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Abstract: It is well known that the unusual expression of long non-coding RNAs (lncRNAs) is
closely related to the physiological and pathological processes of diseases. Therefore, inferring the
potential lncRNA–disease associations are helpful for understanding the molecular pathogenesis
of diseases. Most previous methods have concentrated on the construction of shallow learning
models in order to predict lncRNA-disease associations, while they have failed to deeply integrate
heterogeneous multi-source data and to learn the low-dimensional feature representations from these
data. We propose a method based on the convolutional neural network with the attention mechanism
and convolutional autoencoder for predicting candidate disease-related lncRNAs, and refer to it
as CNNDLP. CNNDLP integrates multiple kinds of data from heterogeneous sources, including
the associations, interactions, and similarities related to the lncRNAs, diseases, and miRNAs. Two
different embedding layers are established by combining the diverse biological premises about the
cases that the lncRNAs are likely to associate with the diseases. We construct a novel prediction model
based on the convolutional neural network with attention mechanism and convolutional autoencoder
to learn the attention and the low-dimensional network representations of the lncRNA–disease pairs
from the embedding layers. The different adjacent edges among the lncRNA, miRNA, and disease
nodes have different contributions for association prediction. Hence, an attention mechanism at the
adjacent edge level is established, and the left side of the model learns the attention representation
of a pair of lncRNA and disease. A new type of lncRNA similarity and a new type of disease
similarity are calculated by incorporating the topological structures of multiple bipartite networks.
The low-dimensional network representation of the lncRNA-disease pairs is further learned by the
autoencoder based convolutional neutral network on the right side of the model. The cross-validation
experimental results confirm that CNNDLP has superior prediction performance compared to the
state-of-the-art methods. Case studies on stomach cancer, breast cancer, and prostate cancer further
show the ability of CNNDLP for discovering the potential disease lncRNAs.

Keywords: lncRNA-disease association prediction; feature learning based on convolutional
autoencoder; convolutional neural networks; attention at adjacent edge level; similarity calculation
based on multiple bipartite networks

1. Introduction

For the past few years, genetic information has been thought to be stored only in protein-coding
genes, while non-coding RNAs (ncRNAs) are only byproducts of the transcription process [1,2].
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However, accumulating evidences indicate that ncRNAs play important roles in various biological
processes, especially long non-coding RNAs (lncRNAs), with lengths > 200 nucleotides [3,4].

The previous methods have been presented for predicting the lncRNA-disease associations,
and they are classified into three categories. The methods in the first category utilize machine learning
methods to identify the candidate associations. Chen et al. develop a semi-supervised learning model,
LRLSLDA, which uses Laplacian regularized least squares to identify possible associations between
lncRNA and disease [5]. A model based on the Bayesian classifier was developed for predicting
candidate disease lncRNAs [6]. However, most of the methods in this category fail to achieve the good
performances for the lncRNAs with no any known associated diseases.

The second category of methods takes use of the biological premise that lncRNAs with similar
functions tend to be associated with similar diseases [7]. First, the similarity between two lncRNAs
is calculated by the diseases associated with the lncRNAs, and a network composed of lncRNA is
constructed by using the similarities between lncRNAs [8]. Several methods are presented for predicting
the lncRNAs related to a given disease based on the lncRNA network, for instance, via random walks
on the lncRNA network [9,10] or by utilizing the information of neighboring nodes of lncRNA [11].
These methods are ineffective for the new diseases with no known related lncRNAs, as they rely on
a set of seed lncRNAs that have been observed to be related to the disease. Some methods attempt
to introduce additional information about diseases to solve this shortcoming. Disease information
is incorporated with the lncRNA network to create a heterogeneous lncRNA-disease network that
contains information of lncRNA similarities, that of disease similarities and that of lncRNA-disease
associations. Several methods exploit the information, but they construct different models within
the heterogeneous network to estimate the association scores between the lncRNAs and the diseases.
For instance, the association scores are derived by random walks in the lncRNA-disease network [10,12],
or by matrix factorization of lncRNA-disease associations [13,14]. Since lncRNAs are often involved in
disease processes along with miRNAs, it is necessary to integrate the interactions and associations
about the miRNAs. Nevertheless, most of the previous methods overlook these information related to
the miRNAs.

The third category of methods integrates multiple biological data sources about the lncRNA,
the miRNA, the proteins. MFLDA integrates various information about the genes and the miRNAs
interacted with lncRNAs, and about the diseases associated with lncRNAs. The method constructs
a matrix factorization based on data fusion model for predicting disease lncRNAs [15]. Zhang et al.
introduce the protein information to establish the lncRNA-protein-disease network and predict the
candidate associations between lncRNAs and diseases based on propagating information streams in
the network [16]. The diverse information available about the lncRNAs, diseases, genes, and proteins
reflect the associations of lncRNAs and diseases from the different perspectives. However, it is
difficult for these methods to deeply integrate heterogeneous data from multiple sources. Therefore,
we present a novel prediction method based on dual convolutional neural networks to learn the latent
representations of lncRNA-disease pairs from the multiple-source data.

