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Obesity prevalence became a severe global health problem and it is caused by an
imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a
major site of mammalian non-shivering thermogenesis or energy dissipation. Thus,
modulation of BAT thermogenesis might be a promising application for body weight
control and obesity prevention. TRP channels are non-selective calcium-permeable
cation channels mainly located on the plasma membrane. As a research focus, TRP
channels have been reported to be involved in the thermogenesis of adipose tissue,
energy metabolism and body weight regulation. In this review, we will summarize
and update the recent progress of the pathological/physiological involvement of TRP
channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP
channels as future therapeutic targets for preventing and combating human obesity and
related-metabolic disorders.

Keywords: TRP channels, calcium, thermogenesis, energy metabolism, brown adipocytes, beige adipocytes,
obesity

ADIPOSE TISSUES AND OBESITY

Obesity is a severe public health problem causing various diseases including diabetes, hypertension,
coronary heart diseases and cancer, which has received considerable attention as a major public
health concern (Nguyen and El-Serag, 2010; Blüher, 2019). According to a prediction based on
the data from 1975 to 2014 in 200 countries, the prevalence of global obesity will reach to 18%
for men and 21% for women by 2025 (NCD Risk Factor Collaboration, 2016). In addition, obesity
is becoming prevalent not only in the developed countries, but also in the developing countries
(Maharani and Tampubolon, 2016). Therefore, urgent strategies are required for the prevention
and reversal of obesity and related metabolic diseases.

Abbreviations: BMI, body mass index; BAT, brown adipose tissue; CT, computed tomography; FDG, fluorodeoxyglucose;
HFD, high fat diet; iBAT, interscapular BAT; WAT, white adipose tissue; UCP1, uncoupling protein-1; PET, positron emission
tomography; PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; ROS, reactive oxygen species;
TM, trans-membrane; TRP channel, Transient receptor potential channel; TRPV, TRP Vanilloid; TRPV2KO, TRPV2-
knockout; TRPC, TRP Canonical; TRPM, TRP Melastatin; TRPML, TRP Mucolipin; TRPN, TRP NomPC; TRPP, TRP
Polycystin; TRPA, TRP Ankyrin; WT, wild-type; [Ca2+]i, intracellular Ca2+ levels; 4α-PDD, 4α-phorbol-12, 13-didecanoate.
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Obesity is accompanied by the imbalance of caloric intake
and consumption (Hall and Guo, 2017). There is evidence that
adipose tissue is involved in the long-term regulation of energy
metabolism and fat quality. Adipose tissue is a highly specialized
tissue and plays a key role in energy mobilization regulation
(Reilly and Saltiel, 2017; Zhai et al., 2020). Two types of adipose
tissue have been found in mammals so far, called white adipose
tissue (WAT) and brown adipose tissue (BAT) (Cannon and
Nedergaard, 2004; Wu et al., 2020). WAT is generally thought
as an organ stores excess energy which maintains energy in
the form of triglyceride in lipid droplets. However, a new type
of brown-like adipocyte was termed beige/brite adipocyte or
inducible brown adipocyte has recently been found in human
WAT (Sharp et al., 2012; Cypess et al., 2013; Lidell et al., 2013).
BAT, which consumes energy and produce heat rapidly, was first
discovered in mammalian hibernation research (Ricquier and
Kader, 1976). This thermogenic function is mainly mediated by
uncoupling protein-1 (UCP1), a polypeptide that exists in the
mitochondrial inner membrane of brown adipocytes (Kajimura
et al., 2015; Bertholet et al., 2017; Cannon et al., 2020). It has
assessed that BAT thermogenesis was decreased in obese mice
by oxygen consumption measurement (Martinez-Botas et al.,
2000; Ussher et al., 2010). UCP1 expression level in BAT was
decreased in almost all obese animals whereas increased in lean
animals (Shirkhani et al., 2018). UCP1 knockout (UCP1KO) mice
exhibited obesity phenotypes with increased body fat after six
months high fat diet (HFD) feeding (Kontani et al., 2005). On
the other hand, cold stimulation and/or β3-adrenergic receptor
agonist treatment decreased body fat amount by enhancing BAT
activity (Lowell and Spiegelman, 2000; Cannon and Nedergaard,
2004). Cold exposure also increased BAT volume and activity,
thus increasing energy consumption and promoting weight loss
of obese people (Hanssen et al., 2015a,b; Leiria et al., 2019).
Several studies have reported that there was a negative correlation
between BAT activity/amount and body mass index (BMI) in
humans. Imaging data have revealed that patients with higher
BMI have lower BAT activity (Cypess et al., 2009; Pfannenberg
et al., 2010; Ouellet et al., 2011). Moreover, a single nucleotide
substitution at –3826A to G of UCP1 gene polymorphism has
been found in human, which decreased the mRNA expression of
Ucp1 and enhanced the age-related obesity and BAT degradation
(Nagai et al., 2007; Yoneshiro et al., 2013). Therefore, BAT
might play critical role in the regulation of body weight and
energy homeostasis.

