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Epstein-Barr virus is a ubiquitous human herpesvirus whose primary infection causes mononucleosis, Burkett’s lymphoma,
nasopharyngeal carcinoma, autoimmune diseases, and gastric cancer (GC). The persistent infection causes malignancies in lymph
and epithelial cells.Helicobacter pylori causes gastritis in human with chronic inflammation. This chronic inflammation is thought
to be the cause of genomic instability. About 45%-word population have a probability of having both pathogens, namely, H. pylori
and EBV.Approximately 180 per hundred thousand population is developingGC alongwithmany gastric abnormalities.Thismakes
GC the third leading cause of cancer-related death worldwide. Although lots of research are carried out individually for EBV andH.
pylori, still there are very few reports available on coinfection of both pathogens. Recent studies suggested that EBV and H. pylori
coinfection increases the occurrence of GC as well as the early age of GC detection comparing to individual infection. The aim of
this review is to present status on coinfection of both pathogens and their association with GC.

1. Introduction

Gastric cancer (GC) or stomach cancer is the fifth most
common cancer incident and the third leading cause of
cancer-associatedmortality, contributing 6.8% of total cancer
cases and 8.8% of total cancer-associated death worldwide
[1]. An estimated 984,000 new cases (ratio 2 : 1, male versus
female) and 841,000 GC-related deaths were accounted in
2013 [2]. Approximately, 77% of GC-related cases and the
death occur in developing countries, particularly in Eastern
Asia, while 23% occur in developed nations [2]. GC can be
divided into 4 types on the basis of appearance in different cell
types: (1) adenocarcinoma: within the cells of the innermost
lining of the stomach (mucous surface); (2) lymphoma:
cancer of the immune system in lymph stomach tissues, very
rare; (3) gastrointestinal stromal tumors: stomach epithelial
lining tumors in interstitial cells of Cajal, very rare; (4)
carcinoid tumors: typically arising in the hormone-producing
cells of the stomach. The common histopathological features
of gastric malignancies are adenocarcinoma. It accounts for
nearly 90% of GC [3]. Adenocarcinomas are further divided
into two parts: (1) cardia, the top part of the stomach; (2)

noncardia cancers, depending on location in the stomach
where they first appear. H. pylori is now a well-known and
primary cause of GC [4–10], specifically noncardia cancer
[11, 12], and is declared as carcinogen I [13] to humans. H.
pylori is now well known to be linked to stomach cancer
in many studies along with EBV [14–18]. Other risk factors
for GC include chronic gastritis [9], older age [19], male sex
[20, 21], a diet high in salt [22–24], smoking [25, 26], alcohol
consumption [27], poorly preserved foods [28], diet low in
fruits and vegetables [29], tobacco product [30], pernicious
anaemia [31–33], a history of stomach surgery for benign con-
ditions [34], and a family history of stomach cancer [34, 35].

2. Clinical Association

GC arises mostly in mucosa, the innermost layer in the
stomach, and slowly grows out into the other outer layers [58].
GC grows slowly overmany years and rarely shows symptoms
and is often unnoticed [59–61]. H. pylori is a spiral-shaped
bacterium that grows in the mucus layer which coats the
inside of the human stomach, ultimately causing inflamma-
tion in the stomach called gastritis [62]. Further, it turns to
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Figure 1: EBV andH. pylori coinfection in stomach. Stomach infected with EBV andH. pylori. Some of gastric epithelial cells coinfected with
EBV and H. pylori. Further this coinfection turns into aggressive development of carcinoma.

ulcers [63, 64], long-lasting anaemia [65–67], and growths
in the stomach [68, 69], which are more likely to get cancer.
H. pylori is mainly spread through contaminated water, food,
saliva, or mouth to mouth contacts and possibly transmitted
sexually via oral-genital contact [70, 71]. Nearly, 50% of the
global population is estimated to be infected byH. pylori [70,
72], in which less than 2% develop GC [73]. The bacterium is
thought to be first acquired during childhood in all nations
[74, 75] and mostly in developing countries. Moreover, the
infection rate of children in developing countries is higher
than that in the advanced countries, 80% compared to 10%,
at the age of 20 years [76], while senior citizens in both types
of countries have around 50% of infection at 60 yeasr of age.

Moreover, 95% of population have Epstein-Barr virus
(EBV) in latent stage [77] and the majority of GC risk
increases with H. pylori and EBV coinfection [78, 79]. EBV
is a 𝛾-herpes-virus with genome size of 184 kbp [80]. EBV
may initiate mononucleosis in human during the primary
infection [77, 81]. EBV spreads mainly by the oral route
through contact with saliva [82, 83]; after infection, EBV
establishes latent infection that is a virus carrier state, which
is of three types (latency I, latency II, and latency III) [84,
85]. During latency, a limited number of viral genes are
expressed which maintain the viral episome [86, 87]. EBV
infection rates in adult and children vary among nations
similar toH. pylori. People in underdeveloped countries have
much higher infection rates than the developed countries and
infections are usually acquired in early childhood [88, 89].

