U; R = A, G; H = A, C, U) consensus motif across eukaryotes
( 1 ,2 ). 

m 

6 A is a dynamic and reversible modification regulated by
writer, eraser and reader proteins ( 3 ). Specifically, the m 

6 A
writer proteins, which introduce the modification, include
the m 

6 A-METTL catalytic complex (MAC: METTL3 and
METTL14) and the m 

6 A-METTL associated complex (MA-
COM: WTAP, VIRMA—also known as KIAA1429, RBM15
or RBM15B, ZC3H13, HAKAI—also known as CBLL1) ( 4 ).
The FTO and ALKBH5 proteins are the demethylases, respon-
sible for removing the m 

6 A modification ( 5 ,6 ). Finally, the
reader proteins include the cytoplasmic YTHDF1-3 and the
nuclear YTHDC1-2 proteins, which recognize N 

6 -methylated
adenine through the YTH domain ( 1 ,7–12 ). In addition, other
non-YTH RNA-binding proteins such as eIF3a, HNRNPC / G,
HNRNPA2B1, IGF2BP1 / 2 / 3 and FMRP have been shown to
bind m 

6 A in a sequence-dependent manner, although their
roles are not exclusively related to m 

6 A ( 13–19 ). By de-
tecting changes in m 

6 A modification status, reader proteins
can influence downstream cellular processes such as tran-
scription, splicing, localization, translation and degradation
( 20 ). 

Associations between dysregulated m 

6 A levels and various
complex disorders, including cancer, have been extensively
studied and experimentally validated ( 21 ). In cancer, m 

6 A dy-
namics have been implicated in tumor initiation, maintenance,
and metastasis ( 22 ). Indeed, aberrant m 

6 A levels, including
both increased and decreased levels, have been shown to pro-
mote tumorigenesis by affecting different cellular processes
( 23 ,24 ). Consistent with these findings, alterations in the same
m 

6 A machinery proteins have been shown to either promote
or suppress cancer initiation and / or progression, even within
the same tumor type ( 25 ). For example, reduced METTL3
or METTL14 expression has been demonstrated to promote
glioblastoma tumorigenesis, while METTL3 overexpression
or FTO inhibition has been shown to suppress glioblastoma
stem cell growth and self-renewal in vitro and in vivo ( 26 ).
Conversely, another study has revealed that METTL3 ex-
pression and high m 

6 A levels are crucial for maintaining the
glioblastoma stem cells pool ( 27 ). Similarly, in non-small cell
lung cancer (NSCLC), ALKBH5 has been demonstrated to
both promote ( 28 ,29 ) and inhibit ( 30 ) tumor progression by
targeting different downstream genes. In addition, m 

6 A fac-
tors with opposite enzymatic roles have also shown onco-
genic effects within the same tumor type. For instance, in
acute myeloid leukemia (AML), METTL3 has been found to
be abundantly expressed and to maintain the undifferentiated
leukemic phenotype by increasing m 

6 A modifications in key
AML oncogenes, and its depletion or pharmacological inhibi-
tion leads to proliferation reduction and differentiation pro-
motion ( 31–33 ). However, conflicting results have been re-
ported, as FTO has also been shown to be highly expressed
in AML, particularly in mixed-lineage leukemia-rearranged
samples, where it promotes leukemogenesis by reducing m 

6 A
levels on transcripts such as ASB2 and RARA ( 34 ) and its in-
hibition can be exploited therapeutically ( 35–37 ). A similar
scenario has been observed in other tumors, such as bladder,
lung, and pancreatic cancers ( 38–44 ) 
Given this complex and controversial landscape, a compre- 
hensive analysis of alterations in the genes encoding for the 
m 

6 A machinery across various cancer types could provide an 

unbiased picture of their potential roles as oncogenes or tu- 
mor suppressors. Here, we performed a computational inves- 
tigation of alterations in the m 

6 A machinery genes across 31 

tumor studies from the Tumor Cancer Genome Atlas (TCGA).
We found that altered expression due to arm-level chromoso- 
mal imbalance is the most predominant type of dysregulation 

and showed cross-tumor profiles of m 

6 A factor expression.
Unexpectedly, YTHDF1, YTHDF2, YTHDF3 and VIRMA,
rather than the intensively studied enzymatic m 

6 A proteins,
emerged as the most frequently dysregulated factors, and their 
alterations significantly associated with patient prognosis. 

Materials and methods 

m 

6 A factors 

Among the genes encoding the m 

6 A machinery, 15 were 
selected. In particular, METTL3, METTL14, RBM15,
RBM15B, WTAP, VIRMA, ZC3H13 and HAKAI were 
considered to be part of the multi-subunit writer complex 

( 4 ). Furthermore, among the reader proteins, YTHDF1,
YTHDF2, YTHDF3, YTHDC1 and YTHDC2 were chosen 

as being direct interactors with the m 

6 A methylation. Finally,
the erasers ALKBH5 and FTO were also included ( 3 ). 

Tumor sample datasets 

Alteration data of tumor samples were downloaded from 

the Tumor Cancer Genome Atlas (TCGA). TCGA samples 
for which copy number alteration, mutation and gene ex- 
pression data were all available, or for which only expres- 
sion and copy number alteration data could be retrieved,
were included, resulting in 6956 and 9327 samples, respec- 
tively, across 31 cancer types ( Supplementary Table S1 ). Data 
for 15 m 

6 A factors were obtained for these samples us- 
ing the cBioPortal R package, cgdsr (v1.3.0) ( 45 ,46 ). GIS- 
TIC 2.0 ( 47 ) profiles were selected for copy number alter- 
ations, rna_seq_v2_mrna_median_Zscores profiles were cho- 
sen for gene expression, and all the mutations were consid- 
ered. In addition, data were retrieved for the genes annotated 

as oncogenes and / or tumor suppressors in OncoKB (541 can- 
cer drivers, https:// www.oncokb.org/ ). For TCGA samples, tu- 
mor stages, grades, and molecular subtypes were retrieved 

from the cgdsr and TCGAbiolinks R packages (v2.12.6) ( 48 ).
Tumor samples mRNA expression levels (TPM transcript per 
kilobase million) were obtained from Xena RSEM Toil Re- 
computed data ( https://xena.ucsc.edu ) ( 49 ). 