THERMOGENESIS IN BROWN AND
BEIGE ADIPOCYTES

BAT was thought to be restricted only in infants (Lean,
1989; Enerback, 2010). However, previous works have
reported that BAT was also found in adult humans by using
fluorodeoxyglucose (FDG)-positron emission tomography
(PET) in combination with computed tomography (CT)
techniques (Cypess et al., 2009; van Marken Lichtenbelt et al.,
2009). This novel finding highlights the critical role for BAT
in the regulation of energy metabolism and fat deposition
(Nedergaard and Cannon, 2010; Nedergaard et al., 2011).

Classical brown fat is primarily distributed around interscapular
BAT (iBAT), axillary, paravertebral, and perirenal sites (Park
et al., 2014). Mitochondria and multilocular lipid droplets were
enriched in brown adipocytes, which makes it have remarkable
capacity to dissipate energy in the form of heat (Song et al.,
2020). UCP1 is expressed in the mitochondria inner membranes
of brown adipocytes, which uncouples ATP synthesis from
oxidative phosphorylation, thereby dissipating energy as heat.
It is well known that BAT non-shivering thermogenesis is
controlled directly by sympathetic nervous system innervation
and activation. BAT thermogenesis is induced and regulated
by the release of norepinephrine from sympathetic nerve
terminals and its subsequent binding by β3-adrenergic receptors
(Nedergaard et al., 2005; Feldmann et al., 2009). Several studies
have shown that how UCP1 is activated, and long chain fatty acid
is essential for H+ transport (Fedorenko et al., 2012). In addition,
another proposed mechanism is that mitochondrial reactive
oxygen species (ROS) production regulates UCP1 sulfenylation
and thermogenesis (Chouchani et al., 2016). However, signaling
pathways for thermogenesis in the downstream of β3-adrenergic
receptor activation still have not been well clarified.

Beige adipocyte (UCP1-positive adipocyte) is known to be
surrounded by numerous UCP1-negative adipocytes in human
WAT (Wu et al., 2012). Beige adipocytes could be recruited
after a short-term cold challenge or treatment with β3-adrenergic
receptor agonists (Saito et al., 2020). They are very similar to
brown adipocytes with high UCP1 expression and thermogenesis
(Ye et al., 2013; Li et al., 2014). There are two groups that
are a BAT-positive group (subjects have detectable FDG uptake
upon cold stimulation) and a BAT-negative group (subjects have
undetectable FDG uptake) in humans. Energy metabolism was
higher in the BAT-positive group than the BAT-negative group
after an acute cold exposure (Orava et al., 2011; Yoneshiro et al.,
2011). These studies clearly revealed a critical function for brown
and beige adipocytes in cold-induced thermogenesis in humans.
Therefore, approaches to modulate brown or beige adipocyte
activities might be potential way to prevent and treat human
obesity and related metabolic diseases.

TRP CHANNELS

Transient receptor potential (TRP) ion channels are a major class
of calcium-permeable channels, most of which are non-selective
cation channels (Montell and Rubin, 1989). TRP channels
contain six trans-membrane (TM) domains (TM1–TM6) with a
pore loop between TM5 and TM6 (Cao et al., 2013b; Liao et al.,
2013; Paulsen et al., 2015; Huynh et al., 2016; Zubcevic et al.,
2016). TRP channel superfamily is now subdivided into seven
subfamilies and contains 27 channels: TRPV (Vanilloid), TRPC
(Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN
(NomPC), TRPP (Polycystin), and TRPA (Ankyrin) based on
their primary amino acid sequences (Ramsey et al., 2006; Wu
et al., 2010; Gees et al., 2012). The main signaling pathways
in which TRP channels triggered are based on calcium influx
through the channels, leading to increases in intracellular Ca2+