EBV is associated with GC worldwide (11% male, 6% female)
and widespread human tumors [15, 90–92]. Some of these
tumors are associated with the virus lifestyle and behaviour
in the B lymphoid system which is a natural niche of
EBV, including B-lymphoproliferative disease [93, 94] in the
immunocompromised individual [95], Hodgkin lymphoma
[96], Burkitt’s lymphoma [97, 98], and a subset of diffuse large
B-cell lymphomas [99, 100]. Other tumors occur through
viral entry into host’s different organ tissues or system.
These include nasal T/NK cell lymphoma [101, 102], a group
of undifferentiated nasopharyngeal carcinomas (NPC) [103,
104], and gastric carcinomas [91, 92], a tumor type which
is linked with chronic H. pylori infection through many
years. H. pylori and EBV account for roughly 80% and
10%, respectively, of GC worldwide. EBV-associated GC is
located in the cardia (58%), noncardia (42%) [105], while GC
associated with only H. pylori is mostly noncardia type of
adenocarcinoma [11, 106] (Figure 1).

3. EBV Detection Methods

3.1. Serological Test. Serological tests for EBV are antibodies
specific test with EBV antigens and used to define infection
status. Three specific antibodies tests are as follows: (1) Anti-
Viral Capsid Antigen (VCA) antibodies IgM and IgG: IgM
can be detected in early stage of EBV infection and within
4 to 6 weeks disappears [107–109], while for IgG peaks
can be detected within 2 to 4 weeks which decline slightly
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Table 1
Anti-VCA IgM Anti-VCA IgG Anti-EBNA 1 IgG Anti-EA (D) IgG Interpretation
− − − − No infection
+ + − − An early and primary infection
− or + + − + An active infection
− + + − A past infection
− + + + May indicate reactivation of virus, lytic
Serological results and most likely interpretation: VCA: Viral Capsid Antigen, IgM: immunoglobulin type M, IgG: Immunoglobulin type G, EBNA 1:
Epstein–Barr nuclear antigens 1, EA (D): Early Antigen D.

and remain detectable throughout life [109]. (2) Anti-Early
Antigen (EA) antibody IgG: IgG can be detected in the acute
stage of infection such as mononucleosis or NPC and it
disappears after 3 to 6 months [110]. Detection of Anti-EA
IgG represents an active or reactivated EBV infection [111].
Nearly in 20% of people, Anti-EA IgG may be detected for
years after resolution of active EBV infection [111, 112]. (3)
Anti-EBV Nuclear Antigen (EBNA) 1 antibody, IgG: IgG can
be detected after 2 to 4 months of primary EBV infection
and remain detectable throughout life [112].These antibodies
tests are helpful to distinguish from acute to a past EBV
infection [112, 113]. For example, detection of Anti-VCA IgG
and IgM indicates active acute infection if Anti-EBNA 1 is not
detected [112], while the detection of Anti-VCA IgG andAnti-
EBNA IgG without presence of Anti-VCA IgM represents a
past infection [112]. However, sometimes it becomes difficult
to conclude when Anti-VCA IgG is detected while Anti-
VCA IgM and Anti-EBNA are not. This may be a case of
acute, past, or a recent infection [112]. Testing of one more
parameter can be included to interpret result correctly, that
is, detection of Anti-EA (D) IgG antibodies [114, 115]. During
EBV reactivation, Anti-VCA IgG, Anti-EBNA 1, and Anti-EA
(D) IgGmay be detected simultaneously [112].The serological
results and interpretation are listed in Table 1.

3.2. PCR/Real-Time PCR Based Detection. EBV DNA and
viral load can be detected by PCR/real-time PCR methods
[116]. They are more sensitive and specific than serological
methods as EBV immunologic response appears after several
days of infections [117–119]. After 15-day onset of onset of EBV
infection, 100% of EBV DNA is detectable in plasma [118].
Several reports suggested that EBV DNA is present in almost
all carcinoma cells in EBV-positive cases [120]. After primary
EBV infection due to immune response, EBV DNA declines
slowly in PBMCs, rapidly in plasma or serum, and further 3
to 4 weeks, it becomes undetectable [118, 121]. Interestingly,
EBV may remain latent in memory cells for an extended
period in blood or take a longer time before it reaches a small,
stable stage. Copy number range of 1 to 50 of EBV DNAmay
be detected in a healthy person infected with EBV in white
blood cells (WBC) [122]. PCR and real-time PCR sensitivity
and specificity vary based on detection methods as well as
laboratory to laboratory practise [118, 123, 124].