2. Experimental Evaluations and Discussions

2.1. Evaluation Metrics

Five-fold cross-validation is used to evaluate the prediction performances of CNNDLP and several
state-of-the-art methods for predicting lncRNA-disease associations. All the known lncRNA–disease
associations are regarded as positive samples, and the unobserved associations are taken as negatives
samples. We randomly divided all the positive samples into five subsets, and four of them are used to
training the model. As the number of positive samples is far less than that of the negative samples
(ratio of positive samples to negative samples is nearly 1:36 in our study), during the training process,
we select the negative samples randomly whose number match to the number of the positive training
samples, and these negative samples are also used for training the model. The positive samples in
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the remaining subset and all the negative samples are considered as the testing samples. The number
of positive samples and that of negative samples during the cross-validation process are listed in
Supplement Table S1. In particular, during each cross-validation, the positive samples used for testing
are removed and the lncRNA similarities are recalculated by using the remaining positive samples.

We obtain the association scores of testing samples and prioritize them by their scores. The positive
samples are ranked higher, which indicate that the prediction performance is better. The lncRNA-disease
node pairs whose scores are greater than a classification threshold θ are identified as positive samples,
and the ones that have lower scores are determined as negative samples. The true positive rates (TPRs)
and the false positive rates (FPRs) at various θ values are calculated as follows:

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(1)

where TP and TN are the numbers of positive and negative samples that are identified correctly, while
FN and FP are the numbers of misidentified positive and negative samples. The receiver operating
characteristic (ROC) curve can be drawn according to the TPRs and FPRs at each various θ, while the
area under the ROC curve (AUC) is usually used to evaluate the overall performance of a prediction
method [17].

A serious imbalance between the positive samples and the negative ones appears since their ratio
is 1:36. For such imbalanced cases, precision-recall (PR) curve is confirmed to be more informative than
ROC curve [18]. Therefore, the PR curve is used as another important measurement for the prediction
performance of each method. Precision and recall are calculated as follows:

precision =
TP

TP + FP
, recall =

TP
TP + FN

(2)

where precision is the proportion of the real positive samples among the samples that are identified
as the positive ones, while recall is the proportion of the real positive samples to the total actual
positive ones. The area under the P-R curve (AUPR) is also utilized to evaluate the performance of
lncRNA-disease association prediction [19].

In addition, the top candidate lncRNAs are usually selected by the biologists for further
experimental verification of their associations with an interested disease. Therefore, we demonstrate
the recall rates of the top 30, 60, and 240 candidates, which demonstrates how many of the positive
samples are identified correctly within the ranking list of top k.

2.2. Comparison with Other Methods

To assess the prediction performance of CNNDLP, we compare it with several state-of-the-art
methods for predicting disease lncRNAs: SIMCLDA [20], Ping’s method [21], MFLDA [15], LDAP [22]
and CNNLDA [8]. CNNDLP and the other four methods have specific hyperparameters for fine-tuning
to achieve their best association prediction performance. We choose the values of CNNDLP’s
hyperparameters, α, β and λ, from {0.1, ..., 0.9}. CNNDLP achieved the best performance of five-fold
cross-validation, when α = 0.9, β = 0.8 and λ = 0.3. The prediction performances of CNNDLP at
different values of α, β, and λ on CNNDLP in the Supplementary Table S2, Supplementary Table S3,
and Supplementary Table S4. In addition, the window size of all convolutional layers and pooling
layers in CNNDLP is set as 2 × 2. The number of filters in the first and the second convolutional layers
nconv1 and nconv2 are set to 16 and 32 respectively. CNNDLP has a great many parameters, which is
easy to make the model overfit all the training samples. Therefore, we adopt dropout strategy and
batch normalization to prevent the overfitting. To make a fair comparison, we set the hyperparameters
of other methods to the optimal values that are recommended by their respective literatures (i.e.,
αl = 0.8, αd = 0.6 and λ = 1 for SIMCLDA, α = 0.6 for Ping’s method, α = 105 for MFLDA, Gap open = 10.
Gap extend = 0.5 for LDAP).
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As shown in Figure 1a, CNNDLP yields the highest average performance on all of the 405 diseases
(AUC = 0.969). In particular, its performance is increased SIMCLDA by 21.2%, Ping’s method by
9.3%, MFDDA by 34.4%, LDAP by 10.7%, and CNNLDA by 1.7%. The AUCs of the five methods on
10 well-characterized diseases are also listed in Table 1, and CNNDLP achieves the best performance
in all of the 10 diseases. The AUC of CNNDLP is slightly better than CNNLDA, but the AUPR of
the former is 3.5% higher than the latter. The possible reason for this is that CNNLDA did not learn
the low-dimensional network representation of a lncRNA-disease pair. Ping’s method and the LDAP
achieved decent performance as they take advantage of the various similarities of different types of
lncRNAs and diseases. MFLDA does not perform as well as the other four methods. A possible reason
is that it ignored the lncRNA similarity and the disease similarity, while are exploited by the other
methods. The improvement of CNNDLP over the compared methods is primarily due to the fact that
it deeply learns the attention representation and low-dimensional network-level representation of the
lncRNA-disease node pairs.
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Table 1. AUCs of CNNDLP and other methods on all the diseases and 10 well-characterized diseases.