Computation of the sample alteration scores 

Copy number alteration (CNA), mutation, and gene expres- 
sion data were retrieved for all the investigated genes in all 
tumor samples. Low-level CNAs were collected for a gene 
when the absolute relative GISTIC score was 1, while a high- 
level CNA was recorded when the absolute relative GISTIC 

score was 2. Similarly, a differential expression was reported 

for those genes with an absolute z -score ≥2. Gene mutations 
were counted when they occurred. The final alteration score 
was defined as 1 for overexpression, amplification, or muta- 
tion, −1 for downregulation or deep deletion, and 0 if the gene 
remained unaltered in that sample. 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://www.oncokb.org/
https://xena.ucsc.edu
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m A factor. 
To assess the significance of the alteration frequencies for
he 15 m 

6 A factors, an empirical P -value was computed by
rst comparing the total alteration frequencies of the m 

6 A fac-
ors with those of 15 randomly selected genes (out of 18421
otal genes) and then with those of 15 randomly selected can-
er driver genes (out of 541 total genes). In both cases, a
000 iteration bootstrap was applied. Similarly, an empiri-
al P -value was calculated by comparing the upregulation fre-
uencies of the 15 m 

6 A factors with the upregulation frequen-
ies of 15 randomly selected genes and cancer driver genes
ith a 1000-iteration bootstrap. 
For the expression and copy number alterations, paired
ilcoxon tests were employed to compare the frequencies

f upregulation / amplification and downregulation / deep dele-
ion of the m 

6 A factors across all tumor samples. Addition-
lly, paired Wilcoxon tests were performed for each m 

6 A fac-
or individually, comparing their upregulation / amplification
nd downregulation / deep deletion frequencies within each tu-
or type and vice versa for each tumor type with respect

o the upregulation / amplification and downregulation / deep
eletion frequencies of each m 

6 A factor. 

nalysis of m 

6 A factor mutations 

umor sample mutation data were obtained by downloading
ublicly available data from the TCGA data analysis center
GDAC) repository ( https:// gdac.broadinstitute.org/ ). Muta-
ions were annotated using the Variant Effect Predictor (VEP)
ool using the GRCh37.p13 assembly. 

dentification of m 

6 A subtypes 

umor samples altered in at least one m 

6 A factor (6092) were
lustered using a non-negative matrix factorization (NMF) al-
orithm. A matrix containing the binarized version of the al-
eration score (1 if an expression alteration occurs for a factor
n a sample, 0 otherwise) for each sample was used for the clus-
ering using the NMF R package (v0.23.0) ( 50 ). The number
f factorization ranks was estimated and then 14 was selected.
he algorithm was run 100 times, and the Brunet method was
pplied ( 51 ). 

To identify representative m 

6 A machinery genes for each
ank, the percentage of samples altered in each m 

6 A factor
as computed for each rank, and then z-score standardized.
 threshold of 1 was applied to the z -scores to select the rep-

esentative genes. 
The comparison between the expression of m 

6 A factors
TPM, Xena portal) in the selected and other classes was per-
ormed using the Wilcoxon test with a 0.05 P -value cutoff. 

nrichment analysis 

nrichment analyses were performed using Fisher exact tests.
 Benjamini–Hochberg correction was applied to the P -
alues, and a 0.05 cutoff was set. Only terms with odds
atios ≥3 were taken into consideration. Pathway enrich-
ent was performed with clusterProfiler (v3.14.0) and Re-

ctomePA (v1.30.0), using KEGG and Reactome annotations
 52 ,53 ). 

RNA–protein analysis 

rotein levels and corresponding mRNA levels were obtained
rom a compendium dataset of 2002 primary tumors from 14
cancer types and 17 studies ( 54 ). For each tissue and m 

6 A fac-
tor, the protein expression levels were compared between the
samples with upregulated / downregulated mRNA (absolute z -
score ≥ 2) and the remaining samples. 

eQTL analysis 

Genotype calls generated from Affymetrix SNP Array 6.0 used
in the heritability analysis were retrieved from the TCGA
legacy archive (portal.gdc.cancer.gov / legacy-archive). Strin-
gent quality control measures were applied to the SNP geno-
typing data. Only autosomal SNP were considered. SNPs and
individuals with call rates < 90% were excluded. Multi-allelic
SNPs and SNPs with minor allele frequencies < 1% or Hardy–
Weinberg equilibrium test P -values < 10 

−6 were discarded.
Overall, genotype calls of 842 108 SNPs across 10 755 TCGA
samples were considered. 

Estimates of genome-wide heritability of the cancer-
associated m 

6 A factors were performed using GCTA
(v1.94.1), which estimates the proportion of variance in
a phenotype explained by all SNPs ( 55 ). The GCTA GREML
approach was used with the default average information
(AI) algorithm to run REML iterations. The genetic relat-
edness matrix (GRM) was calculated as a measure of the
genetic similarity for unrelated individuals (GRM < 0.05)
and then compared to the similarity of the selected m 

6 A
factors to compute the contribution of the genotypic
variance to overall phenotypic variance, V(Genotype) /
V(Phenotype). 

Cis-eQTLs, survival-associated eQTLs and GWAS-
associated eQTLs for all the TCGA tumors were retrieved
from the PancanQTL database ( http://bioinfo.life.hust.edu.
cn/ PancanQTL/ ) ( 56 ) . eQTLs annotated to the selected m 

6 A
factors were retrieved, and the respective positive or negative
beta values (effect size of SNP on gene expression) were
considered. 

Linkage disequilibrium (LD) analyses were performed for
each selected m 

6 A factor. LD was computed using 1000
Genomes Project individual genotypes using ldsep R package
(v2.1.5), which implements a maximum likelihood approach
to estimate LD measures ( 57 ). Specifically, LD was calculated
between each pair of associated SNPs of the annotated eQTLs.
All SNPs in strong LD were aggregated in groups. Strong LD
was defined as R 

2 > 0.8. The number of strong LD groups
for each tumor type was represented using circlize R package
(v0.4.15) ( 58 ). 

Nearest cancer driver genes identification 

For each m 

6 A factor, the nearest cancer driver gene was ex-
tracted (out of 541 cancer drivers downloaded from On-
coKB, https:// www.oncokb.org/ ), considering genes laying on
the same chromosomal arm and with a maximum 1 Mb of dis-
tance. GISTIC profiles were retrieved for each gene in all the
tumor samples. Gain and amplification events were recorded
for GISTIC scores equal to 1 and 2, respectively . Oppositely ,
deletion and deep deletion were represented by −1 and −2
scores, respectively. The concordant presence of copy number
alterations on the m 

6 A factor and its near cancer driver gene
was explored considering samples belonging to the enriched
tumor types and with expression alterations in the respective

6 

https://gdac.broadinstitute.org/
http://bioinfo.life.hust.edu.cn/PancanQTL/
https://www.oncokb.org/
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m 

6 A factors and cancer drivers co-occurrent and 

mutually exclusive interactions 

identification of co-occurrent and mutually exclusive alter-
ations was performed using the SELECT algorithm (v1.6)
( 59 ). A binary matrix with the m 

6 A factors and cancer driver
genes positive and negative expression or copy number alter-
ation scores of tumor samples with at least one altered gene
was used as input. The P -values of the weighted version of the
mutual information (wMI) were converted to negative values
for the mutually exclusive gene pairs and transformed to 1
when comparing the same gene. Interactions that met both
the False Discovery Rate (FDR) cutoff and the Average Sum
Correction (ASC) effect size threshold were considered. 

Survival analysis 

TCGA survival outcome data were obtained from the
standardized datasets published by Liu et al. ( 60 ). The
progression-free interval (PFI) endpoint was used in the pan-
cancer analysis and samples without PFI survival time re-
ported were filtered out. For single tumor survival analysis,
the overall survival (OS) was used when more endpoint pos-
sibilities were available; otherwise, suggested endpoints be-
tween PFI and disease-specific survival (DSS) were applied.
The PCPG samples were removed as no suitable endpoints
were available, as suggested by Liu et al. ( 60 ). 

