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Introduction

Spinal muscular atrophy (SMA) is the leading 
genetic cause of infant mortality [1]. SMA 
is characterized by the degeneration of 
a-motor neurons in the spinal cord, leading 
to progressive muscle weakness followed by 
respiratory insufficiency [1,2]. SMA is caused 
by low levels of Survival Motor Neuron 
(SMN) protein due to homozygous deletion 
or mutation of the SMN1 gene [3,4]. SMN is 
involved in several critical functions including 
but not limited to snRNP assembly, snoRNP 
assembly, telomerase biogenesis, transcription, 
translation, DNA repair, RNA trafficking, 
selenoprotein synthesis, stress granule 
formation, and various signaling pathways [5]. 
SMA is unique among genetic disorders in that 
humans carry a second copy of the SMN gene, 
SMN2 [3,6]. However, due to a translationally 
silent C-to-T mutation (C6U in RNA) at the 6th 
position of exon 7, SMN2 exon 7 is inefficiently 

spliced producing a truncated protein SMN∆7, 
which is unstable and only partially functional 
[6,7,8]. While several additional splice isoforms 
are generated by alternative splicing of both 
SMN1 and SMN2 [9-12], transcripts lacking exon 
7 appear to be the major isoform produced 
by SMN2 in all tissues except in testis [10,13]. 
Therefore, mechanism of SMN2 exon 7 splicing 
has been intensively studied [14-21]. Due to 
the potential for SMN2 to produce full-length 
SMN protein, it remains the principal target for 
therapies designed to increase production of 
functional SMN protein in conditions of SMA 
[22,23,24]. 

Discovery of ISS-N1 as potential 
therapeutic target

Multiple approaches have been explored as 
potential methods to increase production of 
SMN protein from SMN2, including increasing 
transcription [22,24,25,26], modulating SMN2 

exon 7 splicing [27-30], inducing translational 
read through of SMN∆7 transcript [31], and 
increasing stability of SMN protein [32,33]. 
One of the most promising methods is 
the redirection of SMN2 splicing of exon 7 
through antisense oligonucleotides (ASOs), 
short oligonucleotides designed to anneal to 
complementary sequences within a gene of 
interest [30,34]. ASOs can exert their influence 
on SMN2 exon 7 splicing through multiple ways, 
including but not limited to blocking binding of 
trans-acting protein factors by steric hindrance 
[35,36], causing structural rearrangements 
within the target RNA molecule [37,38,39], 
or recruiting additional trans-acting protein 
factors to the target molecule, in the case of 
bifunctional ASOs [40,41,42]. 

As the most promising target for an ASO-
based therapy of SMA, Intronic Splicing 
Silencer N1 (ISS-N1) was discovered in the 
Singh laboratory in 2004 at University of 
Massachusetts Medical School, Worcester, MA 
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(US patent 7838657) [43]. ISS-N1 confers a very 
strong inhibitory effect on inclusion of SMN2 
exon 7 and sequestration of ISS-N1 by an ASO 
leads to full splicing correction in SMA patient 
cells [44]. Because of the strong inhibitory 
effect, ISS-N1 is also referred to as the master 
checkpoint of splicing regulation of SMN2 
exon 7 [45]. Discovery of ISS-N1 was possible 
thanks to the in vivo selection that revealed 
that the 5’ splice site of SMN exon 7 is very weak 
[17,19,46,47]. Subsequent studies revealed that 
ISS-N1 is a complex regulatory element being 
affected by the presence of other regulatory 
elements upstream and downstream of 
ISS-N1 [20,36,38,48]. ASOs targeting ISS-N1 are 
predicted to enhance SMN2 exon 7 inclusion 
by at least two mechanisms; first, by blocking 
binding of hnRNP A1 to two target motifs in 
the region [35], second, by causing secondary 
structural rearrangements and preventing 
an inhibitory long-distance interaction 
with downstream sequences deep within 
intron 7 [37,38,39]. Numerous studies have 
demonstrated the efficacy of ASOs targeting 
ISS-N1 in both SMA patient cells and mouse 
models of SMA and using multiple ASO 
chemistries [28,34,35,44,49-59). Based on the 
number of the independent studies performed, 
ISS-N1 would easily rank as the most studied 
antisense target for splicing correction for 
human disease. ISS-N1 targeting ASOs remain 
the most potent drugs for SMA therapy in 
independent pre-clinical studies [28,53].  

Clinical development of 
Spinraza™ for the treatment of 
SMA

Ionis Pharmaceuticals (formerly ISIS 
Pharmaceuticals) obtained license for 
exclusive use of ISS-N1-targeting ASOs 
from University of Massachusetts Medical 
School, Worcester, MA in 2010.  Spinraza™ 
(nusinersen), formerly known as IONIS-SMNRx 

or ISIS-SMNRx, is a 2’-O-methoxyethyl (2’MOE) 
modified ASO targeting ISS-N1 (Figure 
1A). Ionis Pharmaceuticals began phase 1 
clinical trials of ISIS-SMNRx in 2011 and results 
were very encouraging. Subsequently, 
Nusinersen/Spinraza™ has been the subject of 
multiple phase 2 and 3 clinical trials by Ionis 

Pharmaceuticals/Biogen (Figure 1B) [60,61]. 
Shown to be both safe and effective in raising 
SMN protein levels and reducing the disease 
severity of SMA, Spinraza™ has recently been 
approved by the FDA for the treatment of 
both mild and severe SMA (Figure 1B). This 
represents the first FDA-approved drug for the 
treatment of SMA, as well as a proof-of-concept 
for the targeting of an ISS by an ASO for the 
treatment of a major genetic disease associated 
with the infant mortality.