Disease Name CNNDLP Ping’s
Method

AUC
LDAP SIMCLDA MFLDA CNNLDA

Prostate cancer 0.951 0.826 0.710 0.874 0.553 0.897
Stomach cancer 0.947 0.930 0.928 0.864 0.467 0.958

Lung cancer 0.976 0.911 0.882 0.790 0.676 0.940
Breast cancer 0.956 0.872 0.830 0.742 0.517 0.836

Reproduce organ cancer 0.943 0.818 0.742 0.707 0.740 0.922
Ovarian cancer 0.970 0.913 0.857 0.786 0.558 0.942

Hematologic cancer 0.989 0.908 0.903 0.828 0.716 0.934
Kidney cancer 0.984 0.979 0.977 0.728 0.677 0.956
Liver cancer 0.956 0.910 0.898 0.799 0.634 0.918

Thoracic cancer 0.921 0.860 0.792 0.792 0.649 0.890
Average AUC of 405

diseases 0.969 0.870 0.745 0.745 0.626 0.952

The bold values indicate the higher AUCs.

As shown in Figure 1b, CNNDLP’s average AUPR is also higher than other methods on 405 diseases
(AUPR = 0.286). Its average AUPR is 22.7%, 13.4%, 24.7%, 15.9%, and 3.5% higher SIMCLDA, Ping’s
method, MFLDA, LDAP and CNNLDA, respectively. In addition, CNNDLP performs the best
performance among nine of the ten well-characterized diseases (Table 2).
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Table 2. AUPRs of CNNDLP and other methods on all the diseases and 10 well-characterized diseases.

Disease Name CNNDLP Ping’s
Method

AUPR
LDAP SIMCLDA MFLDA CNNLDA

Prostate cancer 0.538 0.333 0.297 0.176 0.092 0.390
Stomach cancer 0.373 0.364 0.094 0.138 0.008 0.286

Lung cancer 0.666 0.437 0.363 0.131 0.171 0.058
Breast cancer 0.485 0.403 0.396 0.047 0.031 0.964

Reproduce organ
cancer 0.498 0.281 0.240 0.130 0.103 0.091

Ovarian cancer 0.552 0.483 0.427 0.027 0.023 0.526
Hematologic cancer 0.667 0.403 0.370 0.216 0.121 0.523

Kidney cancer 0.569 0.663 0.462 0.030 0.034 0.584
Liver cancer 0.630 0.498 0.511 0.140 0.110 0.666

Thoracic cancer 0.399 0.383 0.364 0.155 0.102 0.890
Average AUC of 405

diseases 0.286 0.152 0.127 0.059 0.039 0.251

The bold values indicate the higher AUPRs.

A higher recall value in the top k of ranking list indicates that more real lncRNA-disease associations
are identified correctly. Figure 2 shows CNNDLP outperforms the other methods at different top k
cutoffs, and ranks 88.6% in top 30, ranks 94.6% in top 60, ranks 97.5% in top 90, and ranks 98.3% in top
120. Most of the recall rates of Ping’s method are very close to LDAP. The former ranked 68.9%, 81.3%,
87.5% and 92.7% in top 30, 60, 90 and 120, respectively, and the latter ranked 68.5%, 81.7%, 88.0% and
93.3%. MFLDA is still worse than the other methods, and it ranked 42.0%, 53.9%, 61.0% and 65.6%.
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In addition, a paired Wilcoxon test is conducted to confirm whether CNNDLP’s prediction
performance is significantly greater than the other methods. The statistical results in Table 3 show that
CNNDLP yields better performance than the other methods in terms of not only AUCs but AUPRs,
as well for the threshold p-value of 0.05.
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Table 3. Comparing of different methods based on AUCs with the paired Wilcoxon test.

SIMCLDA Ping’s Method MFLDA LDAP CNNLDA

p-value of ROC curve 9.2454 × 10−6 0.00048 5.9940 × 10−7 0.00121 0.00773
p-value of PR curve 8.3473 × 10−7 0.04174 3.5037 × 10−8 0.00126 0.00024

2.3. Case Studies: Stomach Cancer, Breast Cancer and Prostate Cancer

To further demonstrate the capability of CNNDLP to discover potential disease-related candidate
lncRNAs, we construct the case studies on stomach cancer, breast cancer, and prostate cancer. For each of
these three diseases, we prioritize the candidate lncRNA-disease associations based on their association
scores and gather their respective 15 candidates.

Stomach cancer is currently the fourth most common malignant tumor in the world and the second
leading cause of cancer-related death [23]. First, Lnc2Cancer is a manually curated database that are
verified associations between the lncRNAs and the human cancers by the biological experiments [24].
Twelve of 15 candidates are included by Lnc2Cancer (Table 4), which indicates that these lncRNAs are
indeed associated with the disease.

Table 4. The top 15 stomach cancer-related candidate lncRNAs.