Survival analyses were performed on different settings. In
one setting, samples with expression alterations in one m 

6 A
factor were compared to those without. For this analysis, all
9327 tumor samples were considered. In another experimen-
tal setting, survival analyses were performed by considering
only the classes presenting an altered m 

6 A factor. For this anal-
ysis, samples altered in at least one m 

6 A factor (6092 samples)
were included, and samples of a class were compared to sam-
ples of the other classes. 

The analyses were performed in a pan-cancer mode, con-
sidering all the tumor types, or in single-tumor mode, consid-
ering each tumor type separately. The positive and negative
alterations scores were considered separately. 

Cox regression-hazard model was applied in all survival
analyses. Survival analyses in the pan-cancer mode were per-
formed with a multivariate cox regression analysis using the
tumor type, age and sex as covariates. Instead, the survival
analyses of the single tumor-mode were performed with a mul-
tivariate cox regression analysis using the age and sex as co-
variates. All the analyses were performed using the survival
and survimer R packages (v2.44-1.1, v0.4.6) ( 61 ,62 ). 

Those comparisons where at least 10 samples were present,
in both altered and control subsets of patients, were taken
into consideration. In the pan-cancer analysis a 0.1 P -value
cutoff was applied. In the single tumor analysis, Benjamini–
Hochberg correction was computed for each tumor type
across the tested conditions (m 

6 A factors / classes) and a 0.1
adjusted P -value cutoff was applied. 

A quantile normalization was applied on the PFI endpoints
of samples of each tumor type, separately. Survival analyses
performed on the samples with expression alterations in one
m 

6 A factor compared to those without, were run also with
the normalized PFI times. The results obtained with the stan-
dard and normalized PFI times were transformed in 1 / −1 and
0 if significant or not significant, respectively, with the sign
corresponding to the hazard ratio. The consistency between
the two methods was calculated by computing the percent-
age of concordant and opposite results on the total number of 
tests. 

Results 

Dysregulated expression of the YTHDF and VIRMA 

genes is the most frequent cross-tumor alteration 

among the m 

6 A core factors 

To investigate the pan-cancer profile of the factors com- 
prising the m 

6 A machinery, we selected the core 15 m 

6 A 

writer, eraser and reader genes (writers: METTL3, METTL14,
VIRMA, WTAP, ZC3H13, HAKAI and RBM15 / 15B; read- 
ers: YTHDC1 / 2, YTHDF1 / 2 / 3; erasers: ALKBH5 and FTO) 
and analyzed their variation in terms of mutations, differen- 
tial expressions, and copy number alterations (CNAs) in 6956 

TGCA cancer samples belonging to 31 tumor types (Figure 
1 A, Supplementary Table S1 ). We assumed differential expres- 
sion significant only for absolute z -scores > 2, and retained 

CNAs only at high gene copy levels, which are supposed to 

represent amplifications and homozygous deletions ( 45 ,46 ).
Indeed, the pattern of CNAs at low gene copy levels, presumed 

to represent gains and heterozygous deletions, was rather 
widespread ( Supplementary Figure S1 A) ( 63 ). The majority 
of samples (70.6%) scored to be altered for either mutation,
expression, or CNA in at least one of the selected m 

6 A core 
factors, with altered expression (63.9%) being predominant 
(Figure 1 B). Altered samples belong to all tumor types consid- 
ered, although to different extents ( Supplementary Figure S1 B,
Supplementary Tables S2 –S4 ), and the majority are altered for 
only one of the 15 m 

6 A core factors (42.8%) ( Supplementary 
Figure S1 C). While writers and readers are more altered than 

erasers, accounting for about three times as many samples 
with at least one altered gene (Figure 1 C), the average nor- 
malized frequency of alteration is the same (10%, 12% and 

9%, respectively). Looking at the individual factors, the per- 
centage of alterations ranges from 21.4% for VIRMA to 6.1% 

for RBM15 (Figure 1 C, Supplementary Tables S2 –S4 ). 
Remarkably, the m 

6 A core factors have an overall higher 
pan-cancer alteration frequency not only when compared to 

15 randomly selected genes ( P -value < 10 

−3 ), but also when 

compared to 15 randomly selected cancer driver genes ( P - 
value = 0.03; n = 541 cancer driver genes from OncoKB) with 

a 1000 iteration bootstrap. 
We next focused on the individual occurrences of muta- 

tions, differential expression and CNAs, to gain insight into 

their functional involvement in tumorigenesis. The total num- 
ber of point mutations in the 15 m 

6 A core factor genes was 
only 758, predominantly missense (76%), with an average 
mutation frequency of 0.7%, lower than in the 541 cancer 
driver genes (1.1%) ( Supplementary Figure S1 D). Moreover,
by investigating the mutation landscape of the 15 m 

6 A fac- 
tors using available classifications of cancer driver genes, we 
found that none were classified as cancer drivers or weak 

drivers ( 64–67 ), apart from RBM15, which emerged as a 
driver specifically in head and neck squamous cell carcinoma 
(HNSC) and lung adenocarcinoma (LUAD) ( 66 ). RBM15 has 
been reported as a potential cancer gene also for its involve- 
ment in the RBM15-MKL1 fusion in AML ( 68 ,69 ). Analysis 
of the differential expression of the 15 m 

6 A core factors (9327 

TCGA samples, Figure 1 A) revealed that most factors (11 / 15) 
are more frequently upregulated than downregulated (paired 

Wilcoxon test P -value = 0.003) (Figure 1 D). Notably, the 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
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Figure 1. Expression dysregulation is the most frequent alteration of m 

6 A factors across 31 tumor types. ( A ) Graphical representation of the types of 
alteration considered from the TCGA dataset, the corresponding number of samples, and downstream analyses. ( B ) The plot shows the percentage of 
samples altered in m 

6 A factors stratified by presence / absence of high-level copy number, mutation, and / or expression alterations. ( C ) The plot shows 
the percentage of samples altered in m 

6 A factors stratified by m 

6 A factor roles (up) and factors (bottom). ( D ) Pie charts display the percentage of tumor 
samples exhibiting changes in expression levels (upregulation: z-score ⇒ 2; downregulation: z -score ≤ −2) categorized by m 

6 A factors and tumor types. 
The number of samples of each tumor type is depicted at the top of the plot. The percentage of samples displaying upregulation and downregulation for 
each m 

6 A factor is illustrated on the right side of the chart. Paired Wilco x on test was performed to compare the frequencies of upregulation and 
downregulation in each tumor type and for each m 

6 A factor (adjusted P -value ≤ 0.05). ( E ) Pie charts display the percentage of tumor samples exhibiting 
changes in copy number events (amplification: GISTIC score = 2; deep deletion: GISTIC score = −2) categorized by m 

6 A factors and tumor types. The 
number of samples of each tumor type is depicted at the top of the plot. The percentage of samples displaying amplification and deep deletion for each 
m 

6 A factor is illustrated on the right side of the chart. A paired Wilcoxon test was performed to compare the frequencies of amplification and deep 
deletion in each tumor type and for each m 