4. Helicobacter pylori Detection Methods

Various methods have been developed to detect H. pylori
infection, whereas the gold standard detection remains

debatable [125]. In H. pylori epidemics study, the sensitivity
of tests varies for the direct test (histopathology/IHC or rapid
urease test); many noninvasive tests are developed which are
called indirect test (serology, UBT, and SAT) to determine
infection status [126].

4.1. Serological Test. Serological testing using patients’ blood
and ELISA techniques to detect IgG, IgM, and IgA for H.
pylori have been developed. Serological testing has uniformly
high sensitivity (90 to 100%), variable specificity (76 to 96%),
and the accuracy range between 83 and 98%; however, it
does not discriminate between current infection or recent
exposures [127, 128]. Serological tests require validation at
the local level, which is impractical in routine practice.
Moreover, serologic findings in both the children and adults
are conflicting, and the cut-off is not shown to be accurate
in many studies [129, 130]. Serological testing is accurate in
low prevalence regions where less than 20% of the population
are affected. In those patients where the gastric lining has not
changed to the precancerous form of intestinal metaplasia,
neither biopsy nor Urea Breath Tests can be used as there are
very few bacteria present [131, 132]. Moreover, serial serology
from antibody concentrations can be used as follow-up after
treatment of H. pylori [133].

4.2. Urea Breath Test (UBT). UBT measures C13 carbon
dioxide in breath after ingesting C-13-labelled urea [134].
This test is approved by FDA, USA. This can be used for the
individuals aged 3 years or older.The cost ofUBT ismore than
serological or stool antigen testing andUBT can be used both
as a diagnostic tool and in efficacy of treatments [131, 132].

4.3. Stool Antigen Test (SAT). Antigens released from the
wall of the stomach can be detected in SAT through ELISA.
Detection of antigen only occurs if H. pylori is present and
this shows active infection [135]. Similar to the UBT, the
SAT can be used both as a diagnostic tool and in efficacy of
treatments [125]. This is also an FDA-approved test and SAT
is recommended by the ACG and the AGA [136, 137].

5. EBV Infection to Gastric Epithelial Cells

Latency and reactivation are the hallmarks of EBV which
is a ubiquitous and potentially oncogenic human herpes
virus [87]. EBV was discovered in 1964 in patients with
Burkett’s lymphoma (BL) [138]. Initially, it was assumed that it
infects only B-cells; later, it was also found in nasopharyngeal
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epithelial cells [139], liver cells [136], stomach epithelial cells
[91], brain cells [137], and so forth.

5.1. Low Tropism of EBV Infection through Oral Route to
Mouth Oropharyngeal Epithelial Cells. Due to difficulties in
establishing reproducible and robust infection in vitro, it is
very difficult to simulate a real understanding of EBV pathol-
ogy [114]. Most of the studies suggested that EBV may be
transcytosed via EBV+ IgA complex through the oral epithe-
lium, oropharynx bidirectional, from apical membranes to
the basolateral and vice versa [140].This EBV transmigration
potentially contributes to initial EBV penetration into B-cells
that starts the systemic infection. EBV secretion may occur
into saliva in EBV-infected individuals [114, 141]. However,
EBV could not be detected in oropharyngeal in the primary
stage of infection in the process of transcytosis [142].

5.2. EBV Has High Tropism for B Lymphocytes. EBV interacts
with naive or memory B lymphocytes in Waldeyer’s ring.
Waldeyer’s ring is situated in lymphoid tissue and surrounds
the oropharynx [143]. EBV have a high affinity for the B-cell
and complement receptor type 2 (CR2) or CD21 present on
the surface of B-cell facilitate the attachment of EBV envelope
glycoprotein gp350/220 to B-cell [144, 145]. Following attach-
ment, internalization of EBV occurs in the cells via the endo-
cytosis. Further, this fusion of EBV envelopes proteins and B-
cells triggers interaction of another envelopes glycoproteins,
that is, gp42. Gp42 interact withHLA class II which is present
on B-cells and make a core fusion complex gh/gL/gp42 and
further make internalization process [146, 147].