Rank lncRNA Name Description Rank lncRNA Name Description

1 SPRY4-IT1 Lnc2Cancer,
LncRNADisease 9 CDKN2B-AS1 LncRNADisease

2 TINCR Lnc2Cancer,
LncRNADisease 10 CCAT1 Lnc2Cancer,

LncRNADisease

3 H19 Lnc2Cancer,
LncRNADisease 11 HOTAIR Lnc2Cancer,

LncRNADisease

4 TUSC7 Lnc2Cancer,
LncRNADisease 12 GACAT2 LncRNADisease

5 BANCR Lnc2Cancer,
LncRNADisease 13 UCA1 Lnc2Cancer,

LncRNADisease

6 MEG3 Lnc2Cancer,
LncRNADisease 14 PVT1 Lnc2Cancer,

LncRNADisease

7 GAS5 Lnc2Cancer,
LncRNADisease 15 MEG8 literature

8 GHET1 Lnc2Cancer,
LncRNADisease

Second, LncRNADisease records more than 4564 lncRNA-disease associations that are obtained
from experiments, the published literatures or computation, and then the dysregulation of lncRNAs
are manually confirmed [25]. There are 14 candidates contained by the LncRNADisease, indicating
they are upregulated or downregulated in stomach cancer tissues. In addition, one candidate labeled
by “literature” is supported by the literature, and it is confirmed to have dysregulation in the cancer
when compared with the normal tissues [26].

Among the top 15 candidates for breast cancer, 11 candidates are reported in Lnc2Cancer with
abnormal expression in breast cancer. (Table 5) LncRNADisease contains 12 candidates, which confirms
the associations between these candidates and the disease. The remaining 2 candidates are confirmed
by the literatures to have desregulation in the breast cancer [27,28].



Int. J. Mol. Sci. 2019, 20, 4260 7 of 17

Table 5. The top 15 breast cancer-related candidate lncRNAs.

Rank lncRNA Name Description Rank lncRNA Name Description

1 SOX2-OT Lnc2Cancer,
LncRNADisease 9 CCAT1 Lnc2Cancer,

LncRNADisease

2 HOTAIR Lnc2Cancer,
LncRNADisease 10 GAS5 Lnc2Cancer,

LncRNADisease

3 LINC00472 Lnc2Cancer,
LncRNADisease 11 MIR124-2HG literature

4 BCYRN1 LncRNADisease 12 XIST Lnc2Cancer,
LncRNADisease

5 LINC-PINT literature 13 LINC-ROR Lnc2Cancer,
LncRNADisease

6 MALAT1 Lnc2Cancer,
LncRNADisease 14 PANDAR Lnc2Cancer,

LncRNADisease
7 CDKN2B-AS1 LncRNADisease 15 AFAP1-AS1 Lnc2Cancer

8 SPRY4-IT1 Lnc2Cancer,
LncRNADisease

The top 15 prostate cancer-related candidates and the corresponding evidences are listed in Table 6.
Fourteen candidates are included by Lnc2Cancer and 14 ones are contained by LncRNADisease,
which indicates that they truly are related to the disease. All the case studies confirm that CNNDLP is
effective and impactful for discovering potential candidate disease lncRNAs.

Table 6. The top 15 prostate cancer-related candidate lncRNAs.

Rank lncRNA Name Description Rank lncRNA Name Description

1 CDKN2B-AS1 LncRNADisease 9 HOTAIR Lnc2Cancer,
LncRNADisease

2 PCGEM1 Lnc2Cancer,
LncRNADisease 10 LINC00963 Lnc2Cancer,

LncRNADisease

3 PVT1 Lnc2Cancer,
LncRNADisease 11 H19 Lnc2Cancer,

LncRNADisease

4 GAS5 Lnc2Cancer,
LncRNADisease 12 MEG3 Lnc2Cancer,

LncRNADisease

5 HOTTIP Lnc2Cancer,
LncRNADisease 13 TUG1 Lnc2Cancer,

LncRNADisease

6 NEAT1 Lnc2Cancer,
LncRNADisease 14 PCA3 Lnc2Cancer,

LncRNADisease

7 PCAT5 Lnc2Cancer 15 DANCR Lnc2Cancer,
LncRNADisease

8 PRINS Lnc2Cancer,
LncRNADisease

2.4. Prediction of Novel Disease lncRNAs

After five-fold cross validation and case studies to confirm its prediction performance, we further
apply CNNDLP to 405 diseases. All the known lncRNA-disease associations are used for training
CNNDLP’s to predict potential disease-related lncRNAs. The top 50 potential candidates for each of
405 diseases are demonstrated in Supplementary Table S5.

3. Materials and Methods

3.1. Datasets for lncRNA-Disease Association Prediction

We obtained thousands of lncRNA-disease associations, lncRNA-miRNA interactions and
miRNA-disease associations from a published work [15]. The human lncRNA-disease database
(LncRNADisease) consists of 2687 lncRNA-disease associations that were verified by the biological
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experiments, covering 240 lncRNAs and 405 diseases [29]. The disease similarities were calculated
based on directed acyclic graphs (DAGs) and the DAGs were constructed based on the disease terms
from the U.S. National Library of Medicine (MeSH). The 1002 lncRNA-miRNA interactions were
originally extracted from starBasev2.0 and they have been confirmed by biological experiments [30],
and were involved 495 miRNAs. The 13,559 miRNA-disease associations were obtained from HMDD
database [31].