6 A factor (adjusted P -value ≤ 0.05). Cancer type abbreviations: ACC, adrenocortical cancer; BLCA, bladder 
cancer; BRCA, breast cancer; CESC, cervical cancer; CHOL, cholangiocarcinomla; COADREAD, colorectal cancer; DLBC, large B-cell lymphoma; ESCA, 
esophageal cancer; GBM, glioblastoma; HNSC, head and neck cancer; KICH, kidney chromophobe; KIRC, kidney clear cell carcinoma; KIRP, kidney 
papillary cell carcinoma; LAML, acute m y eloid leuk emia; LGG, lo w er grade glioma; LIHC, liv er cancer; LUAD, lung adenocarcinoma; LUSC, lung 
squamous cell carcinoma; OV, o v arian cancer; PAAD, pancreatic cancer; PCPG, pheochromocytoma & paraganglioma; PRAD, prostate cancer; SARC, 
sarcoma; SKCM, melanoma; STAD , stomac h cancer; TGCT, testicular cancer; THCA, thyroid cancer; THYM, thymoma; UCEC, uterine corpus endometrial 
carcinoma; UCS, uterine carcinosarcoma; UVM, ocular melanoma. 
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core factors show a higher mean upregulation when compared
to 15 randomly selected genes and to 15 randomly selected
oncogenes (1000 iterations bootstrap, P -value < 10 

−3 and P -
value = 0.005, respectively; n = 286 oncogenes). VIRMA,
YTHDF1 and YTHDF3 are the most commonly upregulated
genes, representing 18%, 19% and 13% of the altered tumor
samples, respectively, and those with the highest upregulated-
to-downregulated ratio, together with RBM15 and HAKAI. In
contrast, YTHDF2 is the most frequently downregulated fac-
tor (5% of tumor samples; Figure 1 D). Upregulation is also
predominant at the level of single tumor types (19 / 31 tumors
examined, paired Wilcox test adjusted P -value < 0.05), with
VIRMA, YTHDF1, and YTHDF3 remaining the most up-
regulated genes (Figure 1 D). Indeed, VIRMA, YTHDF1 and
YTHDF3 are upregulated in at least 10% of samples in 21,
19 and 19 tumors, respectively, out of 31 tumor types. Finally,
by analyzing the CNAs of the 15 m 

6 A factors, we observed no
significant difference between amplification and deep deletion
frequencies at the pan-cancer and single tumor type level (pan-
cancer: paired Wilcoxon test P -value = 0.5; 31 / 31 tumors ex-
amined: paired Wilcoxon test adjusted P -value > 0.05) (Fig-
ure 1 E). Among all, VIRMA, YTHDF1, and YTHDF3 are the
most frequently amplified genes, with 6%, 3% and 3% of tu-
mor samples altered, respectively (Figure 1 E). 

Taken together, these results show that differential expres-
sion, as derived from z-scores, is the most common and rele-
vant type of dysregulation in cancer among the m 

6 A factors.
YTHDF1-3 and VIRMA are the most altered genes, while,
contrary to expectations, the METTL3, ALKBH5 and FTO
genes, which are intensely studied in cancer for their direct
enzymatic role in m 

6 A deposition and removal, present much
lower levels of alteration. Specifically, they show a dysreg-
ulated expression in 6.2%, 9.6% and 6.6% of tumor sam-
ples, respectively (Figure 1 D), and a frequency of amplifica-
tion or deep deletion events not exceeding 1% of tumor sam-
ples (Figure 1 E). These results do not support the hypoth-
esis of a driver role for the ‘enzymatic’ m 

6 A genes in the
tumorigenesis process, while instead, the cytosolic YTHDF
readers and the VIRMA component of the MACOM com-
plex may be under expression-selective pressure in tumor
evolution. 

Cross-tumor profile of m 

6 A factors displays distinct 
alteration patterns of YTHDF1, YTHDF2, YTHDF3 

and VIRMA 

Does the identified dysregulated expression of some of the
m 

6 A factors suggest that they may play a prominent role in
cancer across different tumor types? To address this question,
we applied a non-negative matrix factorization (NMF) ap-
proach and clustered tumor samples according to their ex-
pression dysregulation, obtaining fourteen groups (‘classes’)
(Figure 2 A, Supplementary Table S5 ). Although most classes
include samples altered in multiple m 

6 A factor genes, each
class is enriched in only one of them (classes 1, 2, 3, 4, 5, 6,
9, 10, 11, 12, 13 and 14) or two (classes 7 and 8) (Figure
2 B, Supplementary Table S6 ), the latter case corresponding to
genes which lay on the same chromosome arm. 

Classes 2, 6, 7 and 14 are the only classes composed of
samples with expression alterations exclusively affecting a re-
duced number (maximum 4) of m 

6 A core factors. Interest-
ingly, these are the factors we have previously identified as
the most dysregulated in cancer (YTHDF1-3 / VIRMA) (Fig-
ure 2 A, B), further suggesting the driving role of these genes 
in tumorigenesis. 

While the NMF clustering distributed most tumor types 
in all classes, almost proportionally to their sample size 
( Supplementary Figure S2 B), classes 2, 6, 7 and 14 are signif- 
icantly enriched for 5 tumor types ( Supplementary Table S7 ).
In detail, class 14 is enriched in low-grade glioma (LGG) (18% 

of class samples) and, to a lesser extent, in pheochromocytoma 
and paraganglioma (PCPG), while classes 2, 6 and 7 are en- 
riched in urothelial bladder carcinoma (BLCA), stomach ade- 
nocarcinoma (STAD) and testicular germ cell tumors (TGCT) 
samples, respectively ( Supplementary Table S7 ). 

We subsequently evaluated the expression alteration fre- 
quency of the 15 m 

6 A factors across the 14 classes and 

observed that, again, YTHDF1, YTHDF2, YTHDF3 and 

VIRMA are the most altered genes among the m 

6 A core fac- 
tors (Figure 2 B). In addition, we also observed that the ex- 
pression levels of VIRMA in class 2, YTHDF1 in class 6, and 

VIRMA and YTHDF3 in class 7 are higher than those of the 
other classes ( Supplementary Figure S2 A), whereas the expres- 
sion of YTHDF2 in class 14 is lower than that of the other 
classes ( Supplementary Figure S2 A). Overall, these genes are 
not only uniquely altered in many tumors but also the only 
ones exhibiting alterations in a cross-class fashion. 

Putting together the percentage of tumor samples with 

unique expression alterations in each m 

6 A factor, the percent- 
age of classes with at least 10% of samples altered in the cor- 
responding m 

6 A factor, and the percentage of samples with 

expression dysregulation and CNAs (Figure 2 C), YTHDF1,
YTHDF2, YTHDF3 and VIRMA are clearly the genes to be 
prioritized for their causative role in oncogenesis and cancer 
progression. 