Fate of EBV-infected B-cells depends on their niche
as these cells may initiate proliferation or they can reach
the memory compartment. EBV establishes a latency and
expresses some limited sets of genes if B-cells reach mem-
ory compartment [144, 145]. B-cell infection mostly causes
latency (I, II, III) [86, 148]; however, freshly isolated B-
cells from an EBV-infected tumor lead to transformation
and reactivation in vitro [149, 150]. In vivo study suggested
that EBV-infected B-cells cause infectious mononucleosis
with an incubation period of 30–50 days [81, 121]. Several
studies suggested that it is difficult to determine EBV DNA
in epithelial cells during primary infection. It is debatable
how epithelial cells spread the virus to precede infection of
B lymphocytes. Moreover, later EBV-related severe disease
shows virus amplification in epithelial cells before shedding
in saliva which at least gives some evidential support as virus
shed almost daily in the saliva of carriers has the glycoprotein
composition of the virusmade in an epithelial cell rather than
a B-cells [122, 151].

Infected B-cells reach the circulation, and some B-cells
may also go to transformation [152, 153]. Cytotoxic T lym-
phocytes response occurs for the B-cells and mostly this
process is due to latent B-cells infection. However, terminal
differentiation of B cell occurs through immune response
[154]. Infected memory B-cells may reach the site of immune
response and further divide into plasma and memory cells.
This process initiates reactivation of EBV into lytic cycle in B-
cells and this causesmore infection to noninfectedB-cells and

hence replenishes EBV-infected B-cells latent reservoir. This
establishes a cycle of persistence in the life of a healthy carrier
[155–158]. It is assumed that lytic release of the virus has a high
tropism to epithelial cells than B-cells [159]. In vitro studies
suggested that EBV loaded B-cells or B-cells fragments have
a high rate of infectivity to epithelial cells [160, 161].

5.3. Lytic Release of EBV from B-Cells Has a High Tropism
to Infect Other Epithelial Cells. Terminal differentiation of
infected memory cells triggers EBV lytic replication [154].
This can occur in any parts/organs of the host where the
infected memory cells travel and EBV spread through cell to
cell contact [162, 163]. A study suggested that undifferentiated
basal epithelial cells support latent EBV infection, while
differentiation of epithelial cells promotes lytic reactivation
[157]. A direct coculture experiment of epithelial cells with
EBV-producing Akaka cells shows that cell-cell contact is
required for the EBV entry to epithelial cells. An increase
of infection efficiency was observed up to 1,000 times as
compared to the only viral supernatant harvested from EBV-
producing cells [158, 160]. In vitro experiment suggested that
complement receptor 2 (CR2) was not behind the epithelium
infection for EBV, as CR2 expressionwas not detected inmost
of the infected epithelial cells [164]. Hence, it is thought to be
triggered by binding of epithelial cells integrins 𝛼v6 or 𝛼v8
to viral glycoproteins gH/gL [165]. However, these integrins
receptors present on epithelial cells show a week affinity with
EBV compared to CR2, and hence a cell to cell contact is
necessary for the attachment of the receptors of virus released
from B-cells to the epithelial cells [158, 160].

Another study of the coinfection suggested that CD21
receptor on epithelial cells plays an important role in infecting
epithelial cells from EBV-producing B-cells. EBV induces a
strong adhesion between B-cells and epithelial cells through
activation of CD21 [166]. In a coculture experiment of EBV
infected B-cells prelabelled with mABs to its cell surface and
epithelial cells shows interaction of EBV glycoprotein gp350
with the CD21 complex members, CD21, CD81, and CD19,
between B-cell and epithelial cell synapse [166]. Members of
tetraspanins, CD82 and CD63, members of integrin’s family
LFA-1, integrin 𝛽1, CD11b, and integrin 𝛼v𝛽6, and members
of Ig superfamily ICAM-1 and CD48 also show interaction of
EBV glycoproteins and CD21 [166]. Virus genome integrates
into host epithelial cell genome and amplifies with it [162].
EBV establishes a cycle of persistence in a healthy human
and starts to be released in saliva or infects more B-cells.
Thus, EBV spread throughout the superbasal epithelium and
express latent as well as lytic proteins (Figure 2) [163, 167].

6. Helicobacter pylori Infection in
Epithelial Cells

H. pylori infection spreads from contaminated food or may
also be transferred from faces to the mouth [70].The bacteria
neutralize stomach acids and cause gastric ulcer when they
penetrate the gastric mucous lining [168]. Two types of H.
pylorimay be found in the gastric or mucosal lining: coccoid
type and helical type [169, 170]. Helical type of H. pylori
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Figure 2: Mechanisms of EBV and H. pylori coinfection in gastric epithelial cells. A detailed illustrative mechanism demonstrated in gastric
epithelial cells.H. pylori infection leads to oxidative stress, toxin, and necrosis in cells. These reactions further lead to chronic inflammation,
epigenetic modification, andmutation. All these alterations led to genomic instability. EBV infection leads to the expression of lytic and latent
genes of EBV.These viral genes regulated epigenetic modification and chronic inflammation. Further these EBV derived mechanisms lead to
genomic instability. Finally, genomic instability is one of the potent sources of carcinogenesis.