3.2. Bipartite Graphs about the lncRNAs, Diseases, miRNAs, and Representations

We firstly construct a bipartite graph composed of lncRNAs and diseases by connecting them
according to the observed lncRNA-disease associations (Figure 3a). The graph is represented by matrix
A =

[
Ai j

]
∈ RNl×Nd , where Nl and Nd are the number of lncRNAs and that of diseases, respectively.

Each of rows corresponds to a lncRNA while each of columns represent a disease. If a lncRNA li has
been observed to be associated a disease d j, the Ai j in A is set to 1, otherwise Ai j is 0.
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Figure 3. Construction and representation of multiple bipartite graphs. (a) Construct a lncRNA-
disease association bipartite graph based on the known associations between lncRNAs and diseases, 
and its’ matrix representation A. (b) Construct lncRNA-miRNA interactions bipartite graph based on 
the known lncRNA-miRNA interactions, and its’ matrix representation B. (c) Construct miRNA-
disease association bipartite graph based on known miRNA-disease associations, and its’ matrix 
representation C. (d) Calculate the lncRNA similarity, and construct the matrix representation L. (e) 
Calculate the disease similarity, and construct the matrix representation D. 

There are a great many interactions between the lncRNAs and miRNAs that have been 
confirmed by the biological experiments [32]. A bipartite graph composed of lncRNA and miRNA 
nodes is established when there are known interactions between them (Figure 3(b)). 𝑩 = ൣ𝐵௜௝൧ ∈𝑅ே೗×ே೘ is used to represent interaction matrix, the graph including 𝑁௟ lncRNAs and 𝑁௠ miRNAs. 
If it is known that lncRNA 𝑙௜  is interacted with miRNA 𝑚௝ , 𝐵௜௝ = 1 , or 𝐵௜௝ = 0  when their 
interaction has not been observed. 

An edge is added to connect a miRNA and a disease, when they are observed to have association 
(Figure 3(c)). 𝑪 = ൣ𝐶௜௝൧ ∈ 𝑅ே೘×ே೏ is a matrix representing a bipartite graph with 𝑁௠ miRNAs and 𝑁ௗ  diseases. We set 𝐶௜௝  to 1 if miRNA 𝑚௜  is associated with disease 𝑑௝ , or 0 when no such 
association is observed. 
  

Figure 3. Construction and representation of multiple bipartite graphs. (a) Construct a lncRNA-disease
association bipartite graph based on the known associations between lncRNAs and diseases, and its’
matrix representation A. (b) Construct lncRNA-miRNA interactions bipartite graph based on the
known lncRNA-miRNA interactions, and its’ matrix representation B. (c) Construct miRNA-disease
association bipartite graph based on known miRNA-disease associations, and its’ matrix representation
C. (d) Calculate the lncRNA similarity, and construct the matrix representation L. (e) Calculate the
disease similarity, and construct the matrix representation D.

There are a great many interactions between the lncRNAs and miRNAs that have been confirmed
by the biological experiments [32]. A bipartite graph composed of lncRNA and miRNA nodes is
established when there are known interactions between them (Figure 3b). B =

[
Bi j

]
∈ RNl×Nm is used

to represent interaction matrix, the graph including Nl lncRNAs and Nm miRNAs. If it is known
that lncRNA li is interacted with miRNA m j, Bi j = 1, or Bi j = 0 when their interaction has not
been observed.
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An edge is added to connect a miRNA and a disease, when they are observed to have association
(Figure 3c). C =

[
Ci j

]
∈ RNm×Nd is a matrix representing a bipartite graph with Nm miRNAs and Nd

diseases. We set Ci j to 1 if miRNA mi is associated with disease d j, or 0 when no such association
is observed.

3.3. LncRNA-Disease Association Prediction Model Based on CNN

In this section, we describe the prediction model based on convolutional neural networks and
attention mechanism for learning the latent representation and predicting the association score of
lncRNA li and disease d j. The embedding layer is firstly constructed by incorporating the associations,
the similarities, the interactions about lncRNAs, diseases, miRNAs. A novel prediction model is
constructed and it is composed of the left and right parts. The left side of the model learns the attention
representation of li and d j, while the network representation of li and d j is learned in the right side of
model. Each of the two representations goes through a fully connected layer and a softmax layer and
the associated possibility between li and d j is obtained and it is regarded as their association score.
The final score is the weighted sum of two association scores.