levels ([Ca2+]i). Numerous studies have shown that some TRP
channels are expressed in adipocytes and are involved in energy
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metabolism and inflammation of adipose tissues, suggesting the
potential role of TRP channels in human obesity treatment and
prevention (Bishnoi et al., 2018; Uchida et al., 2018; Gao et al.,
2019; Zhai et al., 2020). In the present review, we will provide a
systematic and brief summary of TRP channels in the regulation
of adipocyte thermogenesis and update the recent progress.

TRPV1

TRPV1 is well-known as a receptor of capsaicin, the pungent
ingredient in “hot” chili peppers (Caterina et al., 1997). TRPV1
is activated by a variety of stimuli, including heat (Cao et al.,
2013a), protons and capsaicin (Dhaka et al., 2009). In addition,
TRPV1 is activated by some compounds in garlic, onion (Salazar
et al., 2008), black pepper (Okumura et al., 2010), and other
foods, such as gingerol (Iwasaki et al., 2006). TRPV1 has been
reported to be expressed in both WAT and BAT (Bishnoi et al.,
2013; Kida et al., 2016). TRPV1 expression level is increased in
the differentiated HB2 brown adipocytes than in pre-adipocytes
(Kida et al., 2016). Moreover, activation of TRPV1 up-regulates
the expression of thermogenic genes and induced “browning”
in 3T3-L1 adipocytes (Figure 1; Baboota et al., 2014). TRPV1
is expressed in 3T3-L1 pre-adipocytes, adipose tissue of mice
and fat tissue of obese humans (Zhang et al., 2007). TRPV1 is
activated by dietary capsaicin, a process that induces calcium
influx and prevents adipogenesis in 3T3-L1 cells (Zhang et al.,
2007) and probably occurs through a calcineurin pathway (Cioffi,
2007). Besides, dietary capsaicin treatment prevented HFD-
induced obesity in wild-type (WT) mice in vivo, but not in
TRPV1KO mice (Zhang et al., 2007; Chen J. et al., 2015; Chen
N. et al., 2015). Moreover, TRPV1 was involved in the regulation
of energy intake and glucose homeostasis in WAT during HFD-
induced obesity (Lee et al., 2015). Absence of TRPV1 exacerbated
obese and insulin resistance associated with HFD and aging (Lee
et al., 2015). It has also been reported that monoacylglycerol
up-regulated UCP1 expression level in brown adipocytes and
suppressed accumulation of visceral fat in mice fed with high
fat and sucrose through activation of TRPV1 (Iwasaki et al.,
2011). Fish oil intake induced UCP1 up-regulation in both brown
and white adipose tissues in a TRPV1 dependent manner (Kim
et al., 2015; Lund et al., 2018). Oleoylethanolamide, a newly
reported TRPV1 ligand, is also involved in the regulation of
energy intake and consumption, feeding behavior and weight
control (Laleh et al., 2019).

Human studies have showed that capsaicin ingestion
enhanced fat oxidation and energy metabolism during aerobic
exercise (Shin and Moritani, 2007). A continuous consumption
of chili increased the energy metabolism in the middle-aged
subjects (Ahuja et al., 2006). Capsinoids, a non-pungent
capsaicin analogs, for continuous 1–3 months also increased
energy expenditure and fat oxidation with a reduction in
abdominal adiposity in overweight and obese subjects (Inoue
et al., 2007; Snitker et al., 2009). Moreover, capsaicin and
capsinoids as food ingredients enhanced BAT thermogenesis,
subsequently decreased fat mass in humans (Yoneshiro et al.,
2012; Saito and Yoneshiro, 2013). An epidemiological study
suggested that the energy metabolism was enhanced and the

prevalence of human obesity in eastern Asian countries was
decreased by increasing the consumption of hot foods containing
capsaicin (Wahlqvist and Wattanapenpaiboon, 2001).