may be transformed into coccoid type. Coccoid type is less
vulnerable with low antigenicity and less vulnerable in gastric
lining with low production of cytotoxic protein products
(CagA), arginase RocF, tumor necrosis factor-𝛼 (TNF-𝛼),
and others [171]. This makes H. pylori escape from immune
response more easily [169, 170, 172, 173]. Nearly, 20% of H.
pylori in the stomach lining adhere to the epithelial cells
surface while the rest are attached through the cell to cell
junction. Few numbers of H. pylori bacteria are also found
in deeper intercellular space [174]. Autotransporter proteins
present onH. pylori surface, BabA, SabA, AlpA, AlpB, HopZ,
OipA, and others, facilitate the adherence to the epithelial

surface [174–181]; however, no individual protein is found
essential [182, 183]. Additionally, differential expression of
these proteins occurs between strains as well as within a
single strain. Thus, over time, H. pylori acquire a dynamic
adaption by alteration in gene expression, inactivation, or
recombination (Figure 2) [184, 185].

7. Methylation

7.1. EBV and Methylation. Promoter region hypermethyla-
tion in certain genes is frequently seen in EBV-positive GC
compared to EBV-negative GC [16, 186]. GC and other most
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Table 2

EBV gene Cellular response Reference
EBNAs, BALF1, EBERs, BARTs Tumor growth and metastasis [36–38]
LMP 1, EBNAs Angiogenesis [38, 39]
LMP1, BARTs Invasion, metastasis [36, 40]
BARTs, EBNAs, LMPs ECM remodelling [39, 41, 42]
EBNAs, LMPs, EBERs, BARTs Cell migration [43–45]
EBNAs, LMPs, Zta, BARTs Stemness [41, 42]
EBNAs: Epstein-Barr nuclear antigens, BALF1: LMP1: latentmembrane protein 1, EBERs: Epstein-Barr virus-encoded small RNAs, BARTs: BamHIA rightward
transcripts, LMPs: latent membrane proteins, and Zeta: protein encoded by BZLF1.

Table 3

EBV gene Host gene interaction Reference
LMP 1 CDH1 [42, 43]
LMP2A PTEN, STAT3 [46–48]
EBERs IGF-I [49, 50]
LMP1, LMP2A DNMT1, DNMT3b [51, 52]
BARF1 Cyclin D, NFkB [49, 53]
Zta Acetyl-transferase protein CBP, EGR1 [54–57]
LMP: latent membrane protein, EBERs: Epstein-Barr virus-encoded small RNAs, BARF1: BamHI-A rightward frame 1, CDH1: Cadherin 1, PTEN: phosphatase
and tensin homolog, IGF1: insulin-like growth factor 1, DNMT1: DNA methyltransferase 1, DNMT3b: DNA methyltransferase 3b, and EGR 1: early growth
response gene 1.

common cancers occur by the genetic and epigenetic changes
over an extended period. Methylation is common in cancer
and can be divided into two categories, complete genome
hypomethylation which causes cancer due to genetic reason
[187, 188] and regional hypermethylation that are mostly
caused by infection or long-term inflammation [187, 189, 190].
Host cellular machinery plays a more important role and
induces aberrant methylation than viral factors [188, 191].
Host cells initiate dense methylation to silence EBV genes
but in this process host genes themselves become extensively
methylated [192, 193]. H. pylori are considered as major
factors of GC, and aberrant methylation is also the hallmark
of H. pylori-related GC [194]. Hypermethylation has been
linked to H. pylori-related gastritis and inflammation [195].
The mechanisms of H. pylori induced hypermethylation
are unknown and it is also thought that there is possible
involvement of ROS/NOS [196]. Though several studies
suggest an association of EBV and H. pylori coinfection
in the occurrence of GC, the mechanism is still unclear
[78, 197, 198]. A recently published data in AGS cell line
demonstrated that EBV also methylated those host genes
which are associated with neutralized CagA toxin ofH. pylori
[199]. Another study suggests that cooperation of EBV gene
Zta with H. pylori has some positive link to GC [79].