Although a promising first step in the 
treatment of SMA, there is still much progress to 
be made and many other promising approaches 
to follow. Most clinical trials of Spinraza™ have 
focused on treatment of symptomatic infants 
and children already diagnosed with SMA, 

by which time many changes have already 
occurred in motor neurons [62]. One promising 
approach which is the target of an ongoing 
clinical trial (NCT02386553) is to treat infants 
diagnosed with SMA-causing mutations but 
who have not yet experienced symptoms, 
thus preventing motor neuron degeneration 
before it can begin. Other approaches to 
increase expression of SMN, such as treatment 
with histone deacetylase (HDAC) inhibitors to 
increase transcription [25], have not shown 
sufficient efficacy for treatment of SMA 
by themselves, but may prove effective in 
combination with Spinraza™. SMA is not only a 
disease of motor neurons; low SMN levels can 
independently impact a number of somatic 
tissues [57,58,63-66] as well as the testis [13]. 

Figure 1. Spinraza™ represents the first FDA-approved drug for the treatment for SMA. (A) Overview of SMN2 
genomic sequence and mechanism of Spinraza™ action. Exons are represented by colored boxes. Introns are 
represented by broken lines. Region of ISS-N1 downstream of exon 7 is shown. ISS-N1 is represented by pink box, 
annealing location of Spinraza™ is indicated. Protein products of SMN2 are shown below. Spinraza™ acts by redi-
recting splicing from the dysfunctional SMNΔ7 product to the full-length SMN. (B) Timeline of Spinraza™ target 
discovery, licensing, and therapeutic development. Purple arrow represents passage of time. Blue, red, and green 
ovals indicate critical developments in SMA research, landmark studies involving ISS-N1 ASOs, and critical stages 
in development of Spinraza™, respectively.
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Currently, it is not known whether lumbar 
injections can fully ameliorate these peripheral 
defects. In addition, there are several other 
promising ASO targets within the SMN2 pre-
mRNA, such as ISS-N2 deep within intron 7 
[38], Element 1 within intron 6 [27,67] and a 
GC-rich sequence that partially overlaps ISS-N1 
[68,69]. A recent report showed utility of an 
ASO targeting an antisense sequence of SMN2 
[70]. In cell-based assays, a dual-masking ASO 
has shown a better efficacy than an ISS-N1 
targeting ASO [71]. However, ISS-N1 still needs 
to be targeted to maintain the high efficacy of 
the dual-masking ASO [71]. Currently, it is not 
known how a variety of targets may be affected 
by different ASO chemistries or treatment with 
a combination of ASOs, and thus all ASO targets 
remain of interest for future research.

Conclusions and Future 
directions

Recent approval of Spinraza™ (Nusinersen) by 
US FDA as the first therapy for SMA is a major 
step forward for SMA patients worldwide.  
Spinraza™ also becomes the first antisense 
drug to restore the inclusion of an exon during 
pre-mRNA splicing. While invention of ISS-N1 

was made in Singh laboratory more than a 
decade ago, credit of therapeutic development 
goes to several researchers who independently 
validated the therapeutic efficacy of ISS-N1 
targeting ASOs. In particular, pioneering pre-
clinical studies in the laboratory of Dr. Adrian 
Krainer at Cold Spring Harbor Laboratory in 
collaboration with Drs. Frank Bennet and Frank 
Rigo at Ionis Pharmaceuticals (formerly ISIS 
Pharmaceuticals) were critical for the Clinical 
development of Spinraza™. The exclusive 
licensing of ISS-N1-targeting ASOs from UMass 
Medical School allows IONIS Pharmaceuticals 
to develop additional drugs based on ISS-N1 
target. Studies in the laboratories of Dr. Arthur 
Burghes at The Ohio State University and 
Dr. Francesco Muntoni at University College 
London independently validate the efficacy of 
ISS-N1-targeting morpholino ASOs [53-59]. SMA 
patients will tremendously benefit if additional 
antisense drugs based on morpholino and 
other chemistries are developed. This could 
be particularly important for patients who 
cannot tolerate the chemistry of Spinraza™. 
As we move forward with ASO-based therapy 
of SMA, there will be a need to develop non-
invasive procedures for an effective delivery of 
drug into brain and spinal cord. With the FDA 

approval of Spinraza™, SMA disease transitions 
to the next phase in which long-term efficacy 
of Spinraza™ will be carefully monitored. We 
hope for a positive outcome that will have a 
transformative effect on the development of 
the next generation of the antisense drugs 
for SMA as well as for several other genetic 
diseases.  
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