It has also been reported that capsaicin injection induced
adrenaline secretion, this effect was significantly reduced in
TRPV1KO mice (Uchida et al., 2017). Capsaicin directly binds
to TRPV1 in gastrointestinal tract, produce afferent signal,
subsequently transmit to ventromedial hypothalamic nucleus
of central nervous system, and finally send signal to WAT.
This could promote the expression of β2-adrenoceptor and
the production of PRDM16 protein, thus promoting the
generation of beige adipocytes, resulting in increased systemic
energy expenditure (Ohyama et al., 2016; Saito et al., 2020).
Catechins in green tea may activate and recruit BAT by acting
on TRPV1/TRPA1 of gastrointestinal sensory neurons in the
same way as capsaicin (Mako et al., 2015). Besides, topical
application of capsaicin cream in mice resulted in weight
loss and adipose tissue weight (Lee et al., 2013). However,
whether the regulatory effect of topical capsaicin on obesity
is through TRPV1 to activate central nervous system remains
to be further studied. These studies clearly demonstrated that
targeting TRPV1 and modulation its activity with capsaicin
and analogs could be effective approaches for human obesity
treatment and prevention, although the anti-obesity effect of
TRPV1 activation may be involved not only in adipose tissue, but
also in nervous system.

TRPV2

TRPV2 was initially reported to be activated by noxious heat
with an activation temperature threshold of higher than 52◦C
(Caterina et al., 1999) and found to be activated by several
chemicals, e.g., 2-aminoethoxydiphenyl borate (2APB) and
lysophosphatidylcholine (LPC) (Juvin et al., 2007; Monet et al.,
2009). TRPV2 was also reported to be activated by mechanical
stimulation and/or cell swelling (Muraki et al., 2003; Iwata et al.,
2009). TRPV2 is expressed in both WAT and BAT (Sun et al.,
2017a). TRPV2 is highly expressed in mouse brown adipocytes
compared with TRPV1, TRPV3, TRPV4 and TRPM8 (Sun
et al., 2016a,b). The expression of TRPV2 was up-regulated at
mRNA, protein and functional levels in the differentiated brown
adipocytes (Sun et al., 2016b, 2017b). Primary TRPV2-deficient
(TRPV2KO) adipocytes show decreased mRNA levels of multiple
genes involved in mitochondrial oxidative metabolism, such
as Ucp1 and peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (Pgc1α). Besides, TRPV2KO adipocytes
showed decreased responses to a β-adrenergic receptor agonist,
isoproterenol, which might be due to the lack of TRPV2-
mediated calcium influx. These results suggested that TRPV2-
mediated calcium influx is involved in thermogenic gene
induction upon β-adrenergic receptor activation (Figure 1).
TRPV2KO mice showed cold intolerance and significantly
smaller increases in Ucp1 mRNA and protein upon cold
stimulation at 4◦C without changes in their activities. On
the other hand, sympathetic nerve activity was not changed
in TRPV2KO mice. TRPV2KO mice showed impaired iBAT
adaptive thermogenesis upon administration of a β3-adrenergic
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FIGURE 1 | TRP channel-mediated adipocyte thermogenesis. A schematic figure of how TRPV1, TRPV2, TRPV4, TRPM8, and TRPC1-mediated calcium influx
regulates thermogenic gene expression in adipocytes, which causes enhanced thermogenesis. Moreover, the increase in sympathetic nerve activity causes
norepinephrine release from the sympathetic nerves and activation of β3-adrenergic receptor (β3ADR) in brown adipocytes, TRPV2 synergistically collaborated with
β3ADR to involve in the regulation of peroxisome proliferator-activated receptor gamma coactivator-1 a (PGC1a) and uncoupling protein 1 (UCP1), subsequently
enhances thermogenesis. On the other hand, TRPV4-mediated calcium influx negatively regulates thermogenic gene expression in adipocytes and subsequently
inhibits thermogenesis.

receptor agonist, BRL37344. Importantly, TRPV2KO mice had
significant increases in body weight and adipose tissues upon a
HFD treatment (Sun et al., 2016a). Up-regulation of TRPV2 was
also observed in obese and diabetic (db/db) mice (Sun et al.,
2016a, 2017a). It has also been reported that tart cherry may
attenuate adipogenesis by acting directly on the adipose tissue
and down-regulating the HFD-induced mRNA expression of
TRPV1 and TRPV2 (Cocci et al., 2021). These findings suggested
that TRPV2 might be contributed to adipocyte thermogenesis.
However, it is necessary to further examine the expression
and function of TRPV2 in human BAT and develop specific
ligands of TRPV2.