In a study in cancer-related signalling pathways in
EBV-associated GC, genes of cell cycle regulation (IGFBP3,
CDKN2A, ID2, HSP70, CCND1, and ID4), DNA repair
(BRCA1, TFF1), cell adhesion (ICAM1), angiogenesis
(HIF1A), and inflammation (COX2) were found deregulated
[200]. EBV-specific patterns were observed in CpG island
DNA methylation and demethylation for some promoter
sequence [201, 202]. The loss of 3 critical tumor suppressor
genes, CDH1 (E-cadherin) [198], p73 [203], and CDKN2A

(p16) [201], in EBV-associated GC is also seen. EBV-
specific CpG island methylation and demethylation were
observed by bisulfite DNA sequencing [202]. However,
EBV is associated with epigenetic changes of apoptosis
(DAPK, BNIP3, FAM3B HRK, IL15RA, MINT31, p16, p73,
PTEN, and RASSF1A), cell cycle regulation (APC, p15, p16,
p57, and p73), cell proliferation (E-Cadherin, HRASLS,
IL15RA, MINT31, NKX3.1, RUNX3, TIMP2, and TIMP3),
cell signalling (14-3-3 Sigma, CSPG2, MINT1, MINT2,
and PLXND1), cell adhesion (EPHB6, FLNC, FSD, REC8,
and CSPG2), migration (EPHB6), interaction (MDGA2,
THBS1), DNA repair (HMLH1, MGMT), and many other
epigenetic changes (BCL7A, BLU, CHFR, CXXC4, GSTP1,
HLTF, HOXA10, IHH, MARK1, MINT25, PAX5-𝛽,SCARF2,
SSTR1, THBD, and WNT5A) [17, 40, 190, 191, 194, 204–211].
Associations of EBV factors with different host machinery
and methylation are listed in Tables 2 and 3.

Aberrant DNA methylations are catalyzed by the
enzymes, namely, DNA methyltransferases (DNMTs) [54].
DNMT1, DNMT3A, and DNMT3B are isoforms of DNMTs
which maintain the original methylation patterns after
replication and target unmethylated CpG islands to initiate
methylation [55]. Overexpression of these 3 isoforms was
observed in H. pylori-related GC [56]. It was reported that
CDH1 gene methylation was higher in H. pylori associated
gastric mucosa than in H. pylori negative gastric mucosa
[57, 212]. CDH1 is a cell-cell adhesion glycoprotein, which is
frequently inactivated in GC. In H. pylori induced gastritis,
COX2 [213], IL1-𝛽 [214], IFN-𝛾 [215], TNF-𝛼 [216], NOS
2 [217], and genes associated with the inflammation were
found to be highly upregulated [218]. A study suggested
upregulation of SMARCD1 protein through miR-490-3p
in H. pylori associated GC. Further, overexpression of this
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protein causes oncogenic phenotype expression in in vitro
and in vivo studies [219]. In another study, downregulation
of Gastrokine (GKN1) was observed in H. pylori associated
GC. GKN1 facilitates the restoration and proliferation after
gastric epithelial injury and suppresses GC. This study also
revealed that GKN1 inversely correlated the expression of
DNMT1 and EZH2 (enhancer of zeste homologue 2) [220].
EZH2 is a potential target of many types of cancers [221].
Another study suggested that deregulation of Forkhead
box protein (FOX) and methylation was observed in
H. pylori associated GC. Also, dysregulation of FOXD3
promotes gastric carcinogenesis [222]. Many other genes
found upregulated by H. pylori are associated with cell
cycle progression and proliferation (p14, p16, p21, p27,
RAB40C, COX 2, FOS, ERBB2, FGFR2, ABL1, ECOP,
JAK2, MYC, MET, SIRT1, PDCD4, TRAF6, GMNN, and
CCNE2) [213, 223–242], apoptosis (RECK, SMAD4, TRAIL,
MCL1, BIM, XIAP, and PDK1) [243–250], and invasion and
metastasis (PTEN, WNT 5a, EDNRA, ROR2, EPB41L3,
MMP1, MMP10, HMGA2, ROBO1, TGF-𝛽, EZH2, casein
kinase 2, and ZEB) [251–262]. Several studies showed that the
upregulation of inflammatory cytokines IL1-𝛽, NOS 2, and
TNF-𝛼 induced methylation [46–49, 51, 52, 263]. H. pylori
induces oxidative stress, ROS, and RNS which can cause p53
point mutations [264–267]. Nitric oxide (NO) can cause G:T
mismatch during DNA synthesis and eventually results in
G:C to A:T base transversion and epigenetic modification of
tumorigenic genes (Figure 2) [268, 269].