3.3.1. Embedding Layer on the Left

lncRNA Functional Similarity Measurement

On the basis of the biological premise that lncRNAs with similar functions are more possibly to be
associated with similar diseases, the similarity of two lncRNAs is measured by their associated diseases.
For instance, lncRNA la is associated with disease d1, d2 and d4 and lncRNA lb is associated with
diseases d2, d4 and d5. The similarity between Ea = {d1, d2, d4} and Eb = {d2, d4, d5} is regarded as the
functional similarity of la and lb. The lncRNA similarity that are used by us is calculated according to
the Xuan’s method [8]. Matrix L =

[
Li j

]
∈ RNl×Nl is the lncRNA similarity matrix (Figure 3d), where Li j

is the similarity of lncRNAs li and l j, Li j value changes between 0 and 1.

Disease Similarity Measurement

All semantic terms related to a disease form its directed acyclic graph (DAG). The semantic
similarities between the diseases are successfully calculated by Wang et al. based on their DAGs [33].
We calculate the disease similarities according to Wang’s method, and the similarities can be represented
by matrix D =

[
Di j

]
∈ RNd×Nd , where Di j is the similarity of disease di and d j (Figure 3e). The similarity

of two diseases also varies between 0 and 1.

The Left Embedding Layer for Integrating the Original Information

If a lncRNA and a disease have similarity relationships and association relationships with the
more common lncRNAs, they are more likely to associated with each other. We take the lncRNA l1
and the disease d2 as an example to explain the process of constructing the embedding layer on the
left. As shown in Figure 4, let L1 represents the first row of L which records the similarities between
l1 and all the lncRNAs. The second row of AT, AT

2 , contains the associations between d2 and all the
lncRNAs. For example, as l1 is similar to l2 and l5, and d2 has been associated with l2, l4 and l5, l1 is
possibly related to d2. We stack L1 and AT

2 together as the first part of the embedding layer. Similarly,
l1 and d2 are more likely to associate when l1 and d2 have the similarity and association connections
with more common diseases. Therefore, we stack A1 and D2 as the second part of the embedding
layer. In addition, when a lncRNA and a disease have interaction and association relationships with
the common miRNAs, they are more possibly to have association. For instance, there is a possible
association between l1 and d2, since l1 interacts with miRNAs m1 and m3, and disease d2 is associated
with m2 and m3. The first row of B and the second row GT are stacked as the third part of the embedding
layer. The final embedding layer matrix between l1 and d2 is denoted as X ∈ R2×(Nl+Nm+Nd).
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Figure 4. Construction of the left embedding layer matrix of l1 and d2, X. (a) Construct the first part of
X by exploiting the lncRNA similarities and the lncRNA-disease associations. (b) Construct the second
part of X by integrating the lncRNA-disease associations and the disease similarities. (c) Construct the
third part of X by incorporating the lncRNA-miRNA interactions and the miRNA-disease associations.
(d) Concatenate the three parts of X.

Attention at the Adjacent Edge Level

For a lncRNA node or a disease node, not all the adjacent edges of the node have equal
contributions for learning the representation of a pair of lncRNA-disease. In order to solve the issue,
we establish the attention mechanism to enhance the adjacent edges that are important for predicting
the lncRNA-disease associations. In the embedding layer matrix X, Xi j represents the connection case
between the i-th node and the j-th node, and Xi j is assigned an attention weight αi j, which is defined
as follows,

Fi j = tan h
(
WXi j + b

)
(3)

αi j =
exp

(
FT

ijue

)
∑

j exp
(
FT

ijue

) (4)

X̂i j = αi jXi j (5)

where W and b are a weight matrix and a context vector respectively, and ue is a bias vector. Fi j is
an attention score that represents the importance of Xi j. αi j is a normalized importance Xi j. X̂ is the
enhanced embedding layer matrix after the attention mechanism at the adjacent edge level is applied
for X.

3.3.2. Embedding Layer on the Right

First, it is known that two lncRNA nodes are similar if they are associated with some common
disease nodes [22]. In the bipartite network of lncRNA-disease (Figure 5a), lncRNA l1 and l3 are
associated with a common disease node d2, so l1 and l3 are similar. l3 and l5 are also similar because
they are related to a disease node d1 (Figure 5b). Similarly, d1 is similar to d2 as they are associated with
common lncRNA node l3 (Figure 5c). Second, if two lncRNA nodes have no common neighboring
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nodes, while they are related to some similar disease nodes, they are also similar to each other [22].
As shown in Figure 5d, l1 and l5 are similar, because their neighboring nodes d1 and d2 are similar.
Similarly, d2 and d3 are similar as they are associated with similar neighboring nodes l3 and l5 (Figure 5e).
Ping et al. successfully measured the lncRNA similarities and the disease similarities by utilizing the
lncRNA-disease bipartite network.
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Figure 5. Calculation of the first type of lncRNA similarity and the first type of disease similarity.
(a) The lncRNA-disease association bipartite network. (b) Calculate the lncRNA similarities based on
the common associated disease nodes. (c) Computer the disease similarities based on their common
related lncRNA nodes. (d) Calculate the lncRNA similarities according to their associated similar
disease nodes. (e) The disease similarity calculation based on their related similar lncRNA nodes.