TRPV3

TRPV3 is a member of the TRPV subfamily which is different
from TRPV1 and TRPV2. TRPV3 is well-known to be activated
by innocuous temperature around body temperature but initially
activated by a high noxious threshold which is over 50◦C (Liu and
Qin, 2017). The chemical agonists of TRPV3 include camphor,
carvacrol, (-)-epicatechin, 2APB, and endogenous ligand farnesyl
pyrophosphate (Cheung et al., 2015; Broad et al., 2016). TRPV3
could form heteromeric channels with TRPV1 (Cheng et al.,
2012), which also involves in the regulation of adipogenesis and
HFD-induced obesity (Cheung et al., 2015). TRPV3 has been
reported to be expresses in BAT and WAT (Bishnoi et al., 2013).
The expression of TRPV3 was dramatically down-regulated in
visceral adipose tissue of obesity mice, including HFD-induced
obesity mice, ob/ob and db/db mice (Cheung et al., 2015; Sun
et al., 2017a). HFD feeding up-regulated TRPV3 in the medial
nucleus tractus solitaries and hypoglossal nucleus, which is
accompanied by a reduced expression of proopiomelanocortin
and resulted in increased food intake and a gain of body-
weight (Hu et al., 2011). Activation of TRPV3 by (-)-epicatechin
prevented adipogenesis in 3T3-L1 preadipocytes and played

an anti-adipogenic role in vivo (Cheung et al., 2015). Besides,
berberine alleviates olanzapine-induced obesity by targeting
TRPV1/TRPV3 in hypothalamus of mice (Singh et al., 2020).
These studies suggested that targeting TRPV3 could be an
intriguing approach for the treatment and prevention of obesity.
However, the expression of TRPV3 and its role in human obesity
needs further exploration.

TRPV4

TRPV4 was reported to be activated by osmolarity changes
or mechanical stimuli (Liedtke et al., 2000; Strotmann et al.,
2000; Watanabe et al., 2002a). TRPV4 is also activated by
diverse chemical compounds, including a synthetic phorbol ester,
4α-phorbol-12, 13-didecanoate (4α-PDD) and GSK1016790A
(Watanabe et al., 2002b; Willette et al., 2008) as well as moderate
warmth (temperature threshold higher than 27◦C) (Guler et al.,
2002; Watanabe et al., 2002b). TRPV4 is expressed in BAT and
WAT as well (Sun et al., 2017a, 2020; Uchida et al., 2018).
It has been reported that insulin regulates TRPV4-mediated
metabolic homeostasis in human white adipocytes (Sanchez et al.,
2016). TRPV4 is involved in the modulation of thermogenic and
inflammatory pathways in adipose tissue. Knockdown of TRPV4
enhanced the basal and norepinephrine-induced induction of
the expression of Pgc1a and Ucp1 (Ye et al., 2012). ERK1/2
were reported to be activated by TRPV4-mediated calcium
signaling (Thodeti et al., 2009), and TRPV4 activation-induced
calcium influx caused a rapid phosphorylation of ERK1/2 and
JNK1/2, which further suppressed the expression of thermogenic
genes in 3T3-F442A adipocytes (Figure 1; Ye et al., 2012).
Knockdown of TRPV4 also reduced adipose tissue inflammation
by inhibiting a number of pro-inflammatory genes (Ye et al.,
2012). The expression of TRPV4 in WAT was higher than that
in BAT (Sun et al., 2017a). The significant up-regulation of
thermogenic gene expression upon TRPV4 inhibition led to the
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occurrence of WAT “browning” (Ye et al., 2012). TRPV4KO mice
exhibited increased muscle energy oxidation and resistance to
HFD-induced obese in mice (Kusudo et al., 2012). It has also
been reported that treadmill running and rutin ameliorate HFD-
induced obesity in mice by suppressing the expression of TRPV4
in adipocytes (Chen N. et al., 2015). Besides, dietary intervention
in obese dams protects male offspring from WAT induction of
TRPV4, adiposity, and hyperinsulinemia (Janoschek et al., 2016).
A human subject-based study has revealed that polymorphisms of
TRPV4 gene affects BMI and body fat mass in subjects in Taiwan
(Duan et al., 2015). These results revealed an opposite role of
TRPV4 in the modulation of adipocyte thermogenesis without
knowing the potential mechanisms. Examine the expression
and function of TRPV4 in human obesity and developing
TRPV4 specific antagonist and in vivo examination of the new
compounds is warranted.