YTHDF1, YTHDF2, YTHDF3 and VIRMA expression 

dysregulation is driven by broad copy number 
alterations 

Following the identification of the most frequently altered 

genes in the m 

6 A core group, we mapped the tumor types 
where their expression dysregulation primarily occurs (Fig- 
ure 3 A, Supplementary Table S8 ). Colon and rectum ade- 
nocarcinoma (COAD / READ) and STAD, two gastrointesti- 
nal tumors, are enriched in YTHDF1-upregulated samples 
(adj P -value < 10 

−3 ), while LGG and PCPG, two neural tu- 
mors, are enriched in YTHDF2-downregulated samples (adj 
P -value < 10 

−3 ). Similarly, ovarian serous cystadenocarci- 
noma (OV) and uterine carcinosarcoma (UCS), two gyneco- 
logical tumors, are enriched in YTHDF3-upregulated samples 
(adj P -value < 10 

−3 and adj P -value = 0.004, respectively),
while hepatocellular liver carcinoma (LIHC) is enriched in 

samples with VIRMA upregulation (adj P -value < 10 

−3 ).
Finally, CO AD / READ , TGCT and uveal melanoma (UVM) 
are enriched in YTHDF3 / VIRMA-upregulated samples (adj 
P -value < 0.003). We confirmed a significant association 

between the observed mRNA-level dysregulation and the 
corresponding protein level for available tissues by explor- 
ing protein data present in a recent multi-omics dataset 
of 2002 primary tumors ( 54 ) ( Supplementary Figure S3 A; 
Supplementary Table S9 ). 

To determine if the observed expression dysregulations 
were due to focused CNAs, chromosomal instability, or al- 
tered expression regulations, we examined genomic variations 
around the YTHDF1, YTHDF2, YTHDF3 and VIRMA loci,

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
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Figure 2. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered genes and the only ones uniquely altered in many tumors. ( A ) The 
heatmap shows the 14 classes of tumor samples obtained through the NMF clustering method according to their m 

6 A factor expression alterations 
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drivers. 
onsidering broad and focal gains as well as heterozygous and
omozygous deletions using both low and high-level CNA
hresholds. This analysis revealed the widespread involvement
f CNAs in mRNA-level dysregulations by showing collinear-
ty between CNAs and expression changes across tumor types
Figure 3 B). Indeed, in almost all tumor samples enriched
or dysregulated YTHDF1-3 / VIRMA expression, there are
oncordant gain / loss events in at least 94% of cases (Fig-
re 3 B). We next evaluated whether these CNAs were fo-
used or involved broader chromosomal regions and observed
idespread gains and losses along the genes of the entire in-

estigated chromosome arms ( Supplementary Figure S3 B). For
nstance, 8q gains around VIRMA and YTHDF3 involved at
east 80% of genes in 85% of the tumor samples enriched for
IRMA and YTHDF3 upregulated expression. Similarly, tu-
or samples enriched in YTHDF1 and YTHDF2 alterations

how widespread 20q gain and 1p deletion in 94% and 96%
f cases, respectively. 
Since this type of genomic imbalance is characteristic of

hromosomal instability (CIN), a well-known and transver-
al tumor phenotype, we assessed the prevalence of this
eature among the tumor samples enriched for dysregu-
ated YTHDF1-3 and VIRMA expression. As expected, we
bserved a high frequency of samples harboring this spe-
ific phenotype (Figure 3 B). For example, the majority of
OAD / READ and STAD altered samples belong to the CIN

ubtype, characterized by frequent amplification events in 20q
YTHDF1) and 8q (YTHDF3 / VIRMA) ( 70–73 ). Similarly, 8q
mplification is common in OV, UCS, LIHC, and UVM al-
ered samples, the latter mostly belonging to subtypes 3 and
, characterized by 8q whole-arm gain ( 74–77 ). Although the
q amplification event has not been yet reported in TGCT,
he altered samples belong to the seminoma subtype, where a
ositive correlation of VIRMA and YTHDF3 expression has
een found ( 78 ,79 ). Finally, 1p (YTHDF2) loss is a feature of
oth LGG and PCPG, with LGG altered samples belonging to
he IDHmut-codel subtype (characterized by IDH gene muta-
ion and 1p / 19q co-deletion ( 80 )), and PCPG altered samples
elonging to the kinase signaling subtype ( 81 ). 
Besides CNAs involving entire chromosomal arms, we eval-

ated the putative contribution of single nucleotide poly-
orphisms (SNPs) to the m 

6 A factor expression dysregu-
ations. To this end, we first conducted a heritability anal-
sis to examine the contribution of germline genetic vari-
tions assuming YTHDF1-3 / VIRMA expression dysregula-
ions as phenotypes ( Supplementary Figure S4 A) and found
ignificant heritability for all four phenotypes, ranging from
% to 17% ( P -value < 0.05). As cis- associations can con-
ribute to the heritability of gene expression levels and are
ore likely to have a direct impact on gene expression,
e then explored cis- expression quantitative trait loci ( cis-

QTLs) using the PancanQTL resource ( 56 ). Specifically, we
dentified 130 cis- eQTLs associations between SNPs and the
xpression of YTHDF1-3 / VIRMA across 11 tumor types
 Supplementary Table S10 ). Among them, we observed that
ost of the cis- eQTLs were associated with increased expres-

ion of VIRMA in 8 tumor types ( Supplementary Table S10 ).
urthermore, for each of the four analyzed m 

6 A factors, we
omputed linkage disequilibrium (LD) between all the SNPs
f the associated cis- eQTLs and found that most of them are
n strong LD ( R 

2 > 0.8) ( Supplementary Figure S4 B, C). In-
erestingly, the tumor types where cis- eQTLs were identified
ften coincide with those exhibiting dysregulated YTHDF1-
3 / VIRMA expression and an enrichment for the absence of
CNAs ( Supplementary Figure S4 D). 

Taken together, these results indicate that dysregulated ex-
pression observed for YTHDF1-3 / VIRMA is primarily driven
by CNAs involving the entire chromosomal arm, often asso-
ciated with the CIN phenotype. Moreover, we observed a cor-
relation between SNPs and the expression of m 

6 A genes, sug-
gesting that alternative mechanisms also play a role in driving
the observed expression dysregulations. 

Evolutionary dependency analysis reveals m 

6 A 

factors implication in cancer driver pathways 

Having identified CNAs as the main drivers of expression dys-
regulation in the most frequently altered m 

6 A genes in can-
cer, we wondered whether alterations in cancer driver genes
might also contribute to this phenomenon. We thus explored
the potential of trans-interactions between m 

6 A factors and
cancer driver genes employing the SELECT algorithm, intro-
duced for scoring evolutionary dependencies ( 59 ,82 ). By ap-
plying the SELECT algorithm to the expression dysregula-
tions, amplifications, and deep deletion events, we identified
patterns of co-occurrence and mutual exclusivity among the
m 

6 A factors, as well as between the m 

6 A factors and cancer
driver genes ( n = 514 derived from OncoKB). In detail, among
the most dysregulated m 

6 A factors, we identified significant
co-occurrence between VIRMA and YTHDF3 in terms of
amplification and up / down-regulations (Figure 4 A). This co-
occurrence explained their observed association in the NMF
clustering class 7 (Figure 2 A) and is likely due to their close
proximity on chromosome 8q, which implicates them in fre-
quent pan-cancer 8q gains. In addition, we also observed sig-
nificant co-occurrence between VIRMA and YTHDC1 down-
regulations, and between VIRMA and ZC3H13 upregula-
tions. Furthermore, YTHDF3 amplification displays signifi-
cant mutual exclusivity with ZC3H13 amplification, while
YTHDF1 downregulation shows significant mutual exclu-
sivity with YTHDF3 downregulation (Figure 4 A). The m 