8. EBV and H. pylori Factors Contributing to
the Development of GC

Interaction between EBV and H. pylori in host stomach
lining may have some synergistic effects in the develop-
ment of GC. Many genes were found methylated in EBV
and H. pylori coinfected gastric adenocarcinomas. Most
frequently hypermethylated genes include COX 2, DAPK,
CDH1, CDKN2A, and hMLH1. These genes are commonly
found altered in various cancer types including GC [270].
Further, H. pylori positive individuals show a significantly
higher EBV DNA load which suggests H. pylori role in lytic
phase conversion of EBV [271]. Also, EBV DNA load was
more in H. pylori positive patients than those uninfected
with GC [272]. Another study on coinfection suggests that
EBV with H. pylori induces severe inflammatory responses
in the individual and, hence, increases the risk of developing
the intestinal type GC [78]. It is thought that there are
two possible mechanisms, first an additional inflammatory
response in coinfection and increased tissue damaging by
both H. pylori and EBV [79, 215]. In this scenario, significant
elevation was observed in IL-1𝛽 [273], TNF-𝛼 [274], and IL-
8 [275]. A study in pediatrics patients demonstrated that H.
pylori infection was not but the presence of EBV, an essential
factor for severe inflammation [79].The secondmechanism is
based on gene products interaction which is more significant
between EBV and H. pylori. In vitro study found that EBV
reactivation occurs by the PLC𝛾 signalling pathway and H.
pylori toxin CagA strongly activates PLC𝛾 [237] and also
activates several kinases [276]. An ectopic expression on

transgenic mice supports the oncoprotein nature of CagA
[277–280]. CagA of H. pylori and LMP1 and LMP2 of EBV
activate NF-𝜅B and MAP kinases, which are well-known
pathways of cell survival and proliferation during carcinogen-
esis [211, 281].H. pylori associated oncoprotein CagA triggers
an aberrant activation of WNT signalling pathway [282].
WNT signalling pathway activation leads to the activation of
CDX1, a downstream gene [283], which reprograms epithelial
cells in mucosal lining to acquire stemness properties by
inducing SALL4 and KLF5 factors [284]. Another study
also suggests that EBV and H. pylori transform the stomach
epithelium cells and play roles in carcinogenesis [78]. Both
pathogens induce common pathways which leads to the
activation of transforming factors in stomach epithelial cells
by 𝛽-catenin/TCF-4 signalling pathway [79, 285]. In another
study, an association between EBV and H. pylori copositivity
was shown and significant infiltration in premalignant lesions
in GC was observed [78]. A study by Szkaradkiewicz et al.
suggested that BcL2 expression was higher in EBV and H.
pylori associated GC; thus, excessive overexpression may be
the result of coinfection [286]. Several studies also revealed
that PCDH10 (protocadherin 10) is calcium dependent
cell adhesion molecule which suppresses tumor in gastric
epithelial hypermethylated in H. pylori associated GC and
EBV-infected individual [287–289]. SWI/SNF remodelling
complex which is commonly observed in GC is found
associated with both pathogens, EBV and H. pylori [290].
A recent study suggested that host protein SHP 1 interacts
with H. pylori CagA protein and dephosphorylates CagA,
thus preventing oncogenic activity of CagA. However, EBV
coinfection causes methylation of host SHP 1 and prevents its
dephosphorylation activity of CagA and thus may increase
oncogenic potential of CagA [199]. Further, a study suggested
that bothEBVandH. pylori coinfectionwere ominouslymore
dominant in intestinal ulcer patients compared to GERD
and dyspepsia patients [291].H. pylori positive patients show
increased anti-EBV IgG titre which suggests H. pylori role in
augmenting EBV DNA load and higher immune responses
[291]. However, some study is also available which suggested
thatH. pylori attenuated TGF-𝛽 expression which reactivates
EBV lytic phase and might play a role in preventing EBV
lytic reactivation and preventing GC [292]. Therefore, the
mechanism of coexistence for H. pylori and EBV must be
studied to find the probable and potential pathogenic roles
for both pathogens.

9. Future Direction

To date, mostly clinical findings explicitly described the
EBV and H. pylori coinfection in GC. Moreover, how these
pathogens target host factors and downstream pathways is
still unexplored. Therefore, a detailed study which could
potentially uncover the mechanism of EBV and H. pylori
in the progression of GC could be interesting to peruse.
How H. pylori antigens interacted with EBV antigens could
be interesting to explore and helps in the understanding
of progression of aggressive GC. Why only few cells from
host are targeted by H. pylori and EBV is also critical to
understand.
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infection of näıve B cells in vitro frequently selects clones with
mutated immunoglobulin genotypes: implications for virus
biology,” PLoS Pathogens, vol. 8, no. 5, Article ID e1002697, 2012.

[95] E. Cesarman, “Gammaherpesvirus and lymphoproliferative
disorders in immunocompromised patients,” Cancer Letters,
vol. 305, no. 2, pp. 163–174, 2011.

[96] K. J. Flavell and P. G. Murray, “Hodgkin’s disease and the
Epstein-Barr virus,” Journal of Clinical Pathology—Molecular
Pathology, vol. 53, no. 5, pp. 262–269, 2000.