TRPM8

The TRPM subfamily consists of eight different subunits,
TRPM1 to TRPM8 (Boesmans et al., 2011). TRPM8 is well-
known as a menthol receptor which has been reported
in the year of 2002 (McKemy et al., 2002). In a human
adipocyte cell line, menthol-induced TRPM8 activation increased
UCP1 expression, mitochondrial activation and heat production
(Figure 1; Rossato et al., 2014). The mRNA and protein
expression levels of TRPM8 are significantly increased in
the differentiated adipocytes, suggesting the importance of
TRPM8 for adipocyte thermogenesis (Rossato et al., 2014). In
cultured adipocytes, menthol induced an up-regulation of UCP1
expression which may through a protein kinase A pathway, which
subsequently increases BAT thermogenesis and WAT “browning”
(Ma et al., 2012; Jiang et al., 2017; Sanders et al., 2020).
Besides, it has been reported that cold-sensing TRPM8 channel
participates in the regulation of clock and clock-controlled
genes in BAT thermogenesis (Moraes et al., 2017). Bioavailable
menthol induces energy expending phenotype in differentiating
adipocytes (Khare et al., 2019). In vivo studies have revealed
that dietary menthol supplementation dramatically increased the
core body temperatures and locomotor activity in WT mice, but
not in TRPM8KO and UCP1KO mice. Menthol supplementation
in diet alleviated HFD-induced obesity and insulin resistance
as well (Ma et al., 2012; Jiang et al., 2017). And the preventive
effect of menthol against HFD-induced obesity and related
complications probably involve a glucagon mechanism (Khare
et al., 2018). These results suggested that activation of TRPM8
could enhance BAT thermogenesis, which paves a new approach
for the treatment and prevention of obesity. TRPM8-dependent
increase in core body temperature upon a menthol treatment or
cold exposure, which may be mediated by a UCP1 up-regulation
(Tajino et al., 2011). Intragastric administration of menthol
also enhanced BAT thermogenesis in vivo (Tajino et al., 2007;
Masamoto et al., 2009). In addition, TRPM8 polymorphism has
been reported to be closely correlated with metabolic syndrome
in Turkish population (Tabur et al., 2015). Topical menthol
appears to increase core body temperature and metabolic rate in
adults (Valente et al., 2015). In summary, activation of TRPM8

by its ligands, such as menthol and icilin, mimics adipocyte
thermogenesis and might constitute a promising approach to
prevent overweight and obesity. However, randomized clinical
trials of topical menthol in obese patients are necessary.

TRPA1

TRPA1 was initially reported as a noxious cold-activated channel
with a temperature threshold around 17◦C (Story et al., 2003),
However, later studies have initiated a heated debate over the
role of TRPA1 as a cold sensor. But its cold sensitivity has
been disputed later, and the contribution of TRPA1 to cold
sensing is currently a matter of strong debate (Bautista et al.,
2006; Talavera et al., 2020). TRPA1 is potentially activated
by several food components, like allyl isothiocyanate, icilin,
menthol, cinnamaldehyde and capsinoids (Laursen et al., 2015).
TRPA1 is involved in adipocyte thermogenesis and energy
metabolism (Watanabe and Terada, 2015). In HFD-induced
obesity mice, oral administration of allyl isothiocyanate reduces
body weight, accumulation of lipid droplets in the liver, and
white adipocyte size (Lo et al., 2018). It has been reported
that cinnamaldehyde reduces visceral fat deposition in HFD-
treated mice by stimulating BAT between scapulae (Tamura
et al., 2012). Cinnamaldehyde activates TRPA1 in mouse gastric
epithelial cells and up-regulates fatty acid oxidation-related
genes in adipose tissue (Camacho et al., 2015). Oleuropein
aglycone, as an agonist of TRPA1 and TRPV1, enhances the
expression of UCP1 in BAT and promote fat thermogenesis by
promoting the secretion of norepinephrine (Oi-Kano et al., 2016).
It has been hypothesized that menthol-induced thermogenesis
in adipocyte probably involved a TRPA1 mechanism as well
(Sakellariou et al., 2016). Moreover, TRPA1 activation induces
adrenaline secretion and prevent fat accumulation and obese in
rodents (Watanabe and Terada, 2015). Intravenous injection of
AITC induces adrenaline secretion, and adrenaline promotes the
thermogenesis of BAT by activating β3-adrenergic receptor (Saito
et al., 2020). These studies suggested that TRPA1 regulates heat
production of BAT through central nervous system (Zsombok
and Derbenev, 2016). Therefore, activation of TRPA1 by its
ligands might be a promising approach for human obesity
treatment and prevention. However, the anti-obesity mechanism
which TRPA1 and its ligands involved need further exploration.
Randomized clinical trials of TRPA1 activation in obese patients
are warranted as well.