6 A
factor dysregulations also exhibit significant co-occurrences
with expression alterations (574 gene pairs) or CNAs (307
gene pairs) of cancer driver genes ( Supplementary Table S11 ).
These co-occurrences can be attributed to genomic proxim-
ity or may provide insights into shared pathways. Specif-
ically, co-occurrences with CNAs exclusively involve can-
cer driver genes located on the same chromosomal arms as
the considered m 

6 A factor ( Supplementary Table S11 ), con-
firming the already established strong influence of genomic
proximity on the frequency of concurrent events ( 82 ). To
exclude hitchhiking effects of the m 

6 A factors by the can-
cer driver genes, we thus investigated the presence of cancer
driver genes within a maximum distance of 1 million base
pairs (1 Mb) from the YTHDF1, YTHDF2, YTHDF3 and
VIRMA genes. We identified only the SESN2 tumor sup-
pressor ( 83 ), located 450 Kb away from YTHDF2. How-
ever, deep deletion events simultaneously affecting SESN2 and
YTHDF2 in the corresponding enriched tumor types proved
to be very rare, considering YTHDF2-downregulated sam-
ples as well as all samples (1.94% and 0.32%, respectively)
( Supplementary Figure S5 A). Therefore, the significant co-
occurrences with CNAs are likely a consequence of frequent
chromosomal imbalances that involve all genes on the arm
rather than a direct dependence of m 

6 A factors on cancer

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
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Figure 4. Co-occurrence of m 

6 A factors expression dysregulations and m 

6 A factors implication in cancer driver pathways. ( A ) The heatmaps show 

co-occurring (green) and mutually e x clusiv e (violet) copy number (up) and expression (down) alterations of m 

6 A factors generated using the SELECT 
algorithm ( 59 ). The color gradient corresponds to the wMI P -values and the size to the effect sizes (ASC-corrected motif score). ( B ) The dot plot shows 
the results of the pathw a y enrichment analysis performed on the cancer driver genes co-occurring with expression dysregulations of the most altered 
m 

6 A genes. The size indicates the number of genes overlapping the corresponding pathway terms, and the color indicates the enrichment adjusted 
P -value (adjusted P -value ≤ 0.05). Only the first 20 enriched pathway terms for each condition are displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SELECT algorithm has also been shown to iden-
tify significant co-occurring alterations within genes be-
longing to the same pathways rather than different path-
ways ( 82 ). Consequently, we performed a pathway enrich-
ment analysis on the cancer driver genes that co-occur in
terms of expression with the most dysregulated m 

6 A fac-
tors, specifically focusing on genes located on different chro-
mosomes (Figure 4 B, Supplementary Table S12 ). We found
that YTHDF2 alterations exclusively co-occur with genes lo-
cated on the same chromosome. In contrast, YTHDF1 ex-
pression dysregulations co-occur with cancer driver genes in-
volved in SUMOylation and TGF β/ SMAD signaling path-
ways, while VIRMA and YTHDF3 co-occur with genes in-
volved in the MAPK, Wnt and PI3K / AKT pathways, with
VIRMA being associated with SUMOylation as well. In
summary, these findings indicate that the most dysregu-
lated genes may contribute to pathways shared with cancer 
driver genes, and these behaviors may have relevance not 
only at a tumor-specific level but also across various cancer 
types. 

Expression dysregulation of the YTHDF1, YTHDF2, 
YTHDF3 and VIRMA m 

6 A factors has pan-cancer 
predictive prognostic power 

To evaluate the prognostic significance of the altered 

expression of the 15 m 

6 A genes in cancer, we con- 
ducted a multivariate Cox regression analysis for each 

gene across all tumor types, assessing increased and de- 
creased expression separately (Figure 5 A; Supplementary 
Table S13 ). Interestingly, upregulation of VIRMA, YTHDF1,
YTHDF3, RBM15, and RBM15B is associated with a worse 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
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Figure 5. The most frequently dysregulated m 

6 A genes show pan-cancer and single-tumor prognostic roles. ( A ) The forest plot shows the results of the 
multiv ariate Co x regression analy ses perf ormed on samples with m 

6 A f actors upregulation or do wnregulation at the pan-cancer le v el. Yello w / green m 

6 A 

factors are significantly associated with a worse or better prognosis, respectively ( P -value < 0.1). ( B ) The forest plots show the results of multivariate 
Cox regression analyses performed on samples with YTHDF1 upregulation, YTHDF2 downregulation, YHDF3 upregulation, and VIRMA upregulation in 
individual tumor types. Yellow / green tumor types are significantly associated with a worse / better prognosis (adjusted P -value < 0.1). Cancer type 
abbreviations: ACC, adrenocortical cancer; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical cancer; CHOL, c holangiocarcinoma; COADREAD , 
colorectal cancer; DLBC, large B-cell lymphoma; ESCA, esophageal cancer; GBM, glioblastoma; HNSC, head and neck cancer; KICH, kidney 
chromophobe; KIRC, kidney clear cell carcinoma; KIRP, kidney papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, 
liver cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian cancer; PAAD, pancreatic cancer; PCPG, 
pheochromocytoma & paraganglioma; PRAD, prostate cancer; SARC, sarcoma; SKCM, melanoma; STAD, stomach cancer; TGCT, testicular cancer; 
THCA, thyroid cancer; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, ocular melanoma. ( C ) 
Example search for ‘alteration analysis’. The figure shows the expression distribution of METTL3 at the pan-cancer level and in each single tumor type. 
( D ) Example search for ‘survival analysis’. The figure shows the effects of METTL3 expression dysregulation on survival, specifically comparing the 
impact of upregulation versus downregulation on overall survival (OS) as the endpoint. 



12 NAR Cancer , 2024, Vol. 6, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prognosis compared to non-upregulated tumor samples [haz-
ard ratio (HR) = 1.1 [1–1.2], P -value = 0.01; HR = 1.1 [0.98–
1.2], P -value = 0.1; HR = 1.1 [1–1.3], P -value = 0.02;
HR = 1.2 [0.99–1.4], P -value = 0.06; HR = 1.2 [0.97–1.4], P -
value = 0.1, respectively], while downregulation of ALKBH5
is also associated with a worse prognosis (HR = 1.2 [0.98–
1.4], P -value = 0.1). On the contrary, METTL14 upregula-
tion and YTHDF2 downregulation predict a better prognosis
(HR = 0.79 [0.63–1], P -value = 0.06; HR = 0.87 [0.73–1],
P -value = 0.1). To ensure that the cross-tumor survival anal-
yses were unbiased by variations in the median progression-
free interval (PFI) times between tumor types, we performed a
multivariate Cox regression analysis on quantile normalized
PFI times, which showed 87% agreement with the previous
analysis ( Supplementary Table S14 ). Overall, these data indi-
cate that among the 15 core m 

6 A genes, YTHDF1, YTHDF2,
YTHDF3 and VIRMA are not only the most altered in expres-
sion but also possess pan-cancer prognostic significance. 