[97] M. Rowe, L. Fitzsimmons, and A. I. Bell, “Epstein-Barr virus
and Burkitt lymphoma,” Chinese Journal of Cancer, vol. 33, no.
12, pp. 609–619, 2014.

[98] G. Pannone, R. Zamparese, M. Pace et al., “The role of EBV
in the pathogenesis of Burkitt’s Lymphoma: an Italian hospital
based survey,” Infectious Agents and Cancer, vol. 9, no. 1, article
34, 2014.

[99] P. Adam, I. Bonzheim, F. Fend, and L. Quintanilla-Mart́ınez,
“Epstein-barr virus-positive diffuse large B-cell lymphomas of
the elderly,” Advances in Anatomic Pathology, vol. 18, no. 5, pp.
349–355, 2011.



Journal of Oncology 11

[100] C. Y. Ok, T. G. Papathomas, L. J. Medeiros, and K. H. Young,
“EBV-positive diffuse large B-cell lymphoma of the elderly,”
Blood, vol. 122, no. 3, pp. 328–340, 2013.

[101] N. Asano, S. Kato, and S. Nakamura, “Epstein-Barr virus-
associated natural killer/T-cell lymphomas,” Best Practice and
Research: Clinical Haematology, vol. 26, no. 1, pp. 15–21, 2013.

[102] S. A. Rezk and L. M. Weiss, “Epstein-Barr virus-associated
lymphoproliferative disorders,” Human Pathology, vol. 38, no.
9, pp. 1293–1304, 2007.

[103] E. A. Chu, J. M. Wu, D. E. Tunkel, and S. L. Ishman, “Nasopha-
ryngeal carcinoma: the role of the Epstein-Barr virus,” The
Medscape Journal of Medicine, vol. 10, no. 7, article no. 165, 2008.

[104] L. S. Young and C. W. Dawson, “Epstein-Barr virus and
nasopharyngeal carcinoma,” Chinese Journal of Cancer, vol. 33,
no. 12, pp. 581–590, 2014.

[105] G.Murphy, R. Pfeiffer,M. C. Camargo, andC. S. Rabkin, “Meta-
analysis Shows that prevalence of Epstein-Barr Virus-positive
gastric cancer differs based on sex and anatomic location,”
Gastroenterology, vol. 137, no. 3, pp. 824–833, 2009.

[106] A. Archimandritis, J. Bitsikas,M. Tjivras et al., “Non-cardia gas-
tric adenocarcinoma and Helicobacter pylori infection,” Italian
Journal of Gastroenterology, vol. 25, no. 7, pp. 368–371, 1993.

[107] C. E. Taylor, “Serological techniques,” Journal of Clinical Pathol-
ogy, vol. 3, no. 1, pp. 14–18, 1969.

[108] R. C. She, A. R. Wilson, and C. M. Litwin, “Evaluation of
Helicobacter pylori immunoglobulin G (IgG), IgA, and IgM
serologic testing compared to stool antigen testing,”Clinical and
Vaccine Immunology, vol. 16, no. 8, pp. 1253–1255, 2009.

[109] P. Robertson, S. Beynon, R. Whybin et al., “Measurement of
EBV-IgG anti-VCA avidity aids the early and reliable diagnosis
of primary EBV infection,” Journal of Medical Virology, vol. 70,
no. 4, pp. 617–623, 2003.

[110] G. Bauer, “Simplicity through complexity: immunoblot with
recombinant antigens as the new gold standard in Epstein-Barr
virus serology,”Clinical Laboratory, vol. 47, no. 5-6, pp. 223–230,
2001.

[111] A. Crowley, J. Connell, K. Schaffer, W. Hall, and J. Hassan,
“Is there diagnostic value in detection of immunoglobulin G
antibodies to the Epstein-Barr virus early antigen?” BioResearch
Open Access, vol. 1, pp. 291–296, 2012.

[112] M. De Paschale and P. Clerici, “Serological diagnosis of Epstein-
Barr virus infection: problems and solutions,”World Journal of
Virology, vol. 1, no. 1, pp. 31–43, 2012.

[113] J. S. Klutts, B. A. Ford, N. R. Perez, and A. M. Gronowski,
“Evidence-based approach for interpretation of Epstein-Barr
virus serological patterns,” Journal of Clinical Microbiology, vol.
47, no. 10, pp. 3204–3210, 2009.

[114] R. D. Hess, “Routine Epstein-Barr virus diagnostics from the
laboratory perspective: still challenging after 35 years,” Journal
of Clinical Microbiology, vol. 42, no. 8, pp. 3381–3387, 2004.
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