TRPC1 AND TRPC5

TRPC subfamily includes seven members (TRPC1–7). TRPC
channels are usually formed by homo- or heteromeric TRPC
proteins (Huang et al., 2011). There is no evidence demonstrate
TRPC channels have thermosensitive property so far. TRPC1
is highly expressed in adipocyte depots including BAT and
that TRPC1-deficient mice are prone to weight gain and
manifest reduced metabolic control (Wolfrum et al., 2018).
TRPC1 regulates brown adipocyte activity in a PPARγ-dependent
manner, suggesting that TRPC1 is a downstream component
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of a mechanism that translates metabolic or environmental
stimuli into output in the form of BAT activity (Figure 1;
Wolfrum et al., 2018). However, an opposite observation has
been reported that fat mass and fasting glucose concentrations
were lower in TRPC1KO mice that were fed a HFD (45% fat)
(Krout et al., 2017). Besides, a mechanically activated TRPC1-
like current in white adipocytes was observed (El Hachmane
and Olofsson, 2018). It has been reported that either knockdown
of TRPC1/TRPC5 in vitro or conditional knockout of TRPC5
in vivo has increased adiponectin generation in mouse (Sukumar
et al., 2012). In addition, both exogenous and endogenous
pituitary adenylate cyclase activating polypeptides stimulate
proopiomelanocortin neurons and increase energy consumption
by activating TRPC1 and TRPC5 channels, which suggests that
it is possible to promote BAT thermogenesis by activating
TRPC1/TRPC5 in central nervous system (Chang et al., 2020).
These studies demonstrated the involvement of TRPC1/TRPC5
in the regulation of energy homeostasis. Further examination of
the expression of TRPC1/TRPC5 in human adipose tissues and
developing TRPC1/TRPC5 specific agonist are needed.

TRPP

TRPP is a type of non-selective ion channel, which has been
proved to be associated with autosomal dominant polycystic
kidney (Moran et al., 2004). TRPP has three family members,
TRPP2, TRPP3, and TRPP5. TRPP2, also known as PKD2 or
polycystin-2, has been reported to be expressed in adipose tissue,
and the expression level of TRPP2 in mature adipocytes is higher
than in pre-adipocytes (Moran et al., 2004; Sukumar et al.,
2012). Knockdown of TRPP3 suppresses the expression of UCP1
and PGC1α, and attenuates the mitochondrial respiration in
adipocytes but has not affected adipogenesis (Goralczyk et al.,
2017). These results revealed that TRPP3 might be involved in
adipocyte thermogenesis. Further analysis of the mechanisms of
TRPP channels in adipocyte thermogenesis is necessary.

CONCLUSION AND PERSPECTIVES

In the past decades, TRP channels have been widely
studied in adipocyte thermogenesis, adipogenesis, adipose
tissue inflammation, and obesity. TRP channels have been

demonstrated to play critical roles in the regulation of energy
metabolism for the treatment and prevention of human obesity.
In the present review, we summarized and updated the recent
progress of the involvement of several TRP channels in adipocyte
thermogenesis. It’s worth noting that several concerns still need
to be further explored. First of all, the underlying mechanisms
which TRP channel-mediated in the thermogenesis process
of adipocytes are still controversial, which need to be clearly
addressed. Secondly, novel specific ligands of TRP channels are
warranted to be developed since there is no specific ligands for
TRP channels so far. Thirdly, how do TRP channels exert tissue-
specific effects in adipose tissues? These issues are warranted
to be addressed by further animal and clinical studies in the
future. In conclusion, targeting TRP channels could be promising
strategies for clinical treatment and prevention of human obesity
and related-metabolic diseases.
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