Subsequently, we evaluated if the prognostic role of these
four genes was consistent across individual tumor types
( Supplementary Table S15 ). Our findings indicate that the
upregulation of YTHDF3 and VIRMA in UVM samples,
as well as the upregulation of VIRMA in kidney renal
papillary cell carcinoma (KIRP) and pancreatic adenocar-
cinoma (PAAD) samples, is associated with a significantly
worse prognosis (Figure 5 B). In contrast, in LGG samples,
YTHDF1 upregulation and YTHDF2 downregulation are
significantly linked to worse and better prognosis, respec-
tively (Figure 5 B). When we restricted the survival analy-
sis to samples clustered in the four classes where VIRMA,
YTHDF1, YTHDF2 and YTHDF3 are the only altered genes
(class 2, 6, 7, 14; Supplementary Figure S6 A), we con-
firmed the results for LGG samples, with YTHDF1 upregu-
lation and YTHDF2 downregulation being associated with
worse and better prognosis in class 6 and 14, respectively
( Supplementary Table S16 ). However, in class 7, we did not
confirm the association between YTHDF3 / VIRMA upregula-
tion and unfavorable prognosis in UVM samples but observed
it in lung squamous cell carcinoma (LUSC) and OV samples
( Supplementary Figure S6 A). Overall, despite numerous stud-
ies exploring the outcome of various m 

6 A factors in individual
tumor types, the comprehensive analysis of expression alter-
ations across multiple factors reveals only a few significant
associations. 

Finally, to allow systematic exploration of the impact of
m 

6 A factor dysregulations on cancer survival, we developed
m6Aimpact, a web application freely accessible a https://ltg.
cibio.unitn.it/ m6Aimpact/ . Users can select among the 15 m 

6 A
core factors and examine their effect on survival based on ex-
pression, CNAs, or both (Figure 5 C, D). Our web applica-
tion offers additional features to enhance analysis, including
the option to exclude samples with both expression and CNA
data. Users can also investigate interplays between pairs of
genes, which may include both m 

6 A factors and cancer driver
genes. These analyses can be conducted at the pan-cancer level
or for single tumor types. Furthermore, users can choose from
multiple survival endpoints, such as overall survival (OS) or
progression-free interval (PFI), and select various covariates to
be added to the Cox Proportional Hazard model. m6Aimpact
provides an intuitive platform for gaining further insights
into the relationship between m 

6 A regulators and cancer
prognosis. 
Discussion 

Over the past decade, the dynamic and reversible m 

6 A modi- 
fication has emerged as a key regulatory mechanism in cancer.
However, despite the publication of more than one thousand 

research reports only in the last four years, the overall signif- 
icance of m 

6 A and the specific roles of its controlling factors 
in different cancer types remain controversial. Indeed, no clear 
consensus emerges from the studies regarding the tendency of 
individual altered m 

6 A factors to behave as gain-of-function 

or loss-of-function actors along the tumorigenic process in a 
given tissue ( 84 ). A comprehensive analysis of the alterations 
present in the genes encoding the core m 

6 A machinery pro- 
teins could thus provide an unbiased picture of their potential 
roles across various cancer types, which might highlight re- 
current events. In this context, we investigated the alterations 
in terms of mutations, differential expressions, and CNAs of 
15 m 

6 A factors in samples of 31 cancer types from the TCGA 

dataset. Specifically, we included a gene in the ‘m 

6 A factor’ 
category only when substantial evidence was available for this 
role, and this role was exclusively related to m 

6 A regulation.
For instance, we considered as m 

6 A readers only the 5 pro- 
teins containing the YTH domain, whose only reported func- 
tion is to recognize N 

6 -methylated adenines ( 85–87 ) and, in- 
stead, excluded other RNA-binding proteins, which have been 

demonstrated to bind m 

6 A marks in a sequence-dependent 
manner but for which an m 

6 A-independent role in cancer has 
also been demonstrated. 

Our pan-cancer profile analysis provides a broad overview 

of the most frequent alterations occurring in the m 

6 A ma- 
chinery genes across multiple cancer types. This broad per- 
spective reveals common alteration patterns and highlights 
potential shared therapeutic targets that might be missed 

in single-cancer studies. Although over the past years other 
studies have aimed to analyze alterations of m 

6 A machinery 
genes to uncover the context-specific roles of the m 

6 A fac- 
tors within individual cancers or to explore the influence of 
a single m 

6 A factor across different tumors ( 88–95 ), these at- 
tempts present a number of limitations. For instance, many 
studies have inferred dysregulation of m 

6 A factors by com- 
paring their expression in tumors and normal tissues from 

available databases, which may have introduced bias due to 

different tissue origins. In addition, several studies have used 

common consensus clustering algorithms based on the expres- 
sion dysregulation of m 

6 A factors to identify m 

6 A modifi- 
cation patterns, which can be sensitive to initial conditions 
and parameter choices, potentially leading to variability in re- 
sults and difficulty in interpretation. To overcome these limita- 
tions, we used z-scores derived from diploid samples to deter- 
mine the expression dysregulation of m 

6 A machinery genes.
This method assumes a normal distribution of gene expres- 
sion values and identifies samples with extreme expression 

values, corresponding to an absolute z -score greater than 2.
Although this approach allowed us to identify significantly 
dysregulated genes in our dataset, it may have excluded more 
subtle changes in gene expression that may still play a role. In 

addition, we employed the NMF algorithm, to cluster tumor 
samples according to their expression dysregulation of m 

6 A 

factors. This approach has previously been used as a cluster- 
ing method to reveal molecular patterns ( 96 ,51 ) and offers 
advantages such as high interpretability and the production 

of biologically meaningful clusters that are consistent with the 
non-negative nature of gene expression data. 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae040#supplementary-data
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However, our study may not have captured the full spec-
rum of changes present in a specific cancer type because our
ethods focus on identifying extreme expression levels and

lear patterns and may have missed more subtle but biologi-
ally significant changes in gene expression. 