Unlike Ping’s method that focused on a single bipartite network, multiple kinds of lncRNA
similarities and disease similarities are calculated by utilizing the bipartite networks from different
sources about lncRNA-disease associations, lncRNA-miRNA interactions and miRNA-disease

associations. The first kind of lncRNA similarity L(1) =
[
L(1)

i j

]
∈ RNl×Nl , and the first kind of

disease similarity D(1) =
[
D(1)

i j

]
∈ RNd×Nd are calculated according to Ping’s method. The second

kind of lncRNA similarity is measured by exploiting the information of common miRNA nodes and
similar ones interacting with two lncRNA nodes in the lncRNA-miRNA bipartite network, and it is

denoted as L(2) =
[
L(2)

i j

]
∈ RNl×Nl . Finally, the second kind of disease similarity D(2) =

[
D(2)

i j

]
∈ RNd×Nd

is calculated based on the miRNA-disease bipartite network.
In order to incorporate two kinds of lncRNA similarities L(1) and L(2), the final lncRNA similarity

L(c) is defined as follows,
L(c) = αL(1) + (1− α)L(2) (6)

where α is the parameter utilized to control the contributions of L(1) and L(2).
Similarly, the final disease similarity D(c) is the weighted sum of D(1) and D(2), as follows,

D(c) = βD(1) + (1− β)D(2) (7)

where β is a parameter for regulating the weights of D(1) and D(2).
The right embedding layer for integrating the second kinds of lncRNA and disease similarities.

The establishment of the right embedding layer matrix Y ∈ R2×(Nl+Nm+Nd) is similar to the left
embedding layer matrix X. First, we stack the first row of L(c), L(c)

1 , and AT
2 together as the first part
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of the embedding layer. Second, A1 and D(c)
2 are stacked as the second part of the embedding layer.

Finally, the first row of B and the second row GT are stacked as the third part of the embedding layer.

3.4. Convolutional Module on the Left

In this section, we describe a novel model based on convolutional neural networks with adjacent
attention for learning latent representations of lncRNA-disease node pairs. The overall architecture
is showed in Figure 6. We describe the left convolutional module in detail. Left module includes
convolution and activation layer, max-pooling layer, fully connected layer. The embedding matrix
X̂ ∈ R2×(Nl+Nm+Nd) is inputted the convolutional module to learn an original representation of a pair of
lncRNA-disease node.
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Figure 6. Construction of the prediction model based on the convolutional neural network
and convolutional autoencoder for learning the attention representation and the low-dimensional
network representation.

For a convolutional layer, the length and the width of a filter are set to w and h respectively,
which means the filter is applied on w× h features. In order to learn the marginal information of the
embedding matrix X̂, we pad zeros around X̂. Let the number of filters is nconv. The convolution
filters Wconv ∈ Rw×h×nconv are applied to the embedding matrix X̂, and obtain the feature maps Z ∈
Rnconv×(4−w+1)×(2+Nl+Nm+Nd−h+1). X̂i j is the element at the i-th row and j-th column of X̂. X̂k,i, j represent
a region in a filter when the kth filter slides the position X̂i j.

X̂k,i, j = X̂(i : i + w, j : j + h) (8)

Zk(i, j) = g
(
Wk,i,j ∗ X̂k,i, j + b(k)

)
(9)

i ∈ [1, 4−w + 1] j ∈ [1, 2 + Nl + Nm + Nd − h + 1], k ∈ [1, nconv]
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Zk(i, j) is the element at the i-th row and the j-th column of the k-th feature map. g is relu function
that it is a nonlinear activation function [34], Wk is the weight matrix of the k-th filter and b is a
bias vector.

The max-pooling layer is used to down-sample the features of the feature maps Zk(i, j), and it
outputs the most important feature in each feature map. Given an input Zk(i, j), the output of pooling
layer is shown as follows,

Vk(i, j) = max
(
Zk

(
i : i + wp, j + hp

))
(10)

i ∈
[
1, 5−w−wp + 1

]
, j ∈

[
1, 3 + Nl + Nm + Nd − h− hp + 1

]
, k ∈ [1, nconv]

where wp is the length of a filter of pooling layer and hp is the width. Vk(i, j) is the element at the i-th row
and the j-th column in the kth feature map. X̂ goes through two convolutional and two max-pooling
layers, and we obtain the original representation Zleft of l1 and d2 from the left convolutional module.

Finally, Zleft is flattened to a vector z, which z is feed to fully connected layer. A softmax layer is
used to normalized the output of the fully connected layer and we have

scorel = so f tmax(Wz + b) (11)

where W is the weight matrix, and b is a bias vector. scorel is an associated probability distribution of
C class (C = 2). scorel is the probability that the lncRNA l1 is associated with the disease d2 and score0

l
is the probability that l1 and d2 have no association relationship.

Similarly, the embedding matrix Y ∈ R2×(Nl+Nm+Nd) is feed to the convolutional module on the
right side of the prediction model for learning the network representation Zright of l1 and d2. scorer of
l1 and d2 are obtained when Zright is feed to the full connection layer and the softmax layer.

3.5. Convalutional Autoencoder Module on the Right

The matrices about lncRNA-disease association, lncRNA-miRNA interaction, and miRNA-disease
association are very sparse, resulting in many 0 elements are contained in the embedding
matrix Y. An autoencoder based convolutional neural network is constructed to learn important
and low-dimensional feature representations of lncRNA-disease pair on the right side of CNNDLP.
The encoding and decoding strategies are given as follows,

3.5.1. Encoding Strategy

The embedding layer matrix Y ∈ R2×(Nl+Nd+Nm) is mapped into the low-dimensional feature space
through encoding based on convolutional neural network. Y(n−1)

encode,k is inputted to the n-th convolution

layer to obtain Z(n)
encode,k. Y(n)

encode,k is formed after Z(n)
encode,k passes the n-th max-pooling layer. They are

defined as follows,

Z(n)
encode,k(i, j) = g

(
W(n)

encode,k ∗Y(n−1)
encode,k(i, j) + b(n)encode(k)

)
(12)

Y(n)
encode,k(i, j) = max

(
Z(n)

encode,k(i : i + we, j + he)
)

(13)

i ∈ [1, 4−we + 1], j ∈ [1, 2 + Nl + Nm + Nd − he + 1], k ∈ [1, nencode], n ∈ [1, He]

where He is the total number of encoding layers, and Y(0)
encode = Y. k represents the k-th filter and nencode

is the number of filters during encoding process. Z(n)
encode,k(i, j) and Y(n)

encode,k(i, j) are the elements at the

i-th row and the j-th column of the k-th feature map, respectively. W(n)
encode,k is a weight matrix and

b(n)encode(k) is a bias vector.
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3.5.2. Decoding Strategy

The output of the He-th encoding layer Y(He)

encode is used as the input of the decoder. It is a matrix
that is similar to Y by decoding. The decoding process includes both the transpose convolution layer
and transpose pooling layer, and they are respectively defined as,

Z(n)
decode,k(i, j) = g

(
W(n)

decode,k ∗Y(n−1)
decode,k,i, j + b(n)decode(k)

)
(14)

Y(n)
decode,k(i, j) = Maxunpool

(
W(n)

decode,k ∗Z(n)
decode,k(i, j) + b(n)decode(k)

)
(15)

k ∈ [1, ndecode], n ∈ [1, Hd]

Y(n)
decode,k and Z(n)

decode,k are the outputs of the n-th transpose convolution layer and transpose
max-pooling layer, respectively. Hd is the total number of decoding layers, and ndecode is the number of
filters for decoding. As Y(Hd)

decode should be consistent with Y, we defined the loss function as follows,

lossauto =

∑T
i = 1(Yi − (Ydecode)i)

2

T
(16)

where Ydecode is the output of decoding and Y is the input of encoding; Yi is corresponding to the i-th
training sample (lncRNA-disease pair), and T is the number of training samples. The scorer of l1 and
d2 is obtained after the Yencode is feed to the full connection layer and the softmax layer.

3.6. Combined Strategy

In our model, the cross-entropy is used as the loss function, for the left and right parts of the
prediction model loss functions are defined as follows,

loss1 = −
T∑

i = 1

[
ylabel log(scorel) +

(
1− ylabel

)
log(1− scorel)

]
(17)

loss2 = −
T∑

i = 1

[
ylabel log(scorer) +

(
1− ylabel

)
log(1− scorer)

]
(18)

where ylabel denotes the actual association label between a lncRNA and a disease. ylabel is 1 when the
lncRNA is indeed associated with the disease, otherwise ylabel is 0. T is the number of training samples.

The final score of our model is a weighted sum of scorel and scorer as follows,

score = λscorel + (1− λ)scorer (19)

where the parameter λ ∈ (0, 1) is used to adjust the importance of scorel and scorer.

4. Conclusions

A novel method based on the convolutional neural network with adjacent edge attention
and convolutional autoencoder, entitled CNNDLP, is developed for inferring potential candidate
lncRNA-disease associations. Two embedding layers are constructed from the biological perspective
for integrating heterogeneous data about lncRNAs, diseases, and miRNAs from multiple sources.
We construct the attention mechanism at the adjacent edge level to discriminate the different
contributions of edges and the latent representation of a lncRNA-disease pair is learned from the more
informative edges by the left side of CNNDLP’s prediction model. On the basis of calculating the new
type of lncRNA similarity and that of disease similarity, the right side of CNNDLP’s model captures
the complex relationships among these similarities and the lncRNA-disease associations, as well as the
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topological structures of multiple heterogeneous networks. The novel prediction model based on the
convolutional neural network learns the attention representation and the low-dimensional network
one of the lncRNA-disease pair. The experimental results demonstrated that CNNDLP outperforms
the other methods in terms of not only AUCs but AUPRs as well. In particular, CNNDLP is more
beneficial for the biologists as the top part of its ranking list may retrieve more real lncRNA-disease
associations. Case studies on three diseases further confirm that CNNDLP is able to discover the
potential candidate disease-related lncRNAs. CNNDLP may serve as a powerful prioritization tool
that screens prospective candidates for the subsequent discovery of actual lncRNA-disease associations
through wet-lab experiments.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/17/
4260/s1.
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