Among the different types of alterations analyzed—
xpression, mutation and CNA—we identified differential ex-
ression as the most common alteration occurring in the core
 

6 A machinery genes. Point mutations occur at a very low
requency across tumors, as well as high-level CNAs, while
y including both high- and low-level CNAs, we observed
uite abundant alterations in the m 

6 A factors. In this context,
e showed that differential expression of the m 

6 A factors is
ainly driven by chromosome arm-level CNAs, as dysregu-

ated samples are often classified in CIN tumor subtypes. GIS-
IC scores used to identify CNAs are obtained by consider-

ng their frequency and amplitude in the samples analyzed.
xtreme scores corresponding to amplification and deep dele-

ion events may not have been reported for genes meeting the
hreshold only in a subset of tumor samples, thus not accu-
ately reflecting the true copy number alteration status of a
ene. In addition, the use of values corresponding to gain and
eletion events may include genes with limited copy num-
er alterations. The concordant pattern, between expression
ysregulation and CNAs, was observed in other studies as
ell but without identifying alternative mechanisms of reg-
lations of m 

6 A factor expression alterations ( 90 ). Our study,
n contrast, also explored the role of germline genetic vari-
tions, and found significant cis- eQTLs in tumor types ex-
ibiting enrichment in samples with expression alterations
n the most frequently altered genes and without collinear
NAs. Finally, to explore trans-interactions between m 

6 A fac-
ors and cancer driver genes contributing to expression dys-
egulations, we used the SELECT algorithm, which, unlike
he common correlation methods assessing relationships be-
ween variables, identifies specific patterns and associations
etween genes, revealing subsets that co-occur or mutually
xclude each other across tumor types and therefore may
elong to the same rather than different pathways. For in-
tance, we observed the co-occurrence of YTHDF1 upregu-
ation with cancer driver genes involved in the SUMOylation
rocess and the TGF β/ SMAD signaling pathway. Although
vidence is limited, YTHDF1-3 has been shown to facilitate
GF β-induced EMT and invasion in non-small cell lung can-
er ( 97 ). Similarly, we found co-occurrences of VIRMA and
THDF3 upregulation with genes associated with the MAPK,
nt and PI3K / AKT pathways, with VIRMA also linked to

UMOylation. Again, the supporting data for direct involve-
ent of VIRMA and / or YTHDF3 in these pathways is lim-

ted, but some associations have been identified. For example,
IRMA has been shown to activate the JNK / MAPK path-
ay and induce m 

6 A-dependent gefitinib resistance in lung
denocarcinoma cells, and YTHDF3 upregulation has been
ssociated with increased gastric cancer cell growth and inva-
ion through activation of the PI3K / AKT pathway and mod-
lation of the immune microenvironment ( 98 ,99 ). Therefore,
ur results may provide insight into pathways that may be af-
ected by m 

6 A factor alterations and shed light on putative
ownstream effector genes that are not only tumor-specific
ut may also be relevant in other tumors. 
Through our pan-cancer profile analysis, the most altered

enes among the 15 m 

6 A factors were identified, represent-
ng the main finding of our study . Unexpectedly , the enzy-
matic factors responsible for both m 

6 A deposition and re-
moval, respectively METTL3 and ALKBH5 or FTO, resulted
to be rarely altered either at the single tumor level and in a
cross-tumor way . Conversely , our study unveiled that the three
YTHDF paralogs and the MACOM component VIRMA are
the most frequently altered m 

6 A factors. 
While not directly involved in the deposition or removal of

m 

6 A, the three YTHDF paralog genes are widely recognized
for their critical roles in driving m 

6 A-dependent functions. In-
deed, the ability of YTHDF proteins to selectively read m 

6 A-
modified mRNAs allows them to regulate the expression lev-
els of oncogenes or tumor suppressor genes, thereby influenc-
ing various cellular functions crucial in cancer ( 100 ). For in-
stance, YTHDF1 overexpression has been shown to promote
stemness and drug resistance in liver cancer stem cells ( 101 ),
and YTHDF2 to stabilize oncogenic drivers in glioblastoma
( 102 ), while its inhibition in AML selectively compromises
tumor initiation and propagation ( 103 ). On the other hand,
VIRMA and the other components of the MACOM complex
have demonstrated their significance in facilitating the local-
ization and binding of the MAC complex to its target mR-
NAs, consequently influencing its overall profile of activity
( 4 ). In support of the crucial role of VIRMA, two indepen-
dent studies have shown that its silencing leads to a more sig-
nificant reduction in m 

6 A levels compared to the knockout of
METTL3 / METTL14 ( 104 ,105 ). Nevertheless, there are still
fewer reports of VIRMA involvement in cancer initiation and
progression, with respect to the catalytic m 

6 A factors. 
In addition to identifying the three YTHDF paralogs and

VIRMA as the most frequently altered m 

6 A factors, our study
also showed that these genes are the only m 

6 A core factors
uniquely altered in samples from different tumor types and
that their alteration is associated with patient survival across
different cancers. These findings are supported by other recent
studies which also reported that these genes are frequently
overexpressed across tumor types and are associated with
poor prognosis ( 91 ,92 ). In the context of single tumor sur-
vival analysis, while our approach may have missed findings
highlighted in the literature for their importance in specific
tumor subtypes or using specific survival endpoints, we ob-
served opposite prognostic effects of YTHDF1 and YTHDF2
upregulation and downregulation, respectively, in LGG pa-
tients. Recent research has shown that YTHDF2 upregula-
tion is associated with poor prognosis in LGG and is posi-
tively correlated with IDH1 expression ( 106 ). These findings
were also supported by the work of Du et al. and Liu et al.,
who showed a correlation between YTHDF2 expression and
tumor-infiltrating immune cells in LGG ( 107 ,108 ). 

The identification of the YTHDF paralogs and VIRMA as
the most frequently altered genes across cancers in our study
suggests their central role in tumorigenesis and highlights their
potential as promising therapeutic targets. To date, the m 

6 A
field has mainly focused on METTL3 and FTO, both in terms
of studying their role and association with cancer, and at the
therapeutic level, due to their enzymatic nature ( 36 ,33 ). In-
deed, a number of small-molecule inhibitors have been pro-
posed to target METTL3, and one of them, STC-15, is now an
oral drug in phase I trial in advanced cancers ( 109 ). Currently,
there is limited research into the druggability of VIRMA and
specific inhibitors are lacking. On the other hand, the three
YTHDF paralogs, which are all mechanistically implicated in
different tumors and have been shown to largely compensate
each other ( 110 ,111 ), have started to be extensively studied
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from a druggability point of view. Indeed, since their m 

6 A
RNA recognition pocket is almost identical ( 112 ,113 ), they
could represent a potential cumulative cancer drug target. The
first YTHDF inhibitors have been reported. These molecules
can either act on all three paralogs simultaneously ( 114 ) or
be selective for a specific paralog ( 115–117 ). In this context,
further studies focusing on the role of YTHDF and VIRMA
in cancer and their potential inhibition may be crucial to de-
termine their therapeutic viability and importance in cancer
treatment. 

Globally, our pan-cancer analysis revealed that differential
expression is the most prevalent alteration in m 

6 A machinery
genes, primarily driven by chromosome arm-level CNAs, as
dysregulated samples are often classified in CIN tumor sub-
types. However, other minor or tumor-specific mechanisms,
such as the presence of cis- eQTLs, could also explain the
m 

6 A factor expression alterations. Among the m 

6 A core fac-
tors, we found that the three YTHDF paralogs and VIRMA
are the most frequently altered genes and are associated with
survival prognosis. These results challenge the current focus
on METTL3 and FTO, suggesting VIRMA and YTHDFs as
promising new targets for cancer therapy. Taken together,
these findings provide an innovative perspective on the role
of m 

6 A genes in cancer and set a potentially valuable basis
for future studies aimed at experimentally validating the al-
terations in these genes in individual tumor types, exploring
their druggability or testing their combination as new thera-
peutic strategies